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ABSTRACT

Many modern computer languages have a variety of basic data types and allow the
programmer to define more. The facilities for debugging programs written in these languages,
however, seldom provide any capabilitics to capture the abstraction represented in the programmer’s
mind by the data types. [Incense, the system described here, is a working prototype system that
altows the programmer to interactively investigate data structures in programs. The desired displays
can be specified by the programmer or a default can be used. The defaults include using the
standard form for literals of the basic types, the actual names for enumerated types, stacked boxes
for records, and curved lines with arrowhcads for pointers.  'the intention is that the display
produced should be similar to the picture the programmer would have drawn to cxplain the data
type. Incense displays have the additional feature that they can change dynamically.

Incense is written in and for the Pascal-like language Mesa, which was developed at the Xerox
Palo Alto Rescarch Center. Incense has been used to investigate and document many data
structures including some of the internal data structures of the Incense system itself.

In addition to displaying data structures, Incense also allows the user to sclect, move, erase
and redimension the resulting displays. Incense also allows the user to modify the actual values
stored using the samc high-level names that are displayed. These functions are provided in a
uniform, natural manner using a pointing device ("'mousc”) and keyboard.
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I. Introduction

Many modern computer languages have a variety of basic data types and allow the
programmer to define others. Few languages, however, have facilitics to allow the programmer to
display these data structures for debugging, monitoring or documenting programs in a rcasonable
fashion. This thesis describes the system Incense, written in the Mesa computer language [Mitchell
79b], which allows the client to design and use graphical representations for data structures.

Pictures are clearly useful for representing data since they are used by programmers to explain
their data structures to other humans. Frequently, a picture will be drawn of the typical case or the
one under cxamination. A system that could present the information in the same manner that a
programmer docs would thus be taking a large step towards making the information easier to
understand.

The most basic part of Incense is simply a framework for data display. Thus, Incense would
be useful to many types of systems that have data display as a component. The major emphasis of
the current work, however, has been in the area of debugging systems. Incense has therefore been
augmented with a large number of procedures that automatically display the data structures found
in actual Mesa programs. In addition, facilities cxist to allow the user to specify and modify the
displays at various levels.

The most difficult aspects of Incense were the display of pointers, and allowing the client to
define new display formats. The solution to the first problem involved using a carcfully designed
abstraction to hide the internal data and procedures. The problem with pointers is that a location
on the screcn must be chosen for the referent. Incense provides a mechanism to allow this to be
done without dynamic space allocation. Although brcscntly Incense does not have an acceptable
front end, it should increase the effectiveness of any debugger into which it might be integrated.

1.1 Importance of Debugging.

Relatively little work has been done on debuggers and data structure display since the early
days of computer science. Model [79, p. 4] claims that "the past twenty years has scen little change
in the nature of the debugging facilities available to the typical programmer.” The dcbuggers for
high level languages such as Fortran, Pascal, and Mesa have mostly copied the aids developed for
assembly languages. One reason for this is that programmers tend to discount the importance of
debugging. Some, such as Dijkstra {72, p. 863], claim that good programmers should not waste their
time dcbugging because "they should not introducc bugs to start with.” When interesting
dcbugging facilitics arc developed, they are frequently not documented or published since the
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systems are frequently proprictary and specific to a particular machine and/or language. In the area
of data structure display, therc has been even less work. In fact, "few attempts have been made to
create formal external representations for the data environments (for any language)” [Swinchart 74,
p. 83}

Unfortunately, the problem of debugging is not likely to go away. Even with the use of
modern languages and the advent of structured programming techniques, programmers still spend
"countless hours” debugging [Hanson 78]. Van Tassel [74, p. 117] goes so far as to claim that "a
bug-free program is an abstract theoretical concept.” Naur [74, p. 54] substantiates this claim: "The
difficulty in achieving correctness in programs may be understood when the degree of complexity of
many programs and the nced for virtually absolute correctness of all details of these programs is
considered.”

The importance of debugging can also be seen in its costs. Estimates of the amounts of time
programmers spend debugging vary from fifty to ninety percent of the programming task [van
Tassel 74, p. 117]. Debugging and maintcnance together may cost fifty times more than original
program production [Tratner 79, p. 97}.

1.2 The Theory and Teaching of Debugging.

Unfortunately, few theorics exist about how people debug and what makes a debugging system
more cffective. Debugging is generally considered an art, a creative activity. In finding the errors
in a program, "the programmer operates in a very intuitive mode, depending more on insight and
imagination than on rigorous step-by-step analysis" [Model 79, p. 53]. Some studies have attempted
to classify types of bugs [van Tasscl 77] and to find some global rules to help programmers (e.g,
[Loeser 76]). Atwood [78] did a study bascd on cognitive psychology to try to develop a theory of
the difficulty of finding different types of bugs. He claims that the decper the logical nesting depth
of a bug’s location in the program, the harder it is to find. Sheppard [79] presents evidence,
however, that Atwood’s findings might not be valid and that there arc strong dependencies on the
particular algorithm uscd in the study. Levine [77] attempted to discover if carcfully planned
debugging was more cffective than “ad hoc” technigues but found no significant results. Most of
these studics have used small programs with very small numbers of subjects (e.g, 10) so no real

conclusions can be drawn from them.

One result of the lack of a theory of debugging is that it is difficult to tcach dcbugging
techniques.  "From the beginning,” ‘T'ratner [79, p. 97] claims, "our best schooling in dcbugging
tcaches futility.”  All that texts and teachers can do is suggest general approaches and demonstrate
the debugging aids that arc available.
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1.3 Importance of Monitoring.

In many cases, it is important to be able to monitor the state of a program while it is
executing. A graphical display, such as presented by Incense, would allow the user to more easily
follow the monitoring process (see chapter 2). Frequently, the information necded to locate an
error is no longer available when recognized as important. This is especially true with real-time
programs such as operating systems. In an informal poll of Mcsa users (see Appendix A), two of
the most frequently listed problems were random overwriting of memory locations and process
interactions (including timing problems). Monitoring that allowed watching of both control flow
and variables would help immensely in locating the sources of these bugs.

The programmer may also be able to discover problems with the flow of control or
manipulations of the data structures using monitoring. Swinchart [74, p. 2] explains: "Continuous
display of information with some associated context helps the user to retain comprehension of
complex program cnvironments, and to indicate the environments to be affected by his commands.”

1.4 Overview of Thesis.

%

In view of the importance of debugging and the general lack of research and theories about it,
the best way to investigate ideas about better techniques seems to be to implement a system and
then sce if it appears to increase the programmer’s productivity. Incense is an attempt to study one
very important part of debugging systems: the display of data structures. This thesis first presents
some of the requirements felt to be important in any debugging system (chapter 1) and then
describes some related work in debuggers and graphical systems (chapter 11T). Following this is a
description of the cnvironment at the Palo Alto Research Center (PARC) in which Incense was
created (chapter IV). An overview of the Incense system (chapter V) is followed by a discussion of
the run time type system required for gencrating the default displays (chapter VI). More detail
about the actual implementation of Incense is then given (chapter VII). The thesis concludes with
some ideas for future work (chapter VII) and a summary and conclusion (chapter VIII). It is
important first, however, to define the terms used in the rest of the paper. :

1.5 Definition of Important Terms.

This paper assumcs the reader is familiar with programming and some computer languages;
however, some terms will be used in a specific or unusual manner and are thercfore defined below.



DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

Data. Knuth, in his famous text book [Knuth 69, p. 620], defines data as

representation in a precise, formalized language of some facts or concepts, often numeric
or alphabetic values, in a manner which can be manipulated by a computational method.

Data Types. All variables in languages such as Mesa are required to be of some specific type.

Each type is characterized by (1) the set of values included in it, (2) the way literals of
that type can be written in a program, (3) rules about how the values of the type may be
used as operands of operations, and (4) rules about how values of the type result from
executing operations. [Naur 74, p. 40}

A type may also specify the way the values arc to be laid out in memory [Aho 78, p. 387]. Types
in Mesa include INTEGER, REAL, CARDINAL (positive integers). BOOLEAN (truc or false), CHARACTER,
POINTER, RECORD, ARRAY, ENUMERATED (lists of names, e.g. {Mon, Tues, Wed, Thurs, Fri}),
subranges of the above types, and many other more esoteric types (sec chapter 6).

Strongly Typed Languages. Strongly typed languages are ones “that have many types, but the type
of every name and expression must be calculable at compile time™ [Aho 78, p. 36). Mecsa and
Pascal arc strongly typed, but Pl/1, Fortran and Lisp are not. This feature provides many
opportunitics for a data display sysicm since the compiler can save the type information allowing
the correct display format of any data to be chosen.

Data Structures. "A data structure is a sct of primitive data clements and other data structures,
together with a set of structural relations among its components” [Aho 78, p. 38]. Thus instances of
records and arrays are data structurcs under this definition. In this thesis, however, I will frequently
use data structure to also include the basic data clements.

Debugging. Debugging "is the process of making a program behave as intended. The difference
between the intended behavior and actual behavior is caused by ‘bugs’ (program errors) which are
to be corrected during debugging” [Lauesen 79, p. 51} Model [79, p.52] classifies different stages of
debugging:

Fundamentally, dcbugging is the act of (1) observing the bchavior of a computer
program; ... (2) comparing the actual behavior to the behavior desired of the program;
(3) analyzing the cause of variances thereby detected; (4) devising changes to the
program that would make it conform more closcly to the desired behavior; and (5)
altering the program in accordance with those changes. Normally the act is cyclical:
after the program has been modified, the steps are repeated until a sufficient match
between desired and observed behavior is obtained.

Testing. Some authors distinguish between testing and debugging. Van Tassel [74, p. 118] asserts
that "testing determines that an error exists; debugging localizes the cause of the error.” Dcbugging

will be used to include testing in this thesis, however.

Client. In the text above, there have been references to what the programmer can do in Incense.
In fact. however, the system is configured so that a program can call on Incense and get the same
results.  Client will be used to denote both human and procedural users, and programmer and user
will be used interchangeably to refer exclusively to the human user.



II. Desired Features in a Debugging System

Many different requirecments for debugging systems have been specified in the literature, and
actual systems conform to thesc constraints to varying extents. This section will attempt to list many
of the desired features of debugging and data display systems and the reasons they are appropriate.
These requirements will be used as criteria for judging debugging systems and will serve as goals for
Incense.

2.1 Motivation for Features.

As might be expected, most of the desired features are motivated by limitations of the human
users. People can only attend to a small amount of information at a time, but "when dealing with
information in a familiar form, ... humans arc highly adaptable. They tend to supply missing items
themselves” [Naur 74, p. 238]. Another aspect of human understanding is that it tends to be highly
"context sensitive” [Swinchart 74, p. 10].. ‘That is, the presentation of context allows more rapid
recognition of the information’s meaning and significance.

Another aspect of the programmer-computer interface is the volume of data that needs to be
transferred. Frequently, the programmer must process large amounts of information produced by
the computer, for cxample to find a bug with unusuai, non-local cffects.  Furthermore, this data
may be gencrated by multiple processes running in the computer. In this case, the programmer
must be able to separate the output coming from the various sources.

2.2 Features.

Naur [74, pp. 239-245] gives a long list of design requircments for any computer system for
which a human interface must be provided. The principles governing dcsign of input from the user
are;

(1) Reduce the volume of data requircd from the user;

(2) Adjust the form of the input to make best use of the human faculties;

(3) Usc feedback to allow correction of mistakes as they are made; and

(4) Include carcful redundancy to allow automatic recognition of mistakes [Naur 74, p. 244].
For output, Naur has a similar list:

(5) Adjust output quantity to human capacity;

(6) Choosc forms of output that arc readily acceptable to human comprchension; and

(7) Output only completely processed results [Naur 74, p. 245).

This scction will discuss these points (and some others) emphasizing their applicability to
dcbugging systems.
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2.2.1 Speed.

One of the most common complaints about current systems is that the operations required to

find a bug take too long. Many of the experimental systems that seemed very attractive on paper
(for example, [Model 79]), are not used because they operate too slowly [Fikes 79][Laaser 79].
'Systems such as RAID [Petit 69], which essentially add a Cathode Ray Tube (CRT) screen to
conventional debugging aids, are very effective partially because "relatively conventional tools are
considerably cnhanced by increasing the bandwidth of the communication path™ [Satterthwaite 75,
p. 21].

Mitchell [79a, p. 7] gives a more theoretical definition of the speed requirements of an
interactive system. He proposes that the two conversants should be matched in response time (a
"balanced conversation”). If not, the more powerful one will cither use his time poorly or waste
energy doing unnccessary computation.  Different types of tasks are allowed to take different
amounts of time, however. For example, the wait before commencing a complex operation and
sceing it complete may be much longer than the wait between pressing of a key and secing the
letter typed. Recently, it has become acceptable to allow the computer to be under-utilized due to
decreasing costs of hardware. Consequently, the appropriate criterion today is that the human
should be able to avoid wasting his time.

2.2.2 Information at user’s level.

Naur requires that output should be "completcly processed.” For example, if the user
requests the display of a CHARACTER and the debugger prints an octal number, the user rather than
the computer will have to do the conversion. A similar requircment also applics to input. With
respect to programming languages, "it is imperative that information about the behavior of a
program be presented at the conceptual level at which the program was written and in terms of the
constraints and operations of the programming language used” [Model 79, p. 55).

A motivation for this principle is given by Model [79, p. 28]. Hec explains that pcople do not.
usually understand higher level constructs by brecaking them down into the lower level constitucnt.sv
because these ‘details require the user to handle more information, most of which is irrclevant to his
task. If the information is presented at a higher level, this "leaves more of the programmer’s
resources available for the demanding analytic and creative phases of debugging activity” [Model 79,
p. 53]

Another aspect of this requirement is that the programmer can best understand the
information if the context in which the information is to be evaluated is presented. Most current
systems require the user to declare the context in which he is interested. The system then assumes
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he remembers it. In systems with complex, dynamic displays, however, sufficient contextual
information must be displayed to allow the programmer to identify the mcaning of the displayed
information.

2.2.3 Use of appropriate level of detail.

In addition to the requirement that the information be presented at the correct conceptual
level, the amount of information produced should be minimized. If the user is interested in one
particular value, he should not be required to hunt through a large amount of output to find it.
"The name of an object is often all the programmer nceds to see, as printouts frequently serve only
to identify which one of a set of known objects a particular onc is. When the user does want further
details, it is imperative that he be able to request them selectively” [Model 79, p. 78].  Providing
only the nceded information can also allow the system to respond much more quickly since
interactive systems frequently spend much time handling Input/Output (1/0).

2.2.4 Analogical display.

The use of analogical display helps to handle many of the requirements listed above. An
analogical dispiay uses abstract pictures, such as bar graphs, icons, arrows, tables, ctc. Thus the
information is not simply printed out; it is converted into a form that is casier for the human to
understand, possibly by analogy to the physical world.

Again, Model [79, p. 12] motivates this requirecment with reference to human psychology. The
structure of the human brain and current understanding of human information processing "show
that sensory information [of the physical world] is highly organized before it reaches the parts of the
brain associated with abstraction, analysis, and other components of thought.” Thus, analogical
displays more effectively utilize the brain’s innate capacitics. For example, the eye is good at
making rough estimates in proportion. A display of an iteration variable as a "percent-done
thermometer” (like those used in charity drives; sce Figure 2.1) or a bar graph (Figure 2.2) may
present all of the required information in a manner that is casy to understand.

Pictures are used by programmers to cxplain their data structures to other humans. For
example, the prdgrammcr often draws a picture of the typical case or the one under cxamination.
The programmer rarcly would write a sct of octal numbers to cxplain how his tree-structure is
represented.  Thercefore, a system that uses pictorial output presents the information in a more
natural and understandable manner.
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Figure 2.1. Percent-done thermometer showing 80% complete.
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Figure 2.2. Display of storage usage in DLISP as numbers (top) and bar-graph (bottom).
' [Model 79, p. 117].

2.2.5 Automatically generated pictures. .

Pictures are also produced as documentation for programs. The most obvious example of this
is flowcharts. Drawings of ‘data structures are also frequently drawn by hand, especially for
languages with standard, high-level structures such as LISP. Unfortunately, "readable, neat copies
of pictures are expensive to produce and reproduce ... [and] with manually generated pictures, there
is no guarantee of correspondence with a real computation running or.-a real machine” {Yarwood
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71, p. 9]. Thus, automatic generation of the pictures is required. This was done on the earliest
computers (section 3.6.1), but was seldom uscd until recently (section 3.5.2). Interest in automatic
gencration of flowcharts began in the late 1950’s (sce section 3.6). The automatic generation of
pictures as a means of display seems the natural choice considering the desire for analogical display.

2.2.6 Mcta-knowledge.

Debugging systems might help the programmer understand the output at a more global level
even more than by using analogical display. For example, when asked the value of an array, the
This would

system might say: "All have initial value except for element #17 which equals ...
usually be casier to understand than the list of all the values. Another uscful facility would be to
detect that certain clements of a complex structure had been overwritten by accident. At an even
higher level, the programmer might ask. "Did anything unusual happen during this execution?” A
system that would allow cxpression of these sorts of requests would require knowledge and
capabilitics not yct available even in the most advanced artificial intelligence systems. If the
techniques were available, howcver, debugging systems would be a useful place for them to be
applied replacing much of the current interface to debuggers. A sophisticated data display system
would still be useful, however, and would be improved through the use of knowledge about the
user and program.

2.2.7 Replay.

The ability to make a history of the events that occurred during an execution or debugging
session has proved useful in many systems. If the running time of the program under investigation
is too long, a replay at a higher speed using the history may be the only practical way of following
it [Lenders 78]. Replays may also allow the user to back up a computation, change something, and
then repeat the computation in the new environment. Yarwood [77, p. 61] gives another motivation
for replays:

In order to understand a complex change in ... data, the user must be able, for a short
time at least, to move his attention morc or less randomly between the "before™ state,
the "after” state, and the intervening part of the program which caused the change.

In a CRT based environment, a history should be stored to allow the user to look back at previous
output. With an analogical display, the information stored on the history should be sufficiently
detailed to allow a replay of the pictures produced originally.






I11. History of Debuggers and Other Relevant Systems

Debugging of computer programs has been necessary cver since thle first programs were
written. There are many good historics and surveys of debugging (for example, [Model 79)],
[Satterthwaite 75], and [Blair 71} all contain good surveys over different sets of systems). The survey
presentcd here makes no attempt to be thorough or comprchensive. The important stages of
computer softwarc debugging are presented along with somec illustrative examples in sections 3.1
through 3.5.

Some systems that were not aimed directly at debugging have profoundly affected the way
humans interact with the computers. These have gcncraliy been graphically oriented. and some are
discussed in section 3.6.

3.1 Earliest Systems and the Basic Debugging Techniques.

The carlicst stored program computers were small enough that one user’s program could
cffectively utilize the computer’s resources. Therefore, the programmer could sit at the console and
debug his program while it was opcrating. This is called the interactive mode of opcrating since the
user is intcracting with the computer. ‘The alternative is barch mode, in which the user has no
control over the execution of the program once it has begun. The carliest interactive debugging was
frequently done by watching the lights on the front pancl of the computer. The three basic forms
of debugging, rrace, dump, and break, were all developed on the EDSAC, the "first practical stored-
program clectronic digital computer” [Satterthwaite 75, p. 18]. The EDSAC was built at Cambridge
University in the middle 1940's [Bell 71, p. 42}

3.1.1 The Trace.

In a program trace, some portion of the state of the machine, such as the location in the code
and the values of important variables, is printed out every time certain events occur. These events
are usually the reading or writing of a memory location or the exccution of a certain type of

instruction (c.g. a branch at a specific point). Onc purpose of a trace is to "give the user some ..

picture of which of the many possible sequences of operations was actually performed” [Model 79,
p. 44]. Flow tracing is uscful for optimizing code, since the user can discover where the program is
spending its time. ‘Tracing is also uscful for discovering how some variable got a certain value.

3.1.2 The Dump.

The dump is actually a more primitive operation than a trace. The programmer displays all
the values in a certain arca of memory, usually in some numcrical representation such as octal. He

11
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must then try to figure out what all the values mean and if any of them are wrong. Dumps are
inefficient since (1) the bug may have occurred long before the cffects seen in the dump; (2)
finding more than one bug is difficult; (3) too much information is available, making it hard to find
the important parts; and (4) it is hard to get any meaning from a dump if a higher level language is
in use [Lauesen 79, p. 53]. Dumps were discouraged on the earlicr machines such as the EDSAC,
due to the slow output devices available [Bell 71, p. 139].

3.1.3 The Breakpoint.

Whereas traces and dumps can be used in either interactive or batch modes, breakpoints are
only uscful in the former. A breakpoint is simply a method for causing the program to cease
exccuting, usually in a manner that will allow it to resume at the user's command. The standard
imp]mﬁcmation method is to save the instruction where a break is desired and store a trap
instruction in that location [Hughes 78, p. 102]. Carc must be taken in executing the instruction out
of line to maintain the correct semantics.

Breakpoints only allow "snapshots™ of the program state and arc not very good for finding
certain types of bugs. For cxample, to find out how code is being clobbered, the programmer
might have to repcatedly run his program setting breaks further and further back [Leslic 78].
Breakpoints also gencrally give confusing information in systems with multiple processes.

A small enhancement on breakpoints is single-stepping where the system sets a breakpoint
before every instruction. Each system that provides this facility must therefore define the meaning
of "an instruction.” For cxample, in LISP, an instruction might be the processing of onc atom, the
call of a function, or one cycle of thc read-eval-print loop.

3.14 Events.

Lvents in a program exccution are the occurrences of certain happenings, for examples,
accessing or writing of a memory location or the exccution of a certain type of instruction. Hanson
[78] has formalized the idca of cvents and provided facilities in the language system SNOBOL for:
exccuting arbitrary functions when they occur.  He classifies the cvents into five types: 1)
referencing of a variable; (2) execution of a statement; (3) external interruption (by the user); (4)
function call or return; and (5) execution time error [p. 116]. A new function has been added to
the language definition of SNOBOL. called CONNECT which attaches a function to a particular
instance of an cvent type. This mechanism is sufficiently general to allow any type of breakpoint,
trace or dump to be written, and it is possible to provide an entirc debugging system such as DDT
(scction 3.4.2).
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Hanson claims that the overhead for all of this flexibility is small. One extra compare is
required for cvery assignment to a variable, but this can be omitted if no events associated with
variables are used [p. 125]. Thus event associations seem to be a general and powerful way to
achicve some of the facilities desired in a debugging system.

3.2 Batch Dcbugging Systems.

When computers became faster and more expensive, one person could no longer efficiently
use the cntire machine. Thus, batch proccssing was {nventcd [Mitchell 79a, p. 4. Here the
programmer develops his program off-line and then (usually) punches it on cards. These are
submitted and later its output is available. The turn-around time for batch systems is typically on
the order of six hours or more. The programmer was therefore encouraged to carcfully examine his
program to try to avoid extra runs. l.ots of output was generated on cach run so the programmer
would have some hint as to where bugs might be.

It was in batch processing that dumps became a dominant form of debugging. With the
advent of high speed line printers, dumps were much more practical than allowing the user to
investigate a running program. Operating systems were frequently configured to dump all of
memory when some faults occurred. Lyon [78, p. 1} reports that "whole books have been devoted
to deciphering COBOL  dumps.”

3.2.1 Print statements as a debugging tool.

Unfortunately, dumps frequently proved inadequate and many systems did not have usable
trace facilitics, so another popular debugging technique emerged. The programmer would insert
print statements in his program to try to simulate an effective trace. Knuth [69, p. 189] reports that
"many of today’s best programmers will devote necarly half of their program to facilitating the
debugging process on the other half, .. the net result is a surprising gain in productivity.”
Problems with this mode of debugging are that the "debugging statements usually must be left out
of the final version of the program, and are tedious to include in {its] development” [Hanson 78, p.
121]. Another problem is that the output (or its absence) may modify the program’s behavior (e.g.,
its timing characteristics) in a way that creates or hides bugs. .

Lauesen [75] [79) claims that in spitc of these problems, he was able to produccr an opcrating
system that "secems to be crror-free” using print statement output as the major debugging technique
[lLaucsen 75, p. 378). He further maintains that "if the program is properly structured, [putting
print statements] in a few places will suffice, cven in large programs” [laucsen 79, p. 53]. The
output is directed at a file during production runs to act as a history, allowing the programmers to
do a mental replay of cvents if a bug occurs.
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3.2.2 Anadvanced batch system.

Satterthwaite [75] developed a system to aid in the debugging of programs written in Algol W
at Stanford University. His system allows the user to add ASSERT statements to the program that
the system will then check. If they arc not true, the program will be halted, and, as for any other
run-time errors, a post-morfem dump will be generated containing the values of all variables. A
tracing facility was also provided along with a simulator to exccute the traced statements. All
output was given in terms of the original program and contained only symbolic names for variables
and their values.

3.3 Intermediate Debugging Systems.

Some debuggers attempted to handle both batch and interactive access. For example, the
PEBUG system is a low-level system that "provides the general debugging environment for the
debugging of any relocatable object program™ through either batch or interactive interfaces [Blair
71, p. 1]. This system attempts to avoid language dependencics by having a standardized symbol
table format. It also allows users to define debugging routines and can tolerate bugs in them.

3.4 Interactive Debugging Systems.

Interactive systems developed along with timesharing in the middie 1960's. Users could now
interact with their programs as if they had an cntire system to themsclves. later, when hardware
became even cheaper, personal computers began to be popular. In these systems, the user actually
do have the entire machine. Since the abstraction presented to the user does not differ substantially
in the two worlds, they will be discussed together in this section.

Mitchell [79a] describes how an interactive system might be built and provides some insight
into the motivation and requirements for one. For cxample, he claims that "it is a generally held
belicf that interactive systems should give ‘immediate’ response to trivial requests” [p. 6]. Examples
of interactive programming systems are JOSS, Basic, APL., LCC, Interlisp and COPILOT [Swinehart'
74, p. 1].

One property of interactive systems is that more cffective software tools are needed to facilitate
program dcbugging [Evans 66, p. 37]. Unfortunately, few tools provided any tcchniques not
available on EDSAC (sce, for example, [Schueler 77} and [Kazek 78]). In addition, "few high level
languages provide facilitics for interactive debugging in which the interaction is in terms of the high
level language itself [Hanson 78, p. 116].
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3.4.1 Importance of intcractive debugging.

Some have claimed that the programmer using an interactive system consumes more computer
time and does a more superficial analysis of the problems than he would using a batch system
[Model 79, p. 46]. In fact, however, other studies have shown that the overall clapsed time to find
bugs is shorter by 50% to 300% with on-line systems and that the computer usage only 30% higher
[Sackman 68]. A study by Bochm [71] suggested that enforcement of an interval between runs
decrcased the overall time required. In spite of this, there is ample evidence that users strongly
prefer the interactive systems [Gold 69].

There are other advantages to on-line debugging. The system can give the user continuous
guidance on the format of desired input, immediate feedback of crrors, and control over output
format [Naur 74, p. 252). Also, Henriksen [77] notes, it is often difficult to locate a bug with the
snapshot output available from batch runs. Only with interactive systems can monitoring be
cffectively used (section 1.3).

3.4.2 Examples of interactive debuggers.

The original DDT (originally for DEC Debugging Tape but more recently, Dynamic
Debugging Technique) was developed at MIT for the PDP-1 [Kotok 61]. It allowed interrogation of
machine registers, interpretive exccution, breakpoints, single stepping, tracing, and patching of code.
DIDT-like debuggers have emerged for most assembly languages. Most allow use of the symbolic
names of labels to specify locations.

Most debuggers for higher level languages have not expanded on the capabilitics offered by
DDT. Some, however, do attempt to allow the programmer to avoid having to know anything
about the machine implementation of the language or the compiler. Examples of this are the PL/1
dcbugger on Multics, the IBM PL/1 checkout compiler [Satterthwaite 75, p. 23] and the current
Mesa debugger (see section 4.2.1.2).

Some other dcbugging systems allow the user to correct mistakes using the source language -

and then continuc execution.  This implies that the full capabilitics of the language should be
available at dcbhg time. An carly system with this featurc was the IMP system which had an
integrated debugger and assembler [ILampson 65]. Most of the systems with this feature, however,
are interpreted rather than compiled. Examples are APL, Basic, and MDL.. Interlisp [T'citelman 78]
is an interpretive system where case of debugging was a significant design goal.  Since Lisp is an
interpreted language, it is casy for the system to allow the user to do arbitrary computations at any
point. Interlisp also contains a powerful tracing facility that allows the uscr to investigate the call
stack. A return can be cnacted at any point with the return argument specified by the user. In
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addition, any changes the uscr makes to the program, .even the very procedure being run, are
immediately reflected in the computation. The modified version is also saved [Teitelman 78, p.
15.3].

Interlisp also contains a system called DWIM (Do What I Mecan) which attempts to correct
errors as programs exccute. If Interlisp cannot understand a string, it trics to find a spelling of that
string that makes scnse. If successful, the user is asked to confirm the new spelling or supply
another one. DWIM also trics to correct unmatched parentheses and certain other common errors
[Teitelman 78, pp. 17.1-17.28].

Unfortunately, interpreted languages tend to run slower than compiled languages [Satterthwaite
75, p. 24). The ability to correct a mistake and continue is much harder to provide with compiled
languages since "dccisions made during compilation, such as those concerning the allocation of
registers for temporary results, make the different picces of the resulting machine level code inter-
dependant” [Model 79, p. 53). This makes incremental compiling (compiling only a small piece of
code) very difficult. 1t is still used in some cases, however. '

3.5 Dynamic and Pictorial Debugging Systems.

This section discusses a group of debugging systems that either use a CRT to allow monitoring
of data, or produce picturcs of the data, or both.

3.5.1 Non-pictorial monitoring systems.

The advent of CRTs as computer 1/0 devices allowed more cffective monitoring of programs
as they are exccuting [Gladwin 69]. RAID |Petit 69] provides the facilitics of DDT, along with the
ability to assign a variable to a particular place on the screen. The system will update the displayed
value at breakpoints and while single-stepping allowing the user to monitor the program during
exccution. North [77] developed a system for an Intel 8080 microprocessor that updated the
displayed valucs continuously by interpreting the code.

3.5.2 Pictorial static systems.

Yarwood [77] developed a system that would generate "illustrations” for programs in a very
limited subsct of PI./1. The picturcs were generated on an clectrostatic printer and were only
useful for documentation of the program after it had been debugged. This system, however, is
claimed to be onec of the few attempts at analogical display [Model 79, p. 82). In cach snapshot,
Yarwood's system displays a picce of text relevant to the state of the system along with a display of
some data. A major feature is the ability to display onc-dimensional arrays with the indices
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displayed as pointers into the array. Parts of the array can also be labeled so that a level of
abstraction can be shown (see Figure 3.1). A special language is used to specify what is to be
displayed and when. This along with the ofigina] program is sent through a pre-processor which
produces a new program which is then compiled and exccuted.

ITERATION 6OF ENTRY 6 OF LOOP NLEQK

DO WHILE (N <= K);

K]

24793 3 23 10 12 34 25 12 45 45 37 27 55 57 62 78 94 98 99]
Al <=Al) | ? I dA(L) }

Figure 3.1 Yarwood’s display of an array showing indices as pointers and labeled sections underneith.
[Yarwood 77, p. 92] '

3.5.3 Pictorial monitoring systems.
3.5.3.1 EXDAMS.

One of the earliest pictorial monitoring systems is EXDAMS (EXtendible Debugging and
Monitoring System) [Balzer 69]. Unlike other systems, EXDAMS does not allow monitoring of
running programs; the program under study must be run with an EXDAMS routine that collects
information on a history tape. The information about the run can then be investigated at a later
time. This history file allows the debugging aids to be language independent, since only the part
that creates the history tape needs to know about the actual target program.

EXDAMS provides some very powerful display routines. For example, an inverted tree can
be produced showing how a variable got a certain value (sce Figurc 3.2). The user can then request
a similar "flowback" analysis along any of the resulting paths. Another static display available is a '
temporal list of all the values assigned to a variable. In addition, "movies” of the action of the
program can be shown. The statement being exccuted will be highlighted and the values of
displayed variables will be kept continuously updated.  Also, as in Yarwood’s system, the user can
specify that a variable is an index into an array and have it displayed as an arrow. Balzer claims
that the system is extensible so that even more interesting features could be added. In order for
EXDAMS to work, it has to save a great deal of information. The statements added to the source
program incrcasc its length by approximately a factor of three.
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Figure 3.2. EXDAMS "flowback display showing how A got its current valuc. [Balzer 69, p. 569]

3.5.3.2 COPILOT.

COPILOT, a interactive programming system uscful for debugging [Swinchart 74], was the first
to exploit "the idea of using the display as a means for allowing the user to retain comprehension of
complex program environments, and to monitor several simultaneous tasks” [Tcitclman 77, p. 1].
COPILOT is a dynamic system that "allows the user to create, modify, investigate and control
programs written in an Algol-like language, which has been augmented with facilitics for multiple
processing” [Swinehart 74, p. xiv]. Central to the design is the use of multiple CRT displays that
allow the different processes all to show their current state simultancously. A major design goal was
to allow the user to input commands at any time and not have to wait for completion of tasks.
Thus "the user’s terminal is continuously available for commands of any kind: program editing,
variable inquiry, program control, ctc" [p. xiv]. In addition, no process can prevent the user. from
dirccting input to another process. This is called the non-preemption property. Since the user’s
understanding of a display is dependent on the context, and there are many different contexts in a
multiple-processing system, the environment in which a value was generated is displayed along with
the values. Unfortunately, the processing power was not available to have the displays continuously
kept up-to-date so the system operates using snapshots [p. 73], nor was the performance of.
COPILOT good enough to support actual users.

3.5.3.3 Smallialk, windows and selections.

Smalltalk [Shoch 79][Ingalls 78] is a language system that incorporates a large number of
display facilities. It was felt that graphics would make the system casier to learn and use [Kay 77}
Smalltalk developed the idea, first proposed in the FLEX system [Kay 69], of using multiple
overlapping rectangular regions called windows to cxtend the available screen space [Goldberg 79].
The display for FLEX was a "large virtual screen on which displays may be ‘tacked’ like notices on



HISTORY O DEBUGGERS AND OTHIR RELEVANT SYSTEMS 19

a bulletin board” [Kay 69, p. 235]. - Windows can be moved in 3 dimensions. They can be
translated to any portion of the screen, possibly changing size, and they can be moved "forward”
(or "back”) so they are less (or more) occluded by other windows (see Figure 3.3). The information
in the windows may not be able to fit in the area specified, in which case only part of it is shown.
The rest may be seen by scrolling the window the way one might move a scroll of text behind a
small opening. The FLEX system incorporated the added feature of a true zoom wherc the
displayed objects increasc in size. This feature was not carricd over into any of the later systems,
however. Smalltatk presents a uniform window interface both to the programs and the user,
thereby allowing complex systems to be easy to use (e.g, an animation system [Backer 76] and
Thinglab (section 3.6.4)).
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Figure 3.3 A typical Smalltalk screen showing multiple overlapping windows including a font-cditing
window (at top) and various types of picturcs. [Picture courtesy Glenn Krasner}.

Another important aspect of a display-based system such as Smalltalk is the use of selection to
specify commands and their arguments. Selection using a light-pen to point at objects on the screen
was used as early as 1963 for Sketchpad (section 3.6.2). Its applicability to interactive dcbugging
has been tong known [Zimmerman 67].  English {67} is credited with the first usc of a mouse as a
pointing device to select portions of the display (section 4.1.1). The advantages of using sclection
over type-in is that it is faster and less prone to errors. In addition, the user does not have to
remember the corresponding text. Selections ate closcly tied (o menus, which are lists of commands
where the sclected command is executed. Figure 3.4 shows two menus from the Smalltalk system.
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Figure 3.4. Two Smailtatk menus. (a) is the editing, compilation and exccution menu and appears
when the Yellow mouse button is hit. (b) is the window menu and appears when the
Blue button is hit. [Picture courtesy Glenn Krasner].
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1534 DLIST.

Another programming system that facilitates debugging is DEISP (for Display Lisp) [Tcitchman
77]. ‘This system is built on top of INTERLISP (scction 3.4.2) and thus has all of thc debugging
facilitics of that system. In addition, DLISP uses multiple windows on a CR't" to allow the uscr to
interact with multiple processes using only onc display. tThe windows are allowed to overlap (see
Figure 3.5) and arc treated essentially the same as Smalltatk windows.  DLISP aiso contains
primitives that make it easy to create pictures. tor example, Bill Laaser was able in just two weeks
to create a package that drew pictures of actual Lisp lists such as in Figurc 3.0 [Laascr 79]. In
another data-display application, Figure 3.7 shows a pretty-printed list output and a pictorial
presentation of the same tree data structure. It is clcar that the latter is much more cvocative.
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Figure 3.5 DLISP screen showing windows overlapping during a typical session. Text in WORK
AR I A on black background is sclected. [I'citelman 77, p. 18}
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Figure 3.6 Pictorial display of the list:  ((AB MO (P Q)
) ~ DE }.F G ((H :))() _ o
in DLISP after being modified by selecting cells and specifying where they should

point with the mouse. [Picture courtesy Bill Laaser].
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Figure 3.7 Pictorial display in DLISP (a) of the tree structure shown in (b). [Modcl 79 p. 115}

3.5.3.5 Sweel’s tree drawing system,

Another system for making trecs from internat data structurcs was done for Mcsa by Sweet
[78]. This was incidental to his major project but proved invaluable to the understanding and -~
decbugging of his program. His trees are produced on a fixed-width character output device (such as
a linc-printer) and have the following propertics: ‘

(1) All nodes at a given level in the tree arc at the same level on the page:

(2) FEach non-terminal node is centered over the nodes of s sons; and

(2) ‘The width of the resulting trec is minimized [Sweet 78, p. 91].

A sample of the output of his system can be scen in Figure 3.8.
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local 1 16 field local 2

Figure 3.8. Sample of Sweet’s Mesa tree display.
Sweet 78, p. 89]

3.5.3.6 Model’s system.

Model [79] attempted to blend some of the good ideas presented above into a system that
would allow the debugging of complex artificial intelligence programs.  His system was
demonstrated monitoring KR [Bobrow 77] and Mycin programs, but was designed to handle a
more general class of programs. It is built on top of DLISP and uses many of its sophisticated
display facilities. In Figure 3.9, a snapshot of a sample run of Mycin is shown. The Mycin
program was actually running at Stanford while the monitoring program was running at PARC and
communicating over the ArpaNet [Kahn 72).  Model's system keeps the different windows
consistent by showing the progress and actions of the monitored system at all times. As in
COPILOT, the multiple windows allow the information to be displayed in a highly organized
manner. Thus, “many picces of information can be presented in a constantly changing display, but
the user nced only look at those pieces which are of immediate interest” {Model 79, p. 47). A
major feature of the system was the ability, as in SNOBOL (scction 3.1.4) to define events in
programs and have monitoring activity take place when they occurred. In addition, a history was
kept, allowing the investigation of any processing after a run "perhaps at different speeds, levels of
detail, or foci of attention™ [Model 79, p. 13]. All investigations are in terms of the Mycin or KRL
language; the programmer never had to know about the underlying Lisp implementation of these
languages, much less the machine implementations of LISP.
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Figure 3.9 Example of Model's display for monitoring Mycin. [Model 79, p. 156].

Although Model discusses analogical display a great deal in his thesis, his display is not really
analogical. As can be seen in Figure 3.9, the information is all presented in textual form. He docs
mention that a tree such as shown in Figure 3.7 could be made for the trigger structure of KRL [p.
145]. This was apparently not exploited, however. Another important problem with Model's system
is that it requires the full power of a large computer to run and even then is very stow [Fikes 79].
'This is partially due to the slowness of DLISP itself.

3.6 Graphical Systems.

The systems that have attempted to create dynamic, analogical displays have, for the most part,
not been directed at dcbugging. These systems did develop many of the central ideas used in
Incense and other graphical display systems, however. AMBIT/G, Sketchpad and Thinglab were
designed as unified systems with graphics as a central part. The carlicst systems to attémpt to use
computer generated graphics to help in the understanding of programs were the automatic flowchart
gencrating programs (for example [Knuth 63, [Hain 65] and [Greene 73]). Automatic logic diagram
layout systems (such as [Aaronson 61]) were another carly application of computer gencrated
graphics. The layout algorithms used in thesc systems were mostly trivial or excessively complex

and had no influence on Incense.
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3.6.1 Early analogical display.

Another example on early work at graphically displaying information by computer was
motivated by a completely different problem. The Whirlwind computer, built at MIT in 1951, had
only mechanical typewriters for character output, and these were very slow. Therefore, an
oscilloscope was attached to the computer along with a computer controlled camera. Programmers
were encouraged to have the computer make graphs of their data rather than trying to type it out
[Bell 71, p. 139]. Soon, however, line printers were developed and having the computer generate
the pictures became more expensive than making listings.

3.6.2 Sketchpad.

Sketchpad [Sutherland 63] was an early system that attempted to simplify the process of using
the computer to make pictures. [t used a light-pen, four knobs, and a tremendous number of
toggle switches to allow the user to input information analogically (for the most part) [p. 251 The
basic building blocks available were line scgments, circle arcs, and text. The system also allowed
the user to define symbols out of a set of these which then could be used in higher level objects. If
the definition of a symbol was changed, all instances immediately re-shaped themselves.  Instances
could be different from the original (prototype) by having different location, size (scaling), and
rotation [p. 46].  Symbols had the additional property of connection points, which were the only
places at which additional objects could be attached. The system also incorporated some powerful
mathematical constraints that allowed the user to specify relations that had to be preserved among
various objects displayed. Another important feature of the system was that "the organization of
Sketchpad display as a sct of display routines with identical external propertics [made] it possible to
add new kinds of displays to the system with the greatest of ease” [p. 42]. Drawings could also be
saved in a manner that allowed "cartoon motion pictures” to be displayed [p. 67]. Sketchpad was a
powerful system and it had a major influence on almost all subsequent graphics systems.

3.6.3 AMBIT/G.

One such system is AMBIT/G (Algebraic Manipulation by Identity Iransformationlgraphicai)u
[Christensen 67). This system attempted to allow the user to specify his program. cntirely with
pictures through the use of a pattern matching language. The results of the computation were then
pl:CSCHKCd pictorially. An AMBIT/G program is composed of a generic set of shapes, instances of
thosc shapes, a data graph connccting the instances, a sct of program statements and a control
structure connecting the statements [Henderson 69]. The programmer "usually ecndows cach shape
with some distinct interpretation” [Henderson 69, p. 1. A property of the shapes is the fixed
number of links that arc allowed to leave the node; a node can have an arbitrary number of links fo
it, however. Links were all drawn as straight lincs with arrowheads in the system implemented.
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The layout of the data graph in the AMBIT/G language is irrelevant to its meaning and there was
no automatic formatting. In fact,

the problem of automatically laying out and displaying an entire data graph has been
carcfully avoided; the user is required to specify small parts of the data graph that he
wishes to see, and he is encouraged to aid in the layout of these [Rovner 69, p. 12].

To display a data graph, the user specified a uniquely named node and where it was to go on
the screen. If he then wished to sec sub-nodes, he had to point at each connection point he wanted
to sce expanded. The sub-node would then be drawn at a canonical place relative to the parent
irrespective of what may have been there previously [Rovner 79). If the subnode was nil, an "*"
(asterisk) would be drawn, and if the subnode happened to already be displayed, the link would
have been drawn to the original instead of to a copy. If a node was drawn in an inconvenient

place, the user could move it and the links would redraw themselves correctly [Rovner 69, p.vll].

AMBIT/G has a number of techniques for recognizing user commands. The programmer
used a tablet and pen with which he could draw and sclect objects. The system also recognized a
number of gestures such as the "scratching out” of a line to specify deletion. In addition, there
were displayed menus to allow selection of some commands [Rovner 69, p. 10].

AMBIT/G, unfortunately, was slow (typical delay was 10 to 20 seconds [Rovner 69, p. 13])
and "so gencrai that it is difficult to build and use, and it has never been completely implemented”
[Christensen 71a]. Efforts were therefore directed at specifying related but more practical languages.
AMBIT/L [Christensen 71a] has a limited and fixed number of predefined shapes which support list
structures. 1AM, a system for interactive algebraic manipulation, was implemented using it
[Christensen 71b].  Proposals for future research included the ability to monitor the system while
manipulating the data graphs by having the modifications shown as they occur [Rovner 69, p. 13].

3.6.4 Thinglab.

Thinglab [Borning 79] was written in Smalltalk to study aspects of a constraint oriented system.
It was based in a language which had powerful facilitics for intcracting with the screen (section
3.5.3.3). The system allows multiple views of an object to be visible at the same time and "a typical . .
object can be depicted in several ways.... The object itsclf defines the views that it can provide™ [p.
4. For cxamblc, the user can specify a constraint that the height of a bar in a bar graph
corresponds to the value of some integer in a text paragraph. When one is changed, the system
forces the other to re-adjust itself so they are once again consistent [p. 4]. The collection of all the
constraints on an object may be "incomplete, circular, or contradictory” yct the system manages to
sort this out [p. 5]. When the user specifies that he wishes to display an object, a menu of all its
possible ways of displaying it is presented and the user can pick one. He then specifies where the
object is to be placed [p. 15]. As in Sketchpad, to which this system owes much, objects all use the
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same protocols making the generation of new classes easier. In fact, some classes can be specified
simply by drawing a prototypical example (cg, making a class trapezoid from the class
quadrilateral). For a given class, the prototype "is a distinguished instance that owns default or
typical parts” [p. 46] which are inherited by instances unless overruled. This prototype may be NIL
except for graphical objects which must have some specified appearance.

The Thinglab system is claimed to have good response time for objects with simple (linear)
constraints. The time to arrive at consistent values is "usually as good as if a suitable method had
been hand-coded” [p. 51]. If constraints are circular, however, the system must use a relaxation

technique which is much slower.



1V. The PARC Environment for Incense

Incense incorporates some of the good ideas from earlier systems. In addition, Incense reflects
many of the constraints and capabilities provided by the environment in which it was designed and
implemented. The Palo Alto Research Center (PARC) has extensive facilitics available to aid in the
development of systems such as Incense. In hardware, there is the Alto mini-computer and two
types of faster rescarch machines. In addition there is a large body of software written in the
PARC language Mesa that was useful in building Incense. The Computer Science Laboratory
(CSL) at PARC is currently in the process of developing a new environment for Mesa called Cedar,
and it will have additional facilitics that will be uscful for future versions of Incense. This chapter
bricfly discusses cach of these facilitics so that the Incense system can be understood in context.

4.1 Hardware.

The Alto [Thacker 79) is a general purpose, microprogrammable mini-computer designed in
1973. ‘The standard configuration of the Alto includes (sce Figure 4.1):

An 875 linc raster-scanned display;

A keyboard, a "mouse” pointing device with three buttons, and a five-finger keyset;
One or two 2.5 Mbyte removable cartridge disks;

An interface to the Fthernet distributed packet-switching local computer network
("Ethernet™), a 3 Mbit/sccond communications facility [Metcalfe 76];

A microprogrammed processor that executes programs, controls input-output
devices, and supports up to 3K of user-programmable micro store RAM (along
with the 1K of PROM); and

64K 16-bit words of semiconductor memory, expandable to 256K words [Thacker
79, p. 1].

Figure 4.1. Picturc of typical Alto work-station with keysct, screen, keyboard, mouse, computer with
two disk drives.
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Incense does not currently use the keyset or Ethernet, and it requires an Alto with extra
micro-programmable RAM . (for loading of special micro-code for doing rcal number arithmetic) and
at least 128K of main memory to hold all of the data and programs. The next sections describe the
most important aspects of the Alto for Incense: the mouse and the screen.

4.1.1 The mouse.

The mouse (see Figure 4.2) is a pointing device which fits comfortably under the hand and
can be rolled around on any frictional surface [English 67). The mouse buttons (which are called
Red, Yellow, and Blue) allow the user to specify a number of actions using the samc hand with
which he is pointing. ‘The current state of these buttons (up or down), along with the mouse

position, arc available through high-level abstractions in Mesa.

U0

Red Blue
Yellow

Figure 4.2. Two styles of mice with buttons labeled.

Since the mouse only measures relative movements and not an absolute position, it is essential
to have visual feedback as to where the mouse is with respect to objects on the screen.  This is
provided by the cursor which follows the mouse. The actual picture shown at the cursor location
can be set by the user. The default is a simple left-pointing arrow (Figure 4.3a). Even though the
area of the cursor is small (about 1/4" squarc) a large amount of information can be presented in it.
For example, the system Okra, built by the author to interface the Alto to a remote file server,
utilizes 15 different cursors wh.ich clearly show the state of the system (Figure 4.3). Incense

currently does not take advantage of this capability, however.
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Figure 4.3. Cursors used in the Okra system. Incense uses only (a).

4.1.2 The screen.

The Alto display is an interlaced 875 line monitor running at 30 frames/second. There are
808 visible scan lines, and 608 picture clements (pixels) per line. 1t is oriented with the long
dimension vertical, and the screen arca is about 8% by 11 inches (Figure 4.1). The actual picture
on the Alto screen is controlled dircctly by the contents of a sct of bitmaps or frame buffers that are
stored in memory. Each bit of the bitmap corresponds to one pixel on the screen and determines
whether it is on or off. The Alto screcn has the capability to use multiple bitmaps for the display,
but Incense does not use this feature. The standard microcode provides one very useful function
called BitBlt which can transfer an arbitrary rectangle from one place to another in memory. Since
the picture presented is stored in memory, BitBlt allows arbitrary rectangles on the screen to be
moved. The resulting display can bc a function of the source and destination rectangles such as
XOR, OR, AND, etc. BitBlt is uscful for filling areas, drawing lines and displaying text.

Since the bitmaps arc stored in main memory, it is possible to trade off the size of the picture
and the amount of memory available for other data. For example, a full screen requires

(808 lincs/screen * 606 bits/line) /16 bits/word = 30603 words

or nearly half of the 65K allowed for data in an Alto. Therefore, a full screen is seldom used in
applications such as Incense where there is a lot of other data.

4.2 Software.

There has been a great deal of software written to help the programmer at PARC. Incense is
written in Mesa so it takes advantage of the facilitics of the Mesa system. In addition, two special
systems were used in the development of Incense.  CGraphics, written by John Warnock at PARC,
provides the basic interface to the screen, and JAM, designed by Warnock along with Martin
Newell, is an interpretive cnvironment that was used to dcbug Incense.
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42.1 Mesa.

Mesa [Mitchell 79b] is a large and complex strongly typed language, and there are a large
number of programs and systems built in and around Mesa to aid in the production of software.

4.2.1.1 Compiler and symbol tables.

The current compiler for Mesa is batch oriented and operates on one file at a time, producing
error messages in another file. The compiler operates fairly quickly and producces efficient code. In
addition to its main duty of producing the object code, the compiler also produces very complete
symbol tablcs. These are used to allow separate compilation of different modules and allow Mesa-
level debugging of programs. The symbol tables contain sufficient information to discover the
location in memory and type of all the variables and constants used in the program, to find the
source statement corresponding to a value of the program counter and vice versa, and to resolve
references to types declared in different modules. As a result, symbol tables tend to be very large,
typically taking up about four times as much disk spacc as the object code for the program.
Symbol tables and Mesa types will be discussed further in chapter 6.

4.2.1.2 Current Mesa debugger.

Mesa, unlike many high level languages, has a very powerful debugger that allows
investigation of a program almost entirely in terms of the abstractions of Mesa. There is no
requirement, or cven advantage (in most cases), to know anything about the machine instructions or
data formats. The extensive symbol tables provided by the compiler allow the debugger to know
about user-defined types, local variables, enumecrated types, and aggregate data structures. It also
allows the setting of breakpoints by pointing with the mouse at a source text line and exccuting the
command set-break (sec Figure 4.4). The dcbugger has a limited interpreter for evaluating
expressions and some statements. The source program and its execution speed is not affected by
the presence or use of the debugger. Another advantage of the current debugger is that it is uses a
screen package. This allows the user to have multiple windows on different files. Snapshots of
actual debugging sessions are shown in Figures 4.4 through 4.7.
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Figure 4.7 Mesa Debugger screen showing an attempl to investigate a pointer structure. Note the
assignment shortening the list by making a next ficld NiL.

The debugger does have some limitations, however, which irritate a number of people. The
main complaint is that it runs too slowly. The user can invoke the dcbugger while a program is
running or by setting breakpoints. ln either case it takes about two seconds for the debugger to be
installed. Similarly, when continuing from a break, it takes another two seconds. This makes it
very tedious to single step through a program or to monitor variables. "The real problem,”
according to one Mesa user, "is that [ can think a lot faster than the dcbugger.” There also is no
control over the way variables print, so, for example, the user cannot request that only certain ficlds

of a record be displayed.

Another limitation of the debugger has to do with multiple processes since inspecting their
various states is usually awkward. Some people also complain about the inability to display lists,
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trees, hash tables, and other sparse or pointer-bascd data structures conveniently (see Figure 4.7).
In addition, the interpreter is very limited. It incorrectly handles certain Mesa types and will not
allow any memory allocation operations such as creating new strings or temporary variables. [The
information in this section is from personal experience and the results of a debugger poll described
in Appendix A}

4.2.2 CGraphics: The underlying graphics package.

CGraphics is a graphics package written by John Warnock at PARC that allows the client to
use the abstractions of lines, areas, and text rather than the low level BitBlt operations. 1n addition,
the same commaids can be used to draw on an Alto screen, a black and white or color TV display,
or to hardcopy output files. Higher level systems such as Incense can therefore be independent of
the display type.

A basic data structure in CGraphics is a Display Context (ot DC). Every drawing command
uses a display context to determine how the command will operate. The display contexts contain
information about the current position, scaling, rotation, clipping boundary, text font, font size and
style, arca and line colors and textures, and painting functions. The DC used is either an explicit
parameter to the functions, or the top of a stack of DCs which is maintained by the system.

Some of the drawing functions provided by CGraphics are: draw a line at any angle, draw a
rectangle outline, fill a rcctangular area, draw an arbitrary polygon or fill its interior, and put up
text. It is also possible to draw a parametric cubic polynomial curved line [Newman 79] (in
particular, a spline [Ahlberg 67]) that goes through a specified set of points called knots. Finally,
there are routines for modifying a display context, for finding out the size of a string, and for
transforming a rectangle or point from the coordinate system of DC to that of another. In the
future, there will also be routines for filling an area defined by splines and for finding the
intersections of regions. Figure 4.8 shows an example of the current capabilities of CGraphics.

This (1§ demonsteates some graphic sapahitiviss.

Figure 4.8. Demonstration of some capabilities of CGraphics.
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423 JAM: An interpretive environment.

JAM is an interpretive system written in Mesa. It has its own syntax and command language
that is strictly reverse-polish. Incense was debugged using JAM as the user-interface and currently
only exists in the JAM environment. If Incense were to be released, it would have to be removed
from JAM (a simple and straightforward task) and an aliernative method of specifying the Incense
commands would have to be implemented. This was not done for the current Incense since it
scemed more appropriate to await the Cedar paradigms.

4.3 Cedar: A Future Environment for Incense.

Incense is actually a prototype for a component of Cedar, a futurc programming environment
of the Computer Science Laboratory (CSL) at PARC. (In the world of botany, Incense is a type of Cedar:
Calocedrus decurrens) Many of the facilities designed and planned for Cedar have a direct impact on
Incense. Incense was designed to utilize all these features, but many were not available at the time
of its implementation. Scction 8.2 will discuss how Incensc might be modified to use these
additional features.

; One of the most important changes to Mesa envisioned for Cedar is a garbage collector. This
will free the user from having to worry about storage management. Adding this feature to Mesa
required that a subset of current language be defined, called the safe language, that eliminates any
possibility that the programmer might destroy the garbage collector’s state. The safe language
contains restrictions on the use of pointers and on breaches of the type system.

One of the Cedar committees is the User Facilities Group, under which the Incense project was
conducted. This group was given the task of defining how the users of Cedar would interact with
the system and his programs. It was decided early that many of the features of DLISP and
Smalltalk were required in Cedar, such as a history facility to allow replays, and a uniform manner
of accepting keyboard and mousc inputs from the user. In addition, an abstraction called a
document was defined to allow operations on the screen. Documents play a central role in Incense
and are described in section 5.3.



V. Incense — An Overview

In chapter 3’s survey of dcbugging and graphical systems, there were no systems presented that
could claim to provide analogical display of data in a manner that would allow truly interactive
debugging. In chapter 2, however, it was posited that this is an important feature for a debugging
system to have. Incense attempts to fill this void, but since it is actually a prototype rather than a
production system, many desired features are not included. Incense docs manage, however, to
demonstrate many of the advantages of automatically generated analogical displays for actual
program data structures.

This chapter describes the goals of Incense as motivated by the discussion of chapters 2 and 3,
and then presents an overview of the design. The next chapter describes the design and
implementation of a run-time type system called CedarSymbols. 1t was crcated by the author to
allow Incense to discover the types of actual Mesa variables. The chapter following presents some
details of the current implementation of Incense and its performance and limitations.

5.1 General Goals for Incense.

This section summarizes the important goals of dcbugging and data display systems discussed
in chapters 2 and 3, and mentions how they relate to the actual design of Incense.

Easy to use. If a decbugging or data display system is to be popular or even tolerated by
programmers, it must present a natural and pleasing user interface. Many systems require the
programmer to put special commands into his code, to re-compile, or to specify the desired display
in a spccial language (as in Yarwood’s system: scction 3.5.2). Incense was designed to have
reasonable and understandable displays for data structures. The interactions required to select and
modify the display or the underlying data are similarly straightforward and natural.

Extensible. One major problem with the current Mesa debugger is that there is no way for the user
to modify the way that information is presented. It is also difficult to fix the debugger when there
are changes to the Mesa language. Many of the systems discussed (e.g,Yarwood's, section 3.5.2),
allow the user to control the display but require the use of special languages. Incense was designed ° :'
to allow the programmer maximum flexibility in designing the displays: He is allowed to specify
where data is to be displayed; he can choose among a set of predefined displays for any particular
data structure; he can modify that display in certain ways; and he can construct actual programs (in
Mesa) to define the display. In addition, the programmer can associate a certain display style with a
variable or type so it will be used whenever the variable or instances of the type are displayed.
Finally, the programmer should be able to use any of these capabilitics during a debugging session.

35
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Analogical. Section 2.2.4 argued that displays should be casy to read and pleasing to the eye. Few
debugging systems fulfill this principle (see, for example, Figure 4.7). A pictorial display for data
structures would make the structure of the data much easier to understand. This might then make
the debugging task swifter and more enjoyable. Incensc had as a crucial goal the capability for
analogical display. To achieve this, Incensc uses the graphical capabilities inherent in the Alto to
provide displays at as high a conceptual level as possible.

Fast. The most common complaint about most systems is that they run too slowly. The Mesa
debugger suffers from this problem.  People can become accustomed to even the most complex
interface, but they tend to be continually frustrated at delays. DLISP (scction 3.534) is a very
exciting and powerful system, but it is scldom used because the responsc time is so long [Teitelman
79]. Incense is a prototype system (as is DLISP), so speed was nof a design goal. Incense does,
however, display most data at an acceptable rate, even faster than the Mesa debugger for certain
cascs. Running on the faster of PARC's new research computers, Incense should produce displays

very quickly.

5.2 The Incense System.

Incense is a working system that displays data structures énalogically. All of the illustrations
in this chapter and the two following were created by Incense and taken directly from the screen.
Defaults displays arc generated automatically based on the type of the data. These display formats
arc gencral cnough to handle almost all data structures in a reasonable manner. In addition, the
programmer is given the option of specifying and modifying the displays at various levels. The next
sections discuss how this was achieved.

The most difficult aspects of Incense were (1) allowing the client to define new display
formats, and (2) the display of pointers. The solution to the first problem involved using a carefully
designed abstraction to hide the internal data and procedures (see section 5.3). The problem with
pointers is that a location on the display must be chosen for the referent. Layouts were invented to
handle this problem (sce scction 5.3.1.3).

5.3 Documents: The Basic Component of Incense.

In order to have some data displayed in Incense, a document must be associated with it. The
term arose in Cedar where documents will be the entities that can display themsclves on the screen.
A major item that will be displayed by Cedar programs is text, in particular, computer programs,
memos, and business letters. These arc gencrally grouped under the heading document, so Cedar
used the concept as a metaphor for all displayable cntities.
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Chiefly to allow Incense to be cxtensible and uniform, an object-oriented or data-abstraction
approach was taken. Documents arc therefore organized as a data objects: each instance keeps
internally all of its state and all of the procedures that arc allowed to modify the state. Thus,
documents are like instances of CLU data abstractions [Liskov 77] or Smalltalk classes. All
documents have the same basic structure including the types of their data and procedures. Thus the
interface to all documents is the same. The actual procedures used in a specific document will be
different for documents of different types, however. Thus the type of the document is defined by
the actions of its procedures. For example, a document for an INTEGER would differ from that for a
BOOLEAN in that they would have different procedures for interpreting the value in memory and
translating that value into a textual representation that could be displayed.

The association between the data structures and the documents to display them is
automatically created by the Incense. The memory address and type of the associated data structure
are stored in the document along with the appropriate procedures and other data. There are six
basic classes of procedures required for documents in the current Incense system: procedures for
display, crasure, sclection, cditing, de-allocation, and drawing of arrows.

5.3.1 Displaying a document.

5.3.1.1 Formats and subformats.

A document for viewing a data structure would obviously not be very uscful if it were not
able to display itself. This is the most important operation of the document and also the most
complex. Each document can display itsclf in an arbitrary number of ways called formats. A
document must have at least one format, however. The formats are intended to be radically
different ways of displaying the data. For example, a document for a certain type of record (Figure
5.1) might contain formats for displaying itself as a normal record (a) or a clock (b). The client is
required to specify which format should be used. Currently, all automatically generated documents

contain only one format.

hours: 16
it 25

seconds: 30

(@) )

Figure 5.1. Two formats for the record document for:
Time: RECORD [hours, min, seconds: CARDINALY;
holding the time of day: (a) as a normal record and (b) as an analog clock.
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Each format contains an arbitrary number (nonzero) of subformats. The subformats specify
the actual display and arc chosen automatically by the system based on various- contextual
information, such as the size of the area in which the document is to be displayed. Thus, an array
document (Figure 5.2) might contain two subformats. The first would display the data normally (a).
The other subformat would be used only if there was not cnough room, and would use grey
rectangles for the values (b). The client cannot choose a subformat explicitly. Instead, the creator
of the document associates a test with- cach subformat to determine whether it is applicable in the
current context. Since more than onc of these tests may succeed, the designer “also specifies an
ordering of the subformats. The formatProc procedure associated with the client-specified format
will cycle through the subformats in order until onc is found that can be used. If therc are none,
then the document will not be displayed. This may happen, for example, if the arca in which the
document is to be displayed is very tiny. The designer can force a document to be displayed by

assuring that the final subformatProc will always return TRUE.

H-]
b
.:. 0;:
Z 'm
i 'h
z: '
s 2
oA
N
(@) (b)

Figure 5.2. Two subformats for an array of records:
ar1: ARRAY [1..4] OF RECORD [z, b, c: CHARACTERY]; .
(a) normal and (b) as grey arcas due to lack of room in the Y direction. Note that the

length of the grey areas varics depending on the length of the actual value.

The arguments to the formatProc arc the document itself, the format choscn by the client, and:
a rectangle, called maxArea, into which the display must fit. Thus the invoking procedure (or the
user) always specifies the size of the display and the document must be prepared to fit itself into
any size rectangle. In most other systems, the display arca specification is handled differently. For
cxample, in AMBIT/G, the displayed objects always take the same amount of space, and in
Smalltalk, the objects take as much room as they desire. In Incense, the user always has control of
the placement and size of the displays. This featurc also allows aggregate structurcs such as records

to accurately specify the position and size of subparts.
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The subformat procedures for some documents, such as those for RECORDs and POINTERS, can
causc the display of subordinate documents. For example, the standard record subformatProc wilt
iterate through the documents corresponding to each field, calling the formatProc in each. The
maxArea rectangle for the subordinate will specify where the field should be placed relative to the
rectangle for the record. This uniform structure hides all details of the type of the subordinates.
Thus the record does not have to know, for example, whether a subordinate is an integer, pointer or
another record (see Figure 5.3).

formatéet =5
BIOCS, e
trpelD:
a3 addr; o
b @ parent.
ca; -2 displaved: TEUE
ch: This is a test displayUsed: e
internalkec: lcc: TREUE selected: FALSE
d: kl maxsbzFos: e

() myAhsPos: FE——
(b)

Figure 5.3. Two ways records can contain other records. Full size (a) and reduced (b).

Figure 5.4 shows the default display for all of the basic types. Note that the format chosen
draws a box around the datum of exactly the correct size.

F778] [ [1466916e+18 [33456) [TRUE 1777765

UNSPECIFIED INTEGER REAL CARDINAL BOOLEAN CHARACTER WORD
[This iz a test fmral Proci
STRING ENUMERATED PROCEDURE

Figure 5.4. Dcfault boxed display for the basic types.

5.3.1.2 The form and display data.

For aggregate data structures such as arrays and records, the document must know where to
put the subordinates which will all be fit inside the rectangle for the aggregate. The relative
locations are specified by some auxiliary internal data called the form. Each subformat has its own
internal data, so that documents could conceivably rearrange their display automatically based on
some criteria. In the current system, however, all the subformats for a particular format share the
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same form data. For records, this data is a set of rectangles that specifies the field locations, the
documents to be used to display the ficld, and a specification of the format to be used for each field
document.

In addition to the form, which is constant throughout the lifetime of the document, other data
is needed for a document that is on the screen. This data is called the display data and includes
such things as the current screen position and the screen position where arrows should be drawn.
Pointers also have the documents for the referent in their display data rather than in the form. If
the value of the pointer was modified, the subordinate document would change and thus not be
constant as the form is required to be.

5.3.1.3 Layouts.

The location of the subordinates for aggregates (records and arrays) is fixed relative to the
aggregate’s rectangle and casy to compute no matter how and at what level of nesting the record is
displayed. With pointers, however, that is not the casc. All documents must fit inside the rectangle
provided for them by their caller. The rectangle for a pointer, however, specifies only the box for
the pointer source end point. Therefore, the object pointed to must be put somewhere clse.
Layouts are a means for specifying where the documents corresponding to the destination of arrows
should be placed. A layout has a ficld for the pointer or pointer-containing document, and one
field for cach object pointed to. Thus, for a record containing 2 pointers, a layout with 3 ficlds
would be used: one for the record and one for cach of the two referents (see Figure 5.5). Layouts
and layout fields both have special documents that have no associated data or type, but simply serve
to locate the various pieces.

data: 3
less. (f1)
sreater:

data: 4

less: ]

=Teater: —'\\_9

(f0) data: 10

less: (2)
sreater:

Figure 5.5. l,éyout with 3 ficlds: one for record: (f0), and one for cach referent: (f1) and (f2).

An alternative strategy to layouts would be to have some global procedure allocate space on
the screen for the pointer’s referent.  This would rcqufrc a large amount of added complexity to
locate, allocate, free, and compact rectangles of screen space based on various heuristics and
constraints. Also, with automatic allocation, it would be difficult for the client to specify the space
to be used if he wished to. All of the systems studicd in chapter 3 (e.g, AMBIT/G, Sketchpad, and
Smalltalk) avoided this two-dimensional space allocation problem.
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Currently, layouts use a very simple scheme for making the subcomponents fit into the area
specified for the layout document. As with records and arrays, the rectangles for the various ficlds
(the form) are fully specified at document creation time. When the layout is displayed, the
subcomponents are simply told to fit into the specified area. Whenever a particular layout is
displayed, the ficlds are placed in the same relative positions.

In a recursive structure such as Figure 5.6, there are layouts at each level of nesting. They get
progressively smaller since the area provided for them is reduced at each level. This theoretically
would allow the display of an arbitrary number of levels, but, in fact, after a threshold is reached
and the documents are too small to see, displaying terminates. Pointers to documents that are
already displayed do not cause an infinite cycle, since an arrow is simply drawn to the original -
occurrence (see Figure 5.7).

Figure 5.6. Deep recursive tree display demonstrating how elements get smaller. Overall structure,
however, is easily understood.

data: 3
less:
oTealer,

data: 10

less:

greatsr:

Figure 5.7. Pointer to previously displayed object does not generate a new copy. The sccond arrow is
drawn to the first occurrence:
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5.3.1.4 Prototypes.

One important feature of documents is that a client can design new ones and then associate
these documents with particular variables or data types. Thus, the clock document could be
associated with all data of type Time and .then a variable such as CurrentTime below would be
displayed as a clock:

Time: TYPE = RECORD {hours, minutes, seconds: CARDINALJ;
CurrentTime: Time;

These prototype documents will never be displayed. The important information in them is copied
into the documents for specific instances. Thus prototype documents have form but no display
data.

Model [79. p. 74] says that "at the very lcast, system builders should provide formatted
printing facilities for the system data structures they implement.” Thus any major data type should
have a prototype document built for it. A poll of current Mesa users (Appendix A) shows that
many people would be willing to create documents for their data structures if it were simple and
straightforward. In fact, many people do something similar currently: "I've always been in the habit
of writing pretty-print routines for my more complicated data structures.” Documents provide a
structured way of doing this and promote the use of analogical output.

There arc presently three ways of producing prototypes for a document. The most
straightforward is to usc the system default. This requires no knowledge or special actions. The
second way is to writc a Mesa program to define the display. The latter approach is clearly
necessary for the more esoteric and unusual displays such as the clock. Finally, the client can
specify the form for the document. For example, a user might draw boxcs on the screen using the
mouse to specify the relative size and position of the various ficlds of a record or array. Ficlds can
be omitted simply by specifying a rectangle of zero size. Figure 5.8 shows an example of record
form design.

weicht: 125 weight: 175 Hinitial: 'B
lastName: Myvers | ==
initial: 'B l I lastMame: Myers

@ (b) ©

Figure 5.8. Normal display for record (a), form defined by user (b), and resulting display (¢). Note that
ficld order has been switched.
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5.3.2 Drawing arrows.

Documents require three different procedures for properly handling layouts and pointers. The
precise operation of these procedures will be discussed in scction 7.2.3.2, but a gencral overview of
the procedure that actually causes the arrow to be drawn will be given here. The document for the
pointer calls the DrawArrowlFrom procedure in the document associated with the referent. An
argument of this procedure is the source location on the screen for the arrow. The target document
must already be displayed for this opcration to be successful since it nceds to calculate the
destination point of the arrow on the screen. A curved spline is then drawn from the source to the
destination, and an arrowhead is drawn at the receiving end. The size of the arrowhead varies so
that it is ncver bigger than the destination. The splincslarc defined by seven points (called knots)
placed along the intended path. Three of these define the exit point and direction from the pointer
and three define the entrance point and direction to the referent (sce Figure 5.9). A final knot is
added in between to make the arrow path smoother. Three points are used at cach end to allow the
arrow to leave the pointer from any side and intersect the referent at ‘any point.

Splines arc used rather than a straight line since it is more attractive and does not cause
confusion with other lines in the picture (no "collision avoidance” is donc). In addition, it is
simpler to draw a curved line since the arrows can always be drawn leaving the pointer from the
right and intersecting the referent on the left (Figure 5.9). 'The DrawArrowFrom procedure returns
information needed to erase the arrow.  This is then stored as part of the display data in the

pointer document.

]

(b)

breisht 175

Peeizht 17!
laztHamne: Idvers lastilome: Llvers
initial: ‘B initiad: 'B

Figure 5.9. Demonstration of the advantage of curved lines used in Incense (a) over straight ines (b)),
"The knots used in drawing the splinc are shown as black squarces in {a).

5.3.3 Frasing a document.

After a document is displayed, it uscful to be able to makce it disappear. The process of
removing the picture from the screen is called erasure (as opposed to de-allocation or destruction of
the actual document itself which is a separate operation). An erased document can be re-displayed

with a new size, location and format. ‘The crase procedure of a document, as well as all the other
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non-display procedures, operate similarly to the formatProc, in that its main purpose is to pass
control to another erase procedure at the subformat level. This is necessary since the different
subformats may have caused different displays to be used. For example, to crase a record, each
field document must be erased, but one subformat may have omitted a field duc to the lack of
sufficient room, whereas another subformat would have included it. The top level erase procedure
simply calls the low level (or internal) erase procedure corresponding to the subformat that was used
for the current display.

5.3.4 Selecting a document,

Once documents have been displayed, some way is needed to refer to them. The user may
want to modify, re-display, or change the format used for a document. In Incense, the user refers
to documents simply by pointing at them using the mouse. The document referred to is said to be
selected. ‘There can be only one document sclected at a time and its picture is video reversed on the
screen (in a similar manner to DLISP and Smalltalk). This is not sufficient, however, since
documents can contain other documents. For example, a record document contains documents for
the various fields. In order to allow any of these to be selected, Incense always selects the smatlest
(in screen arca) object under the mouse. If this document is already selected, however, its parent is
selected instead. All documents fit into a hicrarchy where the top document was displayed by the
user and lower level documents are displayed as subordinates of aggregates or pointers.

Incense has a special procedure that returns the sclected document so that it can be
manipulated. All documents accept the message FindSelection, which has the coordinates of a point
as a parameter. It is intended that these coordinates come from the position of the mouse, but
other options are allowed. When FindSelection is called, the document determines whether the
point is inside its current screen picture (it is an error to call this procedure for a document which is not
displayed). If not, the procedure returns missed. Otherwise, if the document is already selected, it is
de-selected and then the procedure returns next. This indicates to the parent that it should be the
selected document. If necither of these conditions is true, the procedure will test cach of the
document’s subordinates, if any, to see if they want the sclection. 1f any of them returns next or if
none want the selection, then Air is returned and the current document is sclected. See Figure 5.10
for an example of sclections moving up the document hierarchy.

There is a special JAM function that cycles through all of the documents on the display testing
calling FindSelection on each. 'The user can click the red button to sclect documents until the
correct one is found. A click on the yellow-button will then causc that document to be crased.
Then the mouse is used to specify a rectangle in which the erased document will be redisplayed.
This is very uscful for expanding documents displayed too small to sce (Figure 5.11). The
documents explicitly displayed by the programmer (called top-level) are tagged (in the AMBIT/G
sensc) in that they are the starting points for all searches. Thus, the sclections to move up the
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hierarchy in the correct manner. Another feature is that the more recently displayed top-level
documents (which tend to be smaller in practice) are searched first. This allows a record placed on
top of a layout, for example, to be selected before the layout underneath. This user interface is
very natural, making exploration of multi-level structures fast and easy.

Flgure 5.10. Selections moving up the document hierarchy: from record ﬁeld (a) to record (b) to layout
for record (c) 1o layout for everything (d).

data: 2
s less; "
sTESter:
a3
less: (b)
ZTEeateT X
(@

Figure 5.11. The display for the selected record in (a) expanded in (b).

5.3.5 Editing a document.

In addition to erasing and redisplaying a document, modifying the actual value of the
associated data structure is useful. Incense currently only provides the structure for this operation.
In future versions, to modify variables of the basic types such as INTEGERS, REALS, and BOOLEANS,
the user will type a new value. For pointers, however, the user will be allowed to spegify the new
value simply by pointing at the new referent on the display. The pointer document will then do all
the calculations necessary to deduce the correct value to be stored as the pointer’s value. Type-
checking of the pointer and the referent will be done to assure legality of the modification. For
clocks, as another example, the user will be able to select 2 hand and rotate it to the correct value.
Thus, the result of the editing operation will be vastly different depending on the particular format
used to display the data. The edit command in Smalltalk handles this problem by taking no
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arguments. The system is put into a state where all user actions are handled directly by the edit
procedure, but Incense will probably use a different approach (see section 8.1.3).

5.3.6 Deallocating a document.

Current Mesa does not have any built-in storage management. It is therefore necessary for
programs to handle dcailocation of storage by themselves. Incense, as it may be clear, requires a
large number of variable-length structures and consequently allocates storage for them. To allow
this storage to be re-used, a destroy procedure has been added to documents. A great deal of
sophistication would be neceded to find all of the storage actually used by a document since there
arc many places where arrays of pointers are used, some of which may point to the same place.
Deallocating something more than once in Mesa causcs the entire system to crash. This problem
will disappear in Cedar, however, with the advent of an automatic garbage collector. Therefore,
little effort was expended to perfect the destroy procedures and they occasionally fail.



V1. CedarSymbols: The Type System for Incense

To automatically gencrate docurﬁents and forms for Mesa data structures, Incense requires the
ability to ascertain the types, memory addresses, and values the data to be displayed. As diséussed
in section 4.2.1.1, the compiler produces detailed symbol tables that contain sufficient data to get
this information for any variable in a program. The existing facilities for accessing this information,
however, were not sufficiently modular, efficient and extensible to be used for this application. The
current Mesa debugger, for cxample, has the symbol table manipulations tightly coupled with
storage management, interpreter, and user. interface mechanisms. It was therefore necessary to
design and implement a system for accessing the symbol tables as part of the work of Incense. This

chapter describes the design for this system, which is called CedarSymbols.

6.1 Goals of CedarSymbols.

It was clear that a system such as CedarSymbols would be needed in Cedar, and some attempt
was made to include the requirements of Cedar in the design. The current implementation of
CedarSymbols, however, will nced to be revised before being used by any production system. This
section discusses some of the design considerations that affected CedarSymbols.

6.1.1 Opaque types.

The amount of information needed to define many data types in Mesa is quite large. For a
record, the programmer nceds to know the number of fields, the field names, and the types of each
field, for example. The symbol tables contain all this information in a highly encoded form which
is inconvenient to access. While a copy could be made that was simpler to use, large amounts of
memory and time would be wasted since the information existed in memory alrcady and much that

was translated might not be needed. It was therefore decided to hide the details of the .-

implementation by using opague types. The internal data and structure of the types is not available
to the client since all information about the types is obtained through standard proccdure's.

It was decided carly that some of the principles of data abstractions would be important for
CedarSymbols. The design is not completely object oriented like the design for documents,
however, mostly duc to the difficulty in current Mesa of having different objects accept different
messages. The data structures used to represent a type are made completely opaque, however,
through the use of a POINTER TO UNSPECIFIED, called a TypelD. A procedure called GetType can be

47
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used to discover the basic type of a TypelD. GetType returns an element of an enumerated type
(called Types) containing all the legal types:

Types: TYPE = {noType, unspecified, integer, real, cardinal, boolean, character, word, string,
enumerated, subrange, pointer, union, record array, descriptor, signal, error, condltlon,

process, procedure, userDefined, typeType};

6.1.2 Opaque memory addresses.

A large amount of information is required to describe the memory location of data. A simple
POINTER is not sufficient because Mesa has types which require different amounts of storage.
INTEGERS, BOOLEANS, and CARDINALs normally are stored in one word cach, but if they are
embedded in a PACKED ARRAY they use 1, %, and 1 word respectively (and if in a PACKED RECORD,
1 word, 1 bit, and 1 word). In addition, there are LONG types which are stored using 2 words, as
are REALS. PACKED RECORDs add a further problem in that the various ficlds can start and any
arbitrary bit position. For cxample,

messyRec: PACKED RECORD

[a: [1.7], (0, 3}
b: CHARACTER, (3, 8

c: [-3.0], {11, 2)
d: BOOLEAN, -(13, 1)
ie: [20..22), (14, 2)

fits exactly into one Alto word (16 bits). Each ficld above starts at the bit position x, taking y bits,
in the (x, y) comment following the field.

The opaque type MemoryAddress in CedarSymbols abstracts out much of this complexity. As
with TypelDs, the client is given a POINTER TO UNSPECIFIED from which he can only get information
by calling CedarSymbols routines. At some point the client will nced to get at the actual data.
There could have been a different procedure for each type, but instcad two generic functions were
provided. GetOneWordValue has as a parameter a ‘McmoryAddress. It extracts the value from
MemoryAddresses whose lengths are 16 bits or less. The function copies the data into the
appropriate part of the resultant word while masking out all other bits. Thus, while the
memoryAddress for messyRec.d will specify the actual location in memory, GetOncWordValue called
with that memoryAddress as an argument will return a word that can be used as a normal BOOLEAN.
There is also a PutOncWordValue routine that stores valucs in the correct format. Another pair of
routines is provided for two-word values. No non-aggregate type in current Mesa is larger than two
words. Decomposing aggregate structure is done through the usc of the AddrQfSub routine
described in section 6.3.

Another advantage of opaque memoryAddresses is that they can be constructed for constants
simply by allocating some storage for the value. The symbol tables contain sufficient information
for reconstructing many constants, so Incense allows the user to request a display for a valuc such as
maxNumEls: CARDINAL = 15; whercas the current debugger does not.  The memoryAddresses for
constants arc flagged readOnly so any attempt to store into onc causes a signal. The memory for
the valuc is deallocated automatically when the memoryAddress is. '
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6.2 TypcOfSub.

An carly design for CedarSymbols provided a separate procedure to handle every type. This
required a large number of procedures, so one generic procedure is used instead. TypeOfSub takes
a typelD and an index and returns a typelD representing the type of the subcomponent. Since the
generic procedure is implemented using a case statement branching to a different procedure for
each type, it would be easy to provide both interfaces, but there seems to be no motivation for this.
The interpretation of the index argument to TypcOfSub depends on the specific type of the typelD.
If no action is specified for a particular index, or if it is out of bounds, a signal is raised. In
particular; (in the following, <Name> will mean a typelD. for Name.)

Subrange:  For subrange types, if index = 0 then the type over which the subrange

occurs is returned. Example, for Subt: TYPE = [1.10];  TypeOfSub[<Sub1>, 0] returns
a CARDINAL typelD. ’

Pointer: For pointer types, if index = 0 then the type of the referent is returned.

Example, for pt1: POINTER TO BOOLEAN;
TypeOfSub[<p1>, 0] returns a BOOLEAN typelD.

Array: For array types, if index = 0 then the type of the array index (which will be a
subrange or cnumerated type) is returned. For index = 1, the type of the elements
is returned.

Array Descriptor:  For an array descriptor types, if index = 0, the type of the array
described is returned.

Record: For a record type, the type of the indext™ field is returned. Example, for rt:
RECORD [f0: BOOLEAN, f1: CARDINAL], TypeOfSub[<r1>, 1] returns a CARDINAL typelD
(counting is from zero).

Union: Unions types arc used for the variant parts of records. Thus for a variant
record, the type of the cntire variant part is union. TypeOfSub applied to a union
typelD returns the type of the tag for index = 0. Since the actual value of the tag
is needed to find which variant is current and thus the types of the ficlds of the
variant part, a special routine is nceded (see section 6.4.5).

Transfer:  Transfer types include PROCEDURES, SIGNALS, ERRORS, PROCESSCS, AND
PORTs. These all have arguments and return valucs that are represented as records.
Therefore, TypeOfSub with index = 0 rcturns a record type describing the
argurricnts. With index = 1, it returns a record describing the return values.

TypeType:  Mesa allows the programmer to define new types which can then be used in
the definition of variables. CedarSymbols allows the client to discover this
information. TypeOfSub on a typcl'ype typelD returns the base type if index = 0.
Example, for

Age: TYPE = POINTER TO CARDINAL;
TypeOfSub[<Age>, 0] returns a POINTER typelD. Note that typelDs of type typeType
never have associated memoryAddresses.
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UserDefined:  Once a type has been defined, any variables defined using that type
have type userDefined in CedarSymbols. The Mesa compiler does not use this
distinction, but it is important for Incense to be able to assign a particular display,
for example, for Age, and not have it apply to all POINTER TO CARDINALS.
TypeOfSub returns the base type for index = 0. Variables of type userDefined do
have memoryAddresses. For example, for

myAge: Age « 22;
myAge has type userDefined and TypeOfSub of the associated typelD) would return
a POINTER typelD. -

6.3 AddrOfSub.

_ As described in section 6.1.2, GetYWordValue (where X = One or Two) is used to get the
value of abstract memoryAddress for variables of the basic types. For aggregate types, however,
decomposition must be done first.  AddrOfSub provides the required capability in the same manner
as TypcOfSub. In particular: ‘
Pointer: The MemoryAddress of the referent is returned for index = 0. This allows the
client to avoid having to know the details of how the pointer is stored.
Array: The address of the indexth clement of the array is returned.
Array Descriptors:  An array descriptor is actually a record containing a POINTER TO
ARRAY and a CARDINAL specifying the length of the array. AddrOfSub with index
= 0 returns the address of the POINTER part of the descriptor, with index = 1,
returns the address of the length (CARDINAL) part, and for index = 2, rcturns the
address of the array itself.
Record: The address of the indexth field of the record is returned.
Union: The address of the tag is returncd for index = 0. For index = 1, the address
of the entire variant part is returned. Note that the length in the memoryAddress
for the variant part will be determined by the current value of the tag if the
different variants have different lengths. ‘

6.4 Other Routines Needed by Certain Types.

Mesa is a very complex language and the generic procedures described above do not provide
all of the information required for all types. Thercfore, some additional procedures are provided to
handle specific problems. These also were made as generic as possible.

6.4.1 Index <--> Name.

For records and enumerated types, it is necessary to translate between the actual string names
used in the program and the indices required in the above routines. GetIndexFromName, which
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accepts a typelD and a string, searches for a field for records or a name for cnumerated types which
uses that string as thc name. It then returns the corresponding index or raises a signal if it is not
there. GetNameFromlIndex translates in the opposite direction.

6.4.2 Maximum Index.

It is useful to be able to get the maximum legal index that can be used in the CedarSymbols
procedures for array, record, enumcrated and subrange types. GetMaxIndex takes a typelD and
returns the maximum index (which is one less than the number of legal values since counting is
from zecro). For arrays, this operation is simply: GetMaxindex[TypeOfSub[arrayTypelD, 0]}.

6.4.3 Subrange types.

Subrange types have three special procedures associated with them. GetQOrgRangeSubrange,
which takes a subrange typell), rcturns the lower bound (origin) and the maximum legal index
(range). The origin is an INTEGER to allow subranges of INTEGERs, but will be non-negative for
subranges of CARDINALs and cnumecrated types. The range is the number of clements in the
subrange minus one (since the indices start at zero). The other two procedures provided are similar
to the index and name translation procedures, since they allow the conversion of an index to a value
used in the program. In this case, the value is the actual number stored in memory. With subrange
types, the lowest legal value is always represented in memory by zero, so the client would have to
add the origin to find the number used in the program text. GetlndexFromValue takes a typelD
and the value stored and rcturns an index suitable for displaying or using to get the name for
cnumerated types. GetValuel'romiIndex translates in the opposite direction. For example, for:

Days: TYPE = {Sun, Mon, Tues, Wed, Thurs, Fri, Sat};

WeekDays: TYPE = Days[Mon..Fri];

today: WeekDays ¢ Tues;
the value stored in today would be 1, and GetlndexFromValue can be used to translate that to the 2
that GetNameFromIndex would take to return "Tues'. Note that these two procedures could be
computed by the client using GetOrgRangeSubrange.

6.4.4 Procedure types.

»

The value stored in procedure variables is a tightly coded representation which includes a
pointer to the code to be executed. One uscful picce of information about procedure variables is
the name of the constant procedure that was assigned to this variable. For example, for:

MyProcedureType: TYPE = PROCEDURE [argi: CARDINAL] RETURNS [ret1: BOOLEAN];
Proc1: MyProcedureType = BEGIN . . . END;
ProcVar: MyProcedureType « Proct;
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where MyProcedureType is a type, Proc1 is a constant procedure of that type, and Procvar is a
procedure variable of that type. GetProcedureName|<Procvar>] will return the string "Proc1" which is
the name of the procedure that would actually be exccuted if Procvar was called. If Proc1 had been
a non-constant procedure, initialized with "«" instead of "=":

Proct: MyProcedureType « BEGIN . . . END;
then there is no constant procedure that can be found that names the code between the BEGIN and

END (since Procl is now a variable and could be assigned another value). In this case, the string
"CANONYMOUS>" would be returned.

6.4.5 Union types.

For wunion types, unlike with records, the actual value of the tag is required to discover the
subtype . This is the only situation in Mesa where the type of something depends on its value.
GetUnionVariantType takes a union typcll) and a memoryAddress and rcturns the type of the
variant part. This is a record TypelD, and the standard routines can be used on it.

6.4.6 UserDefined and TypeType types.

While it is important to distinguish userDefined types from the types they are based on, the
client frequently is not interested. The ToBase procedure is thercfore provided. It converts a
typelD) into a base type. If the argument typelD is not userDefined or typcType, then it is simply
returned unmodified. ToBase uses no internal information and could have been written by the

client.

6.5 Contexts.

The reader may have noticed that no way has been described for getting the first typelD and
memoryAddress from which to find the subcomponents. This is handled through the use of
Contexis. A context describes a module, procedure, or block that contains definitions of variables
or types. One procedure returns the context for a module of a certain name.  Another returns the
context for the procedure on the top of the exccution stack for a particular process. Other

‘procedures allow itcration through contexts in exccution call order or lexical ordef. This allows

traversal to be either top-down (eg., from the module to all of its components) or bottom-up (e.g.,
from a procedure to its callers). Finally, therc are procedures for getting the typelD and
memoryAddress for a context. The type of the typelD will be a record, and the memoryAddress
only cxist for contexts describing modules, procedures or blocks that currently are active (since only
then do they have memory assigned to them).



VII. Incense— Details of the Implementation

This chapter describes some of the details of the implementation of Incense. Section 7.1
contains a discussion of exactly what documents arc and how they work. Following that, some
details are given about how documents are displayed: section 7.2, erased: section 7.3, and created:
section 7.4. Section 7.2 discusses the basic documents, records and layouts in detail. Arrays are so
similar to records that they do not require any further claboration. Section 7.2 also describes the
built-in facilities for allowing the client to specify the rectangles for field placement.  Finally,
section 7.5 discusses how a client could define his own documents.

7.1 Implementation of Documents.

Mesa currently does not have convenient methods for supporting object-oricnted
programming. The motivation for this style out-weighed the problems, however, so a somewhat
clumsy scheme was used. In order for this to work, LOOPHOLEs had to be used to breach the type
system. A document creator stores into UNSPECIFIED pointers in the document whatever data is
necessary. Since the procedures that manipulate this data are attached to the document, they can
always know the type of the data. A well-formed document therefore has information about the
type of the data structure to be displayed ecmbedded in: the typelD field, in the type of the various
data ficlds, and in the specific procedures themselves. These must be all consistent for Incense to
operate correctly.

The definition of a document and its constituents is given below and Incense’s picture of a
typical document for an INTEGER is given in Figures 7.1 and 7.2. Note that DESCRIPTOR FOR ARRAY
is used to implement an array of a variable size.

Document: TYPE = POINTER TO DocumentRecord;
DocumentRecord: TYPE = RECORD

tormatSet: FormatSet,

procs; pProcedures,

typelD: TypelD, --of associated data to be displayed

addr: MemoryAddress, --of associated data to be displayed

parent: Document,

displayed: BOOLEAN,  --The following are only valid if doc is displayed

displayUsed: Subformatindex, --is index used to display doc;

selected: BOOLEAN,

myAbsPos: Rectangle  --position on screen 4

b

--A formatSet is an array of lormats, each of which in turn is an array of subformats. Il | is a FormatSet, then
f.formats(x].formatProcfargs] is used to display the datum in format x. The subformats should not be
accessed directly.

FormatSet: TYPE = RECORD

formats: DESCRIPTOR FOR ARRAY OF Format,

data: POINTER --global data uselul for displaying document in all formats. This is one place the type
system is breached.
I
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Format: TYPE = RECORD
=

formatProc: FormatProc,
subformats: DESCRIPTOR FOR ARRAY OF Subformatinfo --internal
|5

Subformatinfo: TYPE = RECORD

subformatProc: SubformatProc,

iprocs: pinternalProcs, --procedures for this subformat

subData: POINTER --other useful data for display specific to this subformat. This is one place the type
system is breached.

|5

FormatProc: TYPE = PROCEDURE [me: Document, formatindex: Formatindex, maxArea: Rectangle]
RETURNS [areaUsed: Rectangle];

Subformatindex: TYPE = RECORD

format: Formatindex,
subformat: Formatindex

Formatindex: TYPE = CARDINAL;

SubformatProc: TYPE = PROCEDURE [me: Document, mylndex: Subformatindex, maxArea: Rectangle]
RETURNS [used: BOOLEAN, areaUsed: Rectangle];
--it applicable then used = TRUE and executes;
--otherwise used = FALSE

pProcedures: TYPE = POINTER TO Procedures;

plnternaiProcs: TYPE = POINTER TO InternalProcs;

Procedures: TYPE = RECORD
destroy: Destroy, --erase if displayed and de-allocate storage
erase: Erase, --to un-display doc; doc not destroyed
findSelection: FindSelection,

deSelect: DeSelect,
findField: FindField, --for layouts

findDocUnder: FindDocUnder, --for layouts
drawArrowFrom: DrawArrowFrom, --for layouts
edit: Edit

L
InternalProcs: TYPE = RECORD

destroy: IntDestroy, --erase if displayed and de-allocate storage

erase: IntErase, --to un-display doc; doc not destroyed

findSelection: IntFindSelection, .

deSelect: IntDeSelect,

findDocUnder: IntFindDocUnder, --for layouts

drawArrowFrom: IntDrawArrowFrom,  --for layouts

edit: IntEdit

|5
Select: TYPE = {hit, next, missed};
Destroy: TYPE = PROCEDURE [me: Document]; --erases and de-allocates document and any subdocuments
Erase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN]; ‘ R

FindField: TYPE = PROCEDURE [me: Document, ptriD: PtriD, dataPointedTo: MemoryAddress, dataType: TypelD]
RETURNS {fieldDoc: Document];

DrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document] RETURNS [pts: SevenPoints, destHeight:
Coordinate];
--returns all points of spline to allow erasure

.The following finds a doc under or equal to me that has data as its data of type dataType.
FindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, dataType: TypelD] RETURNS [dataDoc:
Document];
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FindSelection: TYPE = PROCEDURE [me: Document, mouse: Point] RETURNS [sel: Select, selD: Document];
--if mouse point is for this object, selects sell and returns hit unless
--already selected, in-which case, returns next and de-selects self,

--otherwise, returns missed.

DeSelect: TYPE = PROCEDURE [me: Document];

Edit: TYPE = PROCEDURE [me: Document, newValue: MemoryAddress];

IntDestroy: TYPE = PROCEDURE [me: Document, mylndex: Subformatindex};
InlErase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN, myindex: Subformatindex];
IntDrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document, mylndex: Subformatindex] RETURNS

[pts: SevenPoints, destHeight: Coordinate];

IntFindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, dataType: TypelD, myindex:
Subformatindex] RETURNS [dataDoc: Document];

IntFindSelection: TYPE = PROCEDURE [me: Document, mouse: Point, myindex: Subformatindex] RETURNS [sel:

Select, selD: Document];

IntDeSelect: TYPE = PROCEDURE [me: Document, mylndex: Subformatindex];
IntEdit: TYPE = PROCEDURE [me: Document, newValue: MemoryAddress, mylndex: Subformatindex];
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formats:
formatset: |data
PTOCE! deztrov: StandardDestroy
typelln erase: StandardErace
ddr. find&election: StandardFindSelection
parent: __oo———— defelect: ftandardDedelect
displazed: TRUE f ndField: NonlayFindField
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format: 0

displayUszsed: subformat: 0

indDoctInder: StandardFindDoclUnder

selected: FALSE

-:1ra,w‘é‘rrcm:Fr-:-m: StandardDirawr Arrow From
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edit: MullEdit
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»

Figure 7.1. Incense display of a document for a displaycd INTEGER. The document (a) is a pointer to a
documentRecord (b). That record contains 1 format (c) expanded in Figure 7.2, a set
of procedures (d), and other data (e).
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EubformatProc: Integerfub
(b) frrocs: /7
EuhiormatPros; Grevinteeerinb el
(c) liprocs:

=
=
butDats e ]

\

formatProc: Stanr_l-aru:lE\cnrmat.
2 )

subformats:

(@)

find3electiory Mond srresatelntFindielection
(d) dedelect StandardlntDedelect
findDocUUnder: HNondegsregatelmFindDoclIndg

Figure 7.2. Expansion of integer document format. There is onc format with its formatProc: (a) and
two subformats; (b) and (c). The subformats have different subformatProcs and no
subData, but they share the same intcrnal procedures: (d).

The ficlds of a documentRecord are: _

formatSet which contains the procedures and data required for displaying;

procs which are the top level procedures for doing all of the other operations on
documents such as erasing, sclecting, etc. These typically call on the corresponding
internalProc in the subformatinfo for the current subformat;

typelD and addr for the data structure this document is meant to display. For some
documents, such as those for layouts, these fields will be NIL since there is no
associated data;

parent which allows tracing up the document hicrarchy. The parent ficld is used by
procedures such as FindFicld which must search up the tree. Every document has
at most one parent. Some documents that have subordinates, such as for the fields
of records. The information describing the subordinate documents is stored-in the
subData ficld of subformatinfo;

displayed which tclls if this document is displayed. The rest of the ficlds in a
document are only valid if the document is displayed;

displayUsed contains the format and subformat indices used to display the document.
This is required by the procedures that manipulate the displayed documents since
they need to know which internalProc to use;
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selected tells whether this document is the one sclected or not; ,

myAbsPos gives the rectangle that the document fit into when displayed. It is
guaranteced to be less than or equal to the rectangle specified as maxArea in the
FormatProc used to display the document.

7.2 Displaying Documents.

As described in section 5.3.1.1, a client causes a document to be displayed by choosing a
format and calling the associated formatProc. This formatProc iterates through the subformatProcs
to find one that will display the document. The operation of the subformats for various types is
described below. In addition, however, the formatProc takes carc of other bookkeeping tasks. First,
if the document was sclected, it is desclected.  Next, the displayed flag is set to true and
displayUscd.format is sct. After the subformats arc checked, the document is registered. A list is
kept of all the documents that are currently displayed, and a RegisterDoc procedure is provided for
adding documents to the list. This list allows the crasure of all documents on the screen (and a
JAM function provides this operation to the user). In addition, the list is necessary for the selection
process and for allowing multiple pointers to the same data structure to point to the same place on
the screen. A generic procedure FnumerateRegDocs is provided:

EnumerateRegDocs: PUBLIC PROCEDURE [proc: PROCEDURE [enumD: Document, enumToplevel: BOOLEAN]
RETURNSTBOOLEAN]] RETURNS [docChosen: Document};

where the proc argument is a procedure to be called on cach registered document.
EnumerateRegDocs terminates and returns the current enumD argument when proc returns TRUE.
The enumTopLevel flag is used to distinguish documents that were cxplicitly displayed by the client
from those displayed by other documents. The formatProc procedure sects the topLevel flag FALSE,
and the utility routine DisplayDoc called by the client changes it to TRUE for the appropriate
documents.

7.2.1 Displaying the basic types.

Documents for data of types STRING, INTEGER, CARDINAL, WORD, UNSPECIFIED, BOOLEAN,
CHARACTER, REAL, PROCEDURE, and ENUMERATED do not nced any cxtra information for display.
Subranges of thésc do store the type of the base and the offset and range of the sui)range for
cfficiency, however. There are four subformats defined for cach of these types. Two of these
display the data using text and two display the data using grey blobs. One of cach of these draws a
box around the valuc and the other does not. The choice between the "boxed” or "non-boxed"
subformats is usually made by the creator of the document based on whether it will be displayed-in
an aggregate structure or not. For cxample, the record document will draw a box around the entire
ficld and not just the valuc portion so the unboxed option is chosen for the valucs enclosed. In
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Figure 7.3, the valuc in a field has been selected showing the extent of its rectangle. A box is
drawn around documents of the basic types that are intended to be displayed by themselves (see
Figure 5.4). This is especially uscful if there is a pointer to the value (Figure 7.4).

weight: 175
laztMame:;

initial: ‘B

Figure 7.3. Sclection of a field value in a record showing the extent of its rectangle.

Figure 7.4. Pointer to CARDINAL showing utility of the boxes.

The documents for the basic types contain subformats for normal and grey display. One of
these styles is chosen at run time by the subformats based on the amount of room available
(maxArea). The normal subformat will not be used if the arca specified is smaller in the vertical
("Y") direction than the height of the font used to display the value, or if less than half of the value
will fit in the horizontal ("X") direction. ‘The latter restriction is used since half of the string
displayed is frequently enough to allow recognition of the value (see Figure 7.5a and 7.5b). The
grey blobs used if there is not cnough room are supposed to represent very tiny text. Thus, the size
of the blob is adjusted to correspond to the length of the string that would have been printed for
the value. This may allow the programmer to distinguish between a number of values if they have
different lengths (sce Figure 7.5¢ and 7.5d).

(@ () © (d)

Figure 7.5. Demonstration that clipped strings do supply information: (a) and (b) are values of
BOfQLEANS. Grey arcas arc different sizes depending on string: (c) is for FALSE and (d)
1S for TRUE. g

Two utility procedures are used by these subformats.  One displays a string in a given
rectangle, clipping it if necessary. The other displays a grey blob of a given height and width. This
makes it casy to add subformats for displaying new types whose values can be represented as simple
strings. For cxample, PROCEDURE types recently were added to Incense in just a few minutes after
GetProcedureName was added to CedarSymbols.
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7.2.2 Displaying records.

Records are more complex than INTEGERs and require extra information to be displayed. No
global data (formatSet.data) is necded, but a great deal of information is stored in the subData slot
for each subformat. This data includes two documents for each record field. This is an example of
recursive nesting of documents since any ficld may be a record. For the automatically created
record documents, the subData is the same for both subformats, so the subData pointers refer to the
same data.

7.2.2.1 Mesa definition of record document.

The definition for the data structure used in the subData ficld of records is given below:

pRecSubformatData: TYPE = POINTER TO RecSubformatData;
RecSubformatData: TYPE = RECORD

needed: Rectangle, --area needed for this subformat to work;

--must be bigger that sum of field rects (in base)
maxNameWidth: Coordinate, --needed to see if will fit (in base)
arrowEnd: ThreePoints, --dest point for arrow (in local coord sys)
curArrowEnd: ThreePoints, --set when displayed (in Base coord sys)
fields: DESCRIPTOR FOR ARRAY OF RecFieldData

I8
RecFieldData: TYPE = RECORD

dataDoc: Document, --for actual data contained in field
dataForind: Formatindex,

dataRect: Rectangle, --relative to needed rect

nameDoc: Document, --for field name

nameForind: Formatindex,

nameRect: Rectangle --relative to needed rect

7
The ficlds of RecSubformatData are:
needed, a rectangle describing how big the record display was when it was designed.
For the basic types, such as BOOLEAN the size is casily calculated from the current
value. This is not truc for records and other aggregate structures that can have
ficlds in arbitrary locations (scc Figure 5.8). Therefore, the size is stored as data.
The rectangle is calculated in a base coordinate system so that changes of scaling
will not affect its size;
maxNameWidth, the width of the longest ficld name. This is used to decide if the
rectangle supplied will be large cnough to display a rcasonable amount of the
record (see below); |
arrowknd, the place on the record where an arrow drawn to the record should end.
The basic types simply use the center of the left side, but for aggregate structures,
it is uscful to be able to specify the destination points. Three points are used to
allow specification of the direction as well as the position of the arrow;
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curArrowEnd, the arrowEnd points converted so they correspond to the current
position of the record; and
fields, an array of data nceded for each field.

The extra data needed for cach record field is: »
dataDoc, the document which will display the value of this ficld;
dataForlind, the formatlndex to be used when displaying that ficld’s value document;

dataRect, the rectangle to be used to hold the value;

nameDoc, a document used for displaying the name of the field. The name was made
a document to allow more consistent handling of the name and the value portions
of the field display. The nameDoc usually is a simple string-handling document;
and

nameXorlnd and nameRect, the formatIndex and rectangle for the name part of the
ficld display. Note that this allows the ficld name and ficld value to be displayed
in any position, not just the name: value as used in the default. Thus, for example,
a special record ficld name document might be created that centered the name in
the field or put it flush with the top.

7.2.2.2  Operat-on of the subformats

The default record documents have one format and two subformats. As with basic types, a
subformat is chosen based on the amount of screen arca available. For records, the needed and
maxNameWidth ficlds of the RecSubformatData arc used in this decision. The standard subformat
is used if the maxArea is larger in the vertical direction than the height of the needed rectangle, and
if it is wider in the horizontal direction than maxNameWidth. This allows part of the value to be
clipped (Figure 7.6). If there is not enough room, the other subformatProc is used, This latter
procedure introduces a scaling factor that allows the cntirc needed rectangle to fit into the area
specified. The proportion of the height to width of the resulting rectangle on the screen is kept the
same as the proportion in the needed rectangle irrespective of any uncven scaling that might have
been imposed from above. This scaling must be taking into -account, however, since it affects the
size of the maxArea rectangle. The formula used to determine the scaling amount is: '

scale « MIN[maxAreaWidth/neededWidth, maxAreaHeight/ neededHeight];

where both maxArea and needed have been converted into the same (base) coordinate system.
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intzrnalRec: oo TRUE
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Figure 7.6. Record with a value clipped. Most of the information is still available.

A further complication arises since the record display should be centered vertically inside the
maxArea rectangle. ‘This is straightforward in the non-scaling case, but here it requires the scale
factor to be taken into account. The formula for the starting Y position is:

yStart « MAX[maxAreal.owerY, (maxAreaHeight-neededHeight*scale)/2];

Figure 7.7 shows a scaled record centcred inside of the bounding box and taking the same
proportions as the full-size display.

a3
b ‘0@

ca; -2
ch: This is a test
internalRec: jcc: TRUE

d: k1
(a)
(b)
Figure 7.7. Record shown full size (a), and scaled proportionally and centered inside a bounding
rectangle (b).

After all these manipulations have taken place, both the record subformats first calculate the
destination points for arrows in the current context. If the record contains a pointer back to itself, it
will therefore be drawn to the correct place. Afterwards, the subformats simply iterate through the
fields causing the name and ficld documents to be displayed in their respective rcctanglés.

7.2.2.3 Display of clocks.

Clocks are record documents with two special subformat procedurcs. Clock documents have
two formats, onc of which displays as a normal record and the other as a clock with hands (Figure
5.1). The clock format differs from the others discussed in that it does not decide which subformat
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to use based on maxArea. The first subformat is used if the document is being displayed for the
first time. If the document is being re-displayed with the same rectangle as used previously,
however, the second subformat is chosen which knows how to move the hands on the cxisting

- display. Thus, the clock document can be associated with a process that will cause it to be re-

displayed when the time has changed, and a simple JAM procedure to do this has been written.

The angle of the hands of the clock are casily calculated as follows:

minAngle « -(min*6 - 90 + (sec/10));
hourAngle « -(hour*30 - 90 + (min/2));

Thus the hands can move continuously rather than in unit steps.

7.2.3 Displaying layouts and pointers.

As mentioned in scction 5.3.1.3, the display of layouts and pointers is very complex. Since no
space allocation is donc at run-time, the layout documents, like records, contain rectangles
specifying where each field should be placed. These rectangles are allocated in a very simple
manner described in section 7.4.7. This scction discusscs some of the data structures and procedures
that are used by the pointer and layout documents to decide what ficlds to use and to draw the

arrows.

7.2.3.1 Mesa definitions for pointers and layouls. R

In section 5.3.1.3, it was mentioned that layout documents contain a document for cach field.
The following are the definitions for the data structures needed for the data and subData ficlds for
pointer, layout and layout field documents:

--Pointers:

—PtData fits in the data slot of FormatSets since is global; pPtSubformatData goes in the subformat subData slot
pPtData: TYPE = POINTER TO PtData;

PtData: TYPE = RECORD

I

subDataType: TypelD, --need type to create dataDoc if not available
subDataAddr: MemoryAddress,
ptriD: PtrlD --used to associate pointer with a layout tield .

pPtSubformatData: TYPE = POINTER TO PtSubformatData;

DisplayRec: TYPE = RECORD.

splinePointsUsed: BOOLEAN, --false if not (e.g. due to NIL)

splinePoints: SevenPoints, --kept to allow erase

destHeight: Coordinate, --kept to allow erase {used by arrowHead routine)
subDocField: Document, --is doc for field holding data I point to

dataDoc: Document --is document for data | point to

I -
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PtSubformatData: TYPE = RECORD

display: DisplayRec,
form: RECORDI[formatindex: Formatindex]

--Layouts:

--Goes in the subformat subdata slot

pLaySubformatData: TYPE = POINTER TO LaySubformatData;
LaySubformatData: TYPE = RECORD

needed: Rectangle, --area needed for entire layout
displayContext: POINTER TO CGraphicsDefs.DisplayContext,
fields: DESCRIPTOR FOR ARRAY OF LayDocFieldData

’

LayDocFieldData: TYPE = RECORD

ptriD: PtrID, --used to associate pointer with a layout field

document: Document,  --is a Layout Field Doc

formatindex: Formatindex --which format to use for layout field doc

--unlike everything else, layout fields decide where to put themselves so no Rect here.

--Fields of layouts:
--For the data slot of formatSet
playFieldData: TYPE = POINTER TO LayFieldData;

LayFieldData: TYPE = RECORD

datatype: TypelD, --of thing to be displayed in this field
dataAddr: MemoryAddress --ditto

|5
--Goes in the subformat subdata slot
pLayFieldSubformatData: TYPE = POINTER TO LayFieldSubformatData;
LayFieldSubformatData: TYPE = RECORD

valueDoc: Document, --document to display value inside ftield
formatindex: Formatindex, --format for valueDoc

valueRect: Rectangle, --where value will go

fieldRect: Rectangle --where field will go

PtData, which contains global information nceded by all subformats for pointers, has the
following fields:
subDataType which is the type of the data pointed to;
subDataAddr which is the address of the data pointed to. This changes whenever the
value in the pointer is changed, whereas the type stays the same; and
ptriD whiéh is a unique identifier used to associate the pointers with the layout field
in which to display the referent (see below). ) |

The PtSubformatData is divided into two parts, the form and the display. The form contains
the information about how the pointer is to look. In particular, it has a formatIndex for the layout
ficld. The display contains information about the current display. In particular,
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splincPointsUsed specifics whether a spline was drawn for the pointer or not. For
pointers that arc NiL, for example, a diagonal line is used instead of a spline (see
Figure 7.1);
splinePoints contains the scvenPoints used in drawing the spline for the arrow. This

allows it to be erased;

destHeight is the height of the side to which the arrow was drawn. This is used to
decide how big the arrowhead should be so it must be saved to allow correct
erasure;

dataDoc is the document for the data referred to by the pointer; and

subDocField is the layout ficld document that displays dataDoc.

Layouts do not nced any global data and conscquently only have LaySubformatData. The
ficlds of this are:

needed which is the rectangle required by the layout;

displayContext which is the display context used to display the layout itself (see
section 7.2.3.2); and

fields which is an array of all the ficlds of the layout, each of which has a document
which is the layout ficld document, a formatIndex for that ficld, and a ptrlD that
associates the ficld with a pointer.

Layout fields have global data like that for pointers:

dataType and dataAddr which describe the type and address of the data to be
displayed in them. layout ticlds need this information to create a document for
their valueDoc if it does not already exist (sce section 7.2.3.2).

In addition, layout ficlds have LayFicldSubformatData containing:

valueDoc which is the document to be displayed in this field;
formatindex which is to be used for valueDoc;

valueRect which is the rectangle for valueDoc; and

ficldRect which is the rectangle for the ficld itself.

7.2.3.2 ();)efatiorz of the subformats.

When a layout subformatProc is called, it is given a maxArea rectangle like all other
documents. It then sets the scaling factor so that the needed rectangle exactly fits into the maxArea
rectangle. It is assumed (hat the proportions of the layout needed rectangle were not significant (in
fact, the default layouts all use a 100 by 100 rectangle). The current display context is then stored
in the layout subData. Finally, the layout iterates through the layout field documents causing each
to be displayed if it has not been displayed already.
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The layout ficld subformat procedure first tests to sce if valueDoc is non-NiL. If so, the
display context of the layout is used to display the valueDoc. If not, a new document is created as

described below.

Assume a pointer is enclosed in a record which is inside the first layout ficld (sce Figure 7.8).
The record will be told to display by the field and the pointer subformatProc will be called in turn.
The pointer document first gets a new memoryAddress for the referent (since it may change). Next
EnumerateRegDocs is used to see if a document is alrcady on the screen which has the same
memoryAddress as the referent.  This allows structures such as Figure 7.9 to be displayed correctly
where multiple pointers refer to the same data item. It has the additional advantage that pointers to
subparts of records can be handled correctly (Figure 7.10).

I Layout I

lLayout ficld 2

Layout Ficld 1

@ Cardinal

Figure 7.8. Document hicrarchy that would be created for:
rec: RECORD [p1: POINTER TO CARDINAL, int: INTEGER];

(This figure was not created by Incense).

Figure 7.9. Array of pointers with two pointers referring to same value.
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If the target document is not already displayed, the pointer will attempt display it. This is
handled in the following manner. First, the procedure FindField is called using the pointer’s parent
and the type and address of the data referred to. This procedure traces up the document tree
attempting to find a layout field that has the same ptrlD as the pointer. A ptrID is used, rather
than simply the ficld index, to allow aggregates of aggregates (all containing pointers) to work
correctly. For example, in Figure 7.11, a record contains another record and both have pointers in
record field number one. A unique naming scheme for the pointers is therefore nceded. If the
search for a layout ficld is successful, the layout which found it will return the winning layout field.
In addition, however, the layout will store the type and address of the data being pointed to in the
LayData of the layout ficld. If the scarch for the field does not succeed, cither a symbol for illegal
(Figure 7.12a) or unknown (Figure 7.12b) is used. [Illegal means that a document was malformed or
an attempt was made to use an unimplemented feature of CedarSymbols. Unknown is used if there
are simply no layouts that want to handle the pointer’s referent, but this should never occur with
automatically crcated documents. ‘

(a)
(b)
wreig 2175
lastMame: Myers
initial: 'B )
Figure 7.10. Pointer to value inside a record (a) does not get confused with a pointer to the record
itself (b).
311
useful: TRUE
INASEH
firstEl: -24
. currentWal:
furthersate: lasthal; —]

Figure 7.11. Record with internal record both with pointers in record ficld number onc demonstrating
necessity for unique PtriDs.
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Figure 7.12. Record containing pointers represented as I/legal (a) and Unknown (b).

Once the pointer finds a layout field, it is displayed. Now control passes to a layout field. As
described above, if the field’s valueDoc is not NiL, the valueDoc is displayed in the valueRect
rectangle. Note that in this case the displayContext from the layout is very important since the
layout is not causing the layout field to be displayed. Rather, it is the pointer’s document that calls
the layout field so an arbitrary display context might be current. If the valueDoc is NIL, then the
field will attempt to create a new document using the data address and type stored earlier in its
global data by the layout when FindField was called. It is necessary to be able to create documents
dynamically for layouts (unlike for records) because laynuts can be used to display structures of
indeterminate depth. An example of this is a recursive data type, such as

List: TYPE = POINTER TO ListRecord;
ListRecord: TYPE = RECORD [value: CARDINAL. next: List];

for which no number of documents can be known to be sufficient a priori. The creation process is
described in section 7.4. After a valueDoc has been created, it can be displayed using the
techniques described above.

Returning to the pointer, the field has completed its display, presumably including the display
of the document for the data the pointer refers to. Now, however, the pointer must find this
document so the arrow can be drawn to it. This is done through the use of the FindDocUnder
routine in the layout field. This routine matches the memory address and type arguments (which
are of pointer's referent) against the address and type of the document and all constituent
documents. It is necessary to travel down the document tree because the valueDoc in a field may
be a layout, and the actual referent could be buried down many levels. Once the dataDoc is found.,
the DrawArrowFrom routine in it is called to draw the arrow from the pointer.

7.3 Erasing Documents.

Erasing of documents is not complicated and was essentially covered in section 5.3.3. The
current section merely explains the arguments and the actual operation of the erase procedures.

The standard top level erase procedure first checks to see if the document is displayed and if
not the procedure simply returns. Otherwise, it de-selects the document if it is selected, de-registers
the document, and then calls the internal erase procedure corresponding to the format and
subformat used for display (displayUsed). After the internal procedure is completed, displayed is set
t0 FALSE and the rest of the display information is reset.
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The most time-consuming part of the erase is the actual clearing of the screen picture. With
records and arrays, some parts of the screen will be crased more than once since both the ficlds and
the aggregate erase the same area. To avoid this, an argument to the erase procedure (eraseScreen)
determines whether or not the screen arca (myAbsPos) should be erased. The erase procedures for
the non-aggregate documents simply test this boolean and crase if TRUE. Records, arrays, layouts
and other aggregate documents, however, first call the erase procedure in cach sub-document. In
this case, the craseScreen flag is sct to FALSE to save time. Pointers, however, always erase the
arrow since it would lie outside of the rectangle of the parent.

7.4 Creation of Documents.

The creation of documents is a relatively complex task, duc to the nccessity for allocating
different types of storage and correctly filling the many ficlds. Since there is very little consistency
checking in documents, it is imperative that the documents be created correctly. This scction
discusses the generic CreateDoc routine and all of the procedures it uscs to create documents of the
various types. In .addition, the creation of documents with client-defined rectangles will be
described.

7.4.1 Generic creation routines.

A generic creation procedure, called CreateDoc, has been provided. It takes a typelD and a
memoryAddress and creates a document using all the defaults. In addition, CreateDocForVar is
provided as a utility. It crcates a document for a variable using its string name and a description of
its context. Thus, the simplest way to get the value for a variable myvar using format 0 and
rectangle rect is:

d: Document « CreateDocForVar["myVar", ctxTypelD, ctxAddr};
[1 « DisplayDocld, 0, rect];

A JAM procedure, called vis (for "visible™) is provided that gets the variable-name string using the
keyboard and the rectangle using the mouse and then exccutes the above code.

CreateDoc is actually a dummy procedure since all it does is call InternalCreateDoc with some
of the parameters already set. InternalCreateDoc actually does all the work. Its -definition is

InternalCreateDoc: PROCEDURE [typelD: TypelD, addr: MemoryAddress, layptr, boxed, arrayDown: BOOLEAN]
RETURNS [d: Document, w, h: Coordinate];

and CreateDoc calls InternalCreateDoc with the boolcans all TRUE. The w and h returned are the
width and height (in a base coordinate system) of the display for the document created. This allows
recursive embedding of documents.
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First, InternalCreateDoc determines whether a prototype document has been specified for the
current display. If so, the prototype is copied into a document which is returned. This test
proceeds in three stages, since a prototype can be specified for a variable, its iype, or that type’s base
type. Thus, for example, for

Age: TYPE = CARDINAL;

myAge: Age « 22;
the client might specify a prototype for myAge, all data of type Age, or all data of typc CARDINAL. If
all of these tests fail, InternalCreateDoc does a case select on the base type of the data to find the
correct default. The actions for the various types is described in the next sections.

7.4.2 Creation of simple documents.

For data of types UNSPECIFIED, INTEGER, REAL, CARDINAL, BOOLEAN, CHARACTER, WORD, STRING,
ENUMERATED, and PROCEDURE no internal data is required. A generic procedure (TwoSubDoc) is
used to creatc documents for these types. The procedure is called TwoSubDoc since it fills the
document with two subformats (see section 7.2.1). The parameters to this procedure are the two
subformatProcs and the address and type of the data. If the boxed parameter to InternalCreateDoc
is TRUE then the normal and grey boxing subformats are used. Otherwise the non-boxing
subformats are chosen. TwoSubDoc allocates storage for a document with one format and two
subformats and initializes all the ficlds. The height returned by CreateDoc is simply the height of
the font that will be used to print the the value. The width returned is calculated based on the
average or maximum number of characters necessary to write a value of that type. This is
multiplied times the average character width. The number of characters used is given in the
following table:

Type TypNumChars Maximum or Average
UNSPECIFIED 7 max
INTEGER 6 max
REAL 15 ave
CARDINAL 5 max
BOOLEAN 5 max
CHARACTER 2 max
WORD 7 max
STRING 20 ave
ENUMERATED 10 ave
SUBRANGE TypNumChars[baseType]
POINTER 2

- PROCEDURE 20 ave

Subrange documents require a small amount of cxtra data, so they are given their own
creation routine.  Operating similarly to TwoSubDoc, CreateSubrangeDoc also allocates and
initializes the cxtra data required. ' '
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7.4.3 Creation of record documents.

When InternalCreateDoc is called with a POINTER, RECORD, ARRAY, Or DESCRIPTOR FOR ARRAY,
it first checks the BOOLEAN argument layprr. If this is TRUE and the type contains one or more
pointers, then a layout is created instead of the type specified. Thus when a document for an array
of pointers is requested, a layout document is actually returned. This allows the pointers to be able
to display the referent. Section 7.4.7 discusses the creation of layouts, and this section discusses the
case where the record contains no pointers or layptr is FALSE.

The record construction procedure (Create2SubRecDoc) takes as arguments the type and
address of the record and three procedures. These procedures are used to get the rectangles and
arrow end points used in designing the form for the record. In automatically created record
documents, the procedure orients the rectangles stacked vertically. The size used for cach field is
derived from the width and height of the ficld document. The definitions for record creation are:

--Records

Create2SubRecDoc: PUBLIC PROCEDURE [recType: TypelD, recAddr: MemoryAddress, getRects: RecGetRects,
adjustRects: RecAdjustRects, get3Points: Get3Points] RETURNS [d: Document, w, h: Coordinate];

--the following is used to get or generate the rectangles to be used for the field and value (data} in a record field.
RecGetRects: TYPE = PROCEDURE [fieldName: STRING, fieldType: TypelD, xStart, yStart, valueW, valueH:
Coordinate] RETURNS [nameR, valueR, sum: Rectangle, nameW: Coordinate];

--The following is called after all tields are processed and can modify the rectangles to put in correct place, make sum
rectangular, etc. (May be a do-nothing procedure).
RecAdjustRects: TYPE = PROCEDURE [recDoc: Document, which: Subformatindex};

--The following (called after all lields are adjusted for records) is used to get the 3 points needed to point fo this
document (record or array).
Get3Points: TYPE = PROCEDURE [d: Document, which: Subformatindex] RETURNS[attach: ThreePoints];

The operation of Create2SubRecDoc is as follows: -first, the number of fields of the record is
discovered using the CedarSymbols command GetMaxIndex. A document is then created with one
format and two subformats. Next, the RecSubformatData and RecFicldData data structures are
allocated.  An internal procedure, called MakeReclield, is then called to fill in each field.

MakeRecField is defined as:

MakeRecField: PRIVATE PROCEDURE [i: CARDINAL, recType: TypelD, recAddr: MemoryAddress, psubData:
pRecSubformatData, getRects: RecGetRects, parent: Document, xStart, yStart: Coordinate] RETURNS [xEnd,
yEnd: Coordinate};

where i is the field index. MakeRecField uses the recType to get the field name, and it creates a
document for it after appending ": " to the end of the string. The recType, alpng with the
recAddr, is also used for getting the type and address of the ith component of the record.
InternalCreateDoc is then called by MakeRecField to create the document for the field. The
arguments are the field’s type and address, FALSE for layptr and boxed, and TRUE for arrayDown.
Thus, the record field components will not box themselves and they will not create internal layouts
since this would have been handled first at the top. The width and height returned from
InternalCreatcDoc, along with the field name string, the ficld valuc type, and xStart and yStart, are
all used as arguments to the getRect procedure. For the case where the user explicitly specifics the
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rectangles (see Figure 5.8), this routine ignores all the arguments. For the automatic case, however,
they are used in the following manner: the width (namew) and height (nameH) of the field name are
calculated using CGraphics routines. The rectangles are then calculated as follows:

nameR « [xStart, yStart, xStart + nameW, yStart + nameH];
valueR « [xStart + nameW, yStart, xStart + nameW + valueW, yStart + valueH];

Thus the rectangles are situated in the correct manner with the field name to the left of the value.
Note that this recursive creation allows a display of any size to be included as the record value with
no special work.

One problem with this scheme, however, is that the right end of the record display would end
up very ragged. A RecAdjustRects routine is therefore called after all the fields have been created.
This iterates through all the field rectangles to find the one with the greatest width. All the other
rectangles are then modified so they line up on the right. When the user is specifying the
rectangles, RecAdjustRects does nothing.  Finally, after all this has been completed, the needed
rectangle is calculated by summing all of the other rectangles. Using this rectangle, the Ger3Points
routine then calculates the destination points for arrows. The automatic Get3Points simply uses the
left edge of the needed rectangle for the first X value and the top of the needed rectangle minus %
the height of the current font for the Y value. The other two points are five and ten screen points
dircctly left of the first.

74.4 Creation of array documents.

Arrays are created in a manner very similar to records. The major difference is the use of the
arrayDown argument. This controls the direction the rectangles arc stacked for the automatic
creation of rectangles for the array elements. Thus, one dimensional arrays have the first element at
the top and the last element at the bottom (Figure 7.13a). When the InternalCreateDoc is called for
the next level, the arrayDown flag is complemented so the next level arrays will be arranged with
the first element on the left and the last on the right (Figure 7.13b). Thus, a two dimensional array
will be displayed in two dimensions (Figure 7.14a). For threec dimensional arrays, the the third
dimension will fit vertically into the rectangle for the the second dimension (Figure 7.14b). The
array creation procedure (CreateArDoc) does not need an AdjustRects procedure since all the
elements are the same size (being the same type).
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Figure 7.14. Two dimensional array (a):
ARRAY [1..3] OF ARRAY [1..4] OF iNTEGER;

and three dimensional array (b) with one internal array selected:
ARRAY [1..4] OF ARRAY [1..2] OF ARRAY [1..3] OF CARDINAL,;

7.4.5 Creation of pointer documents.

Once the layout has been created, a pointer document is still needed to draw the actual arrow.
The complexity is all actually in the layout and the pointer procedures:; the pointer document itself
is very simple. The only item of interest is the Pir/D which is associated with the pointer. This is
generated by a simple procedure that ensures that there will never be two ptrIDs alike (see section
7.2.3.2). The constituent documents and address of the referent are all set to NIL so they will be
created at run-time.

I3

7.4.6 Creation of array descriptor documents.

Array descriptors are used primarily to implement variable size arrays. They are composed of
a length and a pointer to an array. Therefore, the display for them is simply a CARDINAL and a
pointer (Figure 7.15). This is handled in a manner very similar to records and pointers. A
document is created for the descriptor and then one each for the length and pointer. The length
document is the same as other CARDINAL documents, but the pointer requires a special
subformatProc, however. since it needs to get the address of the referent (the array) from the
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descriptor and not the pointer. This is a minor complication, however, and the rest of the operation
is the same.

-7
-6
Figure 7.15. Display for a DESCRIPTOR FOR ARRAY [1..5] OF INTEGER;

7.4.7 Creation of layout documents.

Layout documents arc constructed in a similar manner to record documents. The
Createl ayout procedure has the following definition:

Createlayout: PUBLIC PROCEDURE [typelD: TypelD, numFields: CARDINAL, addr: MemoryAddress, getRects:
LayGetRects] RETURNS [d: Document, w, h: Coordinate];

The number of fields for the layout is calculated by the InternalCreateloc by adding one to the
number of pointers in the data structure to be displayed. The procedure which counts the number
of pointers is recursive since it must include in the count pointers in all internal data structures
(such as records in records: Figure 7.11). The document for the data structure will be placed in
layout ficld zero. The opcration of CreateLayout is as follows: first a document is allocated for the
layout, and then InternalCreateDoc is called for the data structure for field zero. The arguments
are the typelD and address passed to Createl.ayout, layptr: FALSE, boxed: TRUE, and arrayDown:
TRUE. The next step is to get all of the PerlDs used in that document. These will be distributed
among the fields of the layout. Finally, a layout field document is created for each field and the
rectangles for it are found using the JayGetRects procedure. Documents for the value in each field
are nol created here, however, since they will be created at run-time.

The layout routine for automatically constructing the rectangles for the fields works somewhat

differently than that for records or arrays. Its definition is:

LayGetRects: TYPE = PROCEDURE {i: FieldIndex, r: Rectangle, fOw, fOh, inc: Coordinate] RETURNS [fieldR, valueR:
Rectangle]; -

where i is the the index of the ficld, and r is the rectangle for the entire layout. Note that this is
different from the record case where the size of the whole record was the sum of the constituents.
Here, the constituents arc expected to get their rectangles by partitioning the larger rectangle. This
is done using the width (fow) and height (fon) of ficld zero and the height of cach of the ficlds (inc).
When the client is defining the rectangles, he can simply divide the rectangle in any manner
desired. The automatic gencration routine gives one-third of the arca to the first ficld and divides
the rest vertically for the rest of the fields. Figure 7.16 shows the rectangles for a layout with 4
fields. For field zero, the value is given slightly less room in the horizontal direction than the field
to cnsure that there is sufficient room for the arrows to exit the pointers on the right (Figure 5.6).
fow and foh arc not uscd in the current algorithm which is:
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IFi = O THEN
BEGIN
valueR « [r.lowerX, r.lowerY, rlowerX + (2/9)*rWidth, r.upperY]};
fieldR « [r.lowerX, r.lowerY, rlowerX + (1/3)*rWidth, r.upperY];
END
ELSE BEGIN
valueR « [r.lowerX + (1/3)*rWidth, rlowerY + (i-1)*inc, r.upperX, r.lowerY + i*inc);
fieldR « valueR;
END;

The constituent documents of layouts are thus given an amount of room for display which is
entirely independent of the amount of room they desire. This was the motivation for having
records, arrays, etc. center themselves in the vertical direction.

Figure 7.16. Rectangles for fields and values in a layout with 4 ficlds. The bold lines arc the field
rectangles, and the rectangle to the left of the thin line is a value rectangle for field 0.
The other value rectangles cqual the field rectangles.

7.5 Client-defined Documents.

One of the chief goals of Incense was to allow the client to define, create and use his own
documents. This section will investigate how this can be done and the facilities available for aiding
the process.

Incense allows the user to define his own global and subformat data and write his own
procedures for displaying and modifying documents. This provides a structured environment in
which the client can specify his own document displays. The utility procedures provided by Incense
and CGraphics make many types of displays very simple. Thus, for example, the "percent-done
thermometer” of Figure 2.1 could be implemented by writing only onc small procedure for the
subformatProc since procedures alrcady exist that arc appropriate for the rest of the opcrations.

One problem that might be encountered when creating documents is that it is very difficult to
add procedures to the previously defined documents. Layouts, for example, required the
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DrawArrowFrom, Findlield, and FindDocUnder procedures to be added to all documents. To add
another document type like layouts that required al/ documents to have new procedures would
require recompilation of all of Incense and some other major changes. This problem, unfortunately,
arises directly from the structure of Mesa and would be hard to program around.

Once a document prototype is created, the client can then simply associate it with a variable or
type and have it used whenever appropriate. The original default display can be included as one
format of his document. Then the client can choose at run-time in which format the data structure
will be displayed. The clock document was implemented in this manner.






VIII. Ideas for Future Work

Although Incense is a powerful system and has the capability to display data of almost every
type in Mesa, there are many dimensions in which it could be extended. These can be divided
into four classes: improvements to the current Incense prototype, modifications to make Incense a
production system under Cedar, special purpose documents for specific types, and changes that
would require major alterations to the Incense system.

8.1 Improvements to the Incense Prototype.

Incense and CedarSymbols currently are not complete systems. A number of planned and
desired features were not implemented duc to the lack of time. This section describes these
features, which involve little or no change to the basic structure of Incense.

8.1.1 CedarSymbols.

Much of the code used in the current prototype implementation of CedarSymbols was copied
from the current Mesa compiler, where the code is used for debugging the compiler itself. Ed
Satterthwaite was invaluable in cxpiaining what was going on and how to access and interpret the
exceptionally complex symbol tables produced by the compiler. Largely duc to time limitations and
this complexity, which stems from the attempt to minimize the size of the tables, some of the

functions described in chapter 6 have not been implemented.

The most scrious limitation is that only global variables in modules can be accessed. In
addition, there must be enough memory available to hold the cntire symbol table for that module,
This symbol table must be kept in memory while any of the typelDDs based on the associated
context arc in use. In a real implementation, a more clever storage management scheme would be
needed since symbol tables tend to be very large.

In addition, variant records and the subcomponent operations on transfer types, processes,
conditions, and certain types of pointers are not implemented. Also, memoryAddresses can only be

created for constants that take one word that contain POINTERs. In addition, due to the lack of a

garbage collector, the client of CedarSymbols must deallocate all typelDs and memoryAddresses
explicitly. "These repairs would require a fairly large amount of work by an cxperienced Mesa
systems programmer.

In order to be able to associate a prototype with a particular type, Incense needs to be able to
find out whether types are equivalent. CedarSymbols currently allocates a new TypelD) every time
onc is returned. A procedure is therefore needed to determine if two typelDs correspond to the
same type. In addition, it would be uscful to have a unique typeAtom for a typelD that could be
used to test equality.

77
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8.1.2 Prototype Documents.

Prototype documents currently are not implemented. They would require the type equivalence
tests described above and a method for copying the relevant parts of a prototype document. A
special prototype document type that understands the message Copy may provide the latter part of
feature, A list of prototypes and the types they go with would also have to be maintained by
Incense.

8.1.3 Editing.

The edit message is not implemented for any documents. Part of the problem is deciding
where to get the new value. The current design has the edit procedure take a memoryAddress for
the new valuc. This does not allow special types such as pointers to accept their values by pointing,
etc. A final design for the edit command must await the Cedar specifications of usecr input.

8.1.4 Additions to arrow display.

At present, documents do not remember anything about the arrows that were drawn /o them.
Thus when a document is moved, the arrows that previously pointed to it are left dangling. Since
the destination documents arc responsible for drawing the arrows from the pointer documents,
information could casily be stored that would allow the document to cause redisplay of all arrows to
it if it moved.

/inothcr small and useful modification to arrows would be to allow the user to specify a new
point (knot) for the arrow to go through. This would allow the user to move a linc out of the way
of other objects on the display. The only trick to implementing this modification is deciding the
two knots in between which the new point goes.

8.1.5 Creating a forms editor.

Currently, it is very difficult to specify the form for a document. (The form contains the
various rectangles and conncction points.) A display-based graphical tool for creating and editing
the pictures would therefore be very uscful. It might allow the user to draw icons to be used as-
subformat displays of documents, A forms editor would actually be a another picce of: a dcbugging
system and should not require any modifications to Incense itself.

8.2 Making Incense a Production System.

Incense will eventually be converted into a production system as part of the Cedar debugger.
For this to happen, however, a large number of modifications and enhancements need to take place.
Many of these stem from the additional facilities that will be provided by Cedar, but others will be

performance tuning.
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8.2.1 Utilizing Cedar language features.

Cedar Mesa will contain a number of useful features that Incense has been designed to
exploit. A run-time type system that will tie into CedarSymbols should allow Documents to be
entirely type-safe. Thus all the LOOPHOLES and POINTER TO UNSPECIFIEDS could be climinated. In
addition, this will allow garbage collection of documents and their constituents. The language is
also supposed to be cxtended to promote object-oriented programming. This will clearly be
beneficial and useful for Incense.

8.2.2 Utilizing Cedar documents.

Apart from the language changes, Cedar will include sophisticated user-interface mechanisms
for input and output. The notion of a document in Cedar has taken on additional structure since
the Incense documents were designed and these changes should be incorporated. This will allow
Incense’s displays to be shown in a window while other activity occurs in other windows similar to
the way operations arc handled in DIISP (Figure 3.5) and Smalltalk (Figure 3.3). In order to make
this work properly, documents in Incense will need better control over their display. Documents in
Cedar are allowed to be displayed an arbitrary number of times simultancously in different styles.
This will be confusing in Incense, however, because the destination for arrows will not be well-
defined. '

8.2.3 Adding Views to Incense.

The notion of a view has been developed to take care of this problem. Each Incense display
will take place in a vicw, which might be a rectangular window or may simply be a logical
organization. The restriction will be that there can only be one document associated with any data
structure in a view and that document can only be displayed there once. Thus, if the user selected
a document and requested that it be redisplayed in the same view as the original, the original would
have to be crased. If the document were to be redisplayed in another view, the original could be
left alone. The additional restriction that makes this all attractive is that arrows never cross from

one view to another. Views could be added to Incense with a minimal amount of additional

mechanism.  The registering facility would be extended to include the view, and the creation
routines would take a view as a parameter and check to sce if a document for the data Wwas already
there.

8.2.4 Increcasing the speed of Incense.

Incense will exccute faster under Cedar since it will be run on faster machines. In addition, a
general cache mechanism is being designed for Cedar that should allow bitmaps and splines to be
stored to allow much faster redisplay.  If some ability to define events exists (as in section 3.1.4),
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monitoring of the program’s activity using pictures will become feasible. Presently, the Incense
display on an Alto is too slow to be rcasonably used in monitoring.

Other speed improvements can be achieved by optimizing and simplifying some of the
complex mechanism used for displaying layouts. Also, some of the internal data structures, such as
the list of all documents displayed, could be profitably changed to hash tables.

8.2.5 Using Cedar’s history facility.

Plans for Cedar include a sophisticated history facility. Presumably, it will allow saving of
arbitrary events that could be used to enact a replay. Incense could be modified to store in this
history the this information. - Thus, the advantages of real-time monitoring and replays using
analogical displays could be achieved using Incense.

8.2.6 Removing Incense from JAM.

Clearly, Incense needs a more powerful user interface than JAM. Once a debugging system
for Cedar is developed, Incense should be integrated with it. This should also solve the problems
with cditing and accepting other user commands. The programmer should be given the option of
using Incense if desired, but other methods of data display will probably be available. Further, the
debugger should allow specification of documents for data structures at run-time without destroying
the state of the program being debugged.

8.3 Special Purpose Documents for Specific Types.

Once documents can be associated with specific types, there will be a great temptation to
develop prototype documents that use more sophisticated displays for various types. In addition to
the display, however, some thought must be given to how the programmer will be able to edit the
values through thesc displays (since conversion may be nccessary). Another problem is what to do
with illegal values. A library of successful prototype documents might be maintained so that anyone
could use them. Some ideas for such documents are listed in this section and most could be
implemented either in current or Cedar Incense.

Percent-done thermometer. This would be useful for showing progress in loops or for variables
representing percentages.  The only thing special about this document is that thc maximum legal
value would have to be stored to allow calculation of the correct percentage.

Progress in program as arrow to source. This would be slightly harder since the conversion would
have to be made between the program counter and the actual source statements. This is clearly
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possible since the debugger does it for breakpoint setting, but requires added sophistication in
CedarSymbols.

Mesa run-time stack display. A more likely (and possibly more uscful) facility than showing the
progress in the program would be a symbolic representation of the run-time stack of Mesa. This
also requires new facilities from CedarSymbols. The current Mesa debugger is particularly deficient
at handling multiple processes, but if Incense could graphically display the stacks from all current
processes, the user would be able to move around much more easily. The complex context
mechanisms of the current debugger and CedarSymbols could be hidden by allowing the user to
simply sclect a stack frame using the mouse. A more generic stack prototype document might also
be uscful for displaying stacks that the programmer created.

Index into an array as pointer. ‘This would be simple to implement using the tools and procedures
alrcady available.

Time and Date as string. The time and date can be most concisely represented as the string: "4:32
PM, 12/15/79". 'This is an cxample of a large class of types where a larger structure (such as a
record) is used to represent a simple concept.

Arrays and Records as pretty-printed string. Sometimes the user may not feel that the graphic
display gives him any insight or that it is too costly in terms of exccution time or screen space
required. In that case, a pretty-printed display of a textual represcntation might be more
appropriate.

Ring buffers, lists, and trees. These are example of common data structures used in programs that
would probably be casier to debug and understand with special displays. List and trees are
sufficicntly well structured that much better space allocation can be done than is possible for layouts
which must handle arbitrary structures. In addition, if these structures are used to represent a
variable length array or other higher-level abstraction, all of the pointers might be omitted in favor
of the array or some other notation. A ring buffer might be represented as a circle with the
appropriatc parts marked as in Figure 8.1. '

Pic charts and bar graphs. These analogical displays would be very simple with the tools already
provided by Incense and CGraphics. A small amount of extra data would have to be stored to
describe the maximum or total values so the correct distances could be calculated.

Single variable trace of values. EXIDAMS (scction 3.5.3.1) allowed the user to request a "flowback”
tracc of how a variable reccived its current value. If the history facility of Cedar were sufficiently
powerful, Incense could offer the same capability. Even if it were not, a variable could be
displayed as a special type of array representing all past values. This would only require some way
of monitoring variables to collect the valucs as they were assigned.
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clement

Figure 8.1. Possible display for aring buffer.

Better display for arrays. There arc many ideas for improving the rendition of large structures such
as arrays. For example, a small portion of the array might be presented in a window and the user

_could scroll up and down to find the intcresting values. Also, some means of representing the

indices is needed.

Array as bitmaps. Somctimes arrays are used to hold actual pictures. For example, the cursors
shown in Figure 4.3 were stored as arrays of octal numbers. Some method of converting these into
the actual pictures would be useful. '

8.4 Improvements That Require Major Alterations.

In addition to the idcas presented above, there are others that would require a major amount
of work, or which are cven beyond the present state of the art. Just the same, they might be useful
in a future system if an implementation could be achieved.

8.4.1 Unifying typelDs and memoryAddress.

One problem with CedarSymbols is that the client must be carcful to ensure that the typelDs
and memoryAddresses are consistent. It is always an error to usc a memoryAddress and typelD
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together that do not correspond to the same data structure. Thercfore, these concepts could be
combined to make the system casier to use. In addition, a fully object-oriented approach could be
adopted to allow a type-safe way of getting and changing values with only a small decrease in
efficiency.

8.4.2 General two-pass display.

Currently, Incense uses a simple one pass algorithm to display documents. The location of all
documents on the screen is rigidly set before the document is displayed. There is no notion of the
document negotiating with the parent for "just a little more room." It should be clear from the text
and pictures in this paper that this does not achicve maximal utilization of the screen space in some
cases. Another method for displaying would be to have the parent ask the subordinate document
how much room it would like and then calculate the room to be used by other documents based on
how much room was left. 'This requires a fairly detailed two-dimensional "free-space™ map to be
kept from which documents could use and return screen space. The reason the tree and list
displays could use the space so much more cfficiently than layouts is that they could count on
allocating space cxactly along a single line since the size of all nodes is known. This one-
dimensional space allocation problem is clearly much easier to solve.

An additional problem with two-pass space allocation is that the documents may do as much
work deciding how much room they need as they would have to actually display it. Some caching
mechanism is therefore called for. If the parent decides the subordinate cannot have as much room
as it requested, however, this work may be cntirely wasted. Thus the two-pass scheme has the
potential to be very unstructured and possibly more complex, slow and expensive than warranted
for a dcbugger’s data display. .

84.3 Remote monitoring,.

One of the major applications for the Alto and PARC’s other research computers has been the
development of screen-oricnted systems. For example, there is a menu-driven multi-window mail
program, a full-screen cditor, etc. Monitoring of these programs is therefore difficult since the
screen is completely filled by the application programs. Flashing back and forth from one
environment to another would be very disturbing and probably not very cnlightening. In addition,
some of the applications arec computation-intensive and monitoring tools that substantially slowed
them down would not be acceptable.

All of PARC’s computers are connected to cach other using the Ethernet local communications
network [Metcalfe 76] so it scems natural to try to take advantage of this for monitoring. If a
facility for making a history were available, it should be a natural extension to put all this
information into a packet as it is gathered and then send it over the Ethernet to another Alto. The
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user could then monitor his program remotely. There might even be remote facilities for
interrupting and interrogating the program while it is executing. Model’s system (section 3.5.3.6)
allowed a similar form of remote monitoring.

8.4.4 Ideas from artificial intelligence and program methodology.

Some features that might be added to Incense must await further advances in artificial
intelligence and other ficlds of computer science before they can be practical. Such things as a
natural language front end and the ability of the system to answer questions about the data would
clearly be uscful. In addition, work in program mecthodology may eventually progress far enough so
that Incense could generate a picture of a "typical” data structure instance from only the type. This
would be useful for documentation so the user would not have to explicitly create the display, as
was done, for example, in making Figure 7.1.



IX. Summary and Conclusion

This thesis describes a system called Incense which graphically displays data structures of
various types for the language Mesa. Currently running on an Alto mini-computer, Incense can
display all of the basic types of Mcsa in a reasonable textual form. It uses a more analogical format
for the aggregate types such as arrays and records. A major advantage of Incense over other data
display systems is its ability to display pointers as arrows to the actual target data. The displays are
automatically created for variables with minimal interaction required of the user, yet a programmer
can casily create his own displays if desired. A structure has been provided for storing these
prototype ‘displays in a library and associating them with specific types or variables. Finally, the
client can specify a number of different formats and subformats that atlow the display of a
particular data structure to be changed by the user or program based on various criteria. Thus, a
display can be automatically gencrated that is very similar to the picturc the programmer might
have drawn if he were explaining his data structure to another programmer.

Incense has solved a number of difficult problems to achieve this level of performance.
Layouts were developed to avoid the cxpensive and difficult two-dimensional space allocation
problem and to allow onc-pass display for all data types. Layouts also allow the client to specify
where the referents of pointcré should be drawn. In addition, an abstract interface to the Mesa
symbol tables was defined that successfully allows Incense to avoid knowing any details of the
implementation of Mesa types.

The design and implementation of Incensc has incorporated many of the appropriate features
of a debugging system as discussed in chapter 2 and section 5.2;

Reduce the volume of data required from the user: If the user requests a display
for a pointer, the referent is automatically displayed also. Sclections and many
commands can be done using the mouse.

*  Adjust the form of the input to make good use of the human faculties: The user
can point at and move the displays using an analog device (the mouse and its
buttons).

*  Use feedback to allow correction of mistakes as they are made: The sclected
document is vidco-reversed so the user can tell what is sclected. Boxes are drawn
when- the uscr specifics a rectangle for a document. .

*  Adjust output quantity to human capacity: The display may fill up but the user can
concentrate only on those portions that interest him.  When many things are
displayced, they decrease in size or disappear so that the screen is not cluttered.

*  Choosc forms of output that are readily acceptable to human comprehension: This

is one of the main objectives of Incense. Incense does promote analogical pictures

and automatically produces organized displays for data structures.
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Output only completely processed results: Incense allows the user to develop

documents for any data type. This allows presentation of data structures at the

highest conceptual level appropriate.  All of the pre-defined Mesa types currently
are presented completely processed.

*  Appropriate level of detail: Incense allows the user to specify that certain fields of
a record should not be shown. He can also specify an iconic format for some data
structures or fields to reduce the amount of information presented.

*  Automatically gencrated pictures. Incense creates the pictures based on ‘the type of
the data structures without requiring user intervention. A picture can be produced
simply by specifying the variable to be looked at and the rectangle into which to fit
the display. A hardcopy can also be casily made of the displays (as was done for
this paper).

*  Replay: Replay is currently not possible, but should be in Cedar Incense.

Fasy to use: Incensc allows the use of the mouse for selection and specifying

rectangles. The other issues of user input will be handled by the system into which

Incensc is incorporated.

No modification of source program: The source program does not need to be

modified to use Incense, although an additional program might have to be written

to specify any special documents required.

*  FExtensible: The user can create new documents and associate them with particular
types. Libraries of documents could be maintained. In addition, a document for a
data structure might allow it to be displayed in a number of formats.

*  Fast: Incense currently actually allows the investigation of certain data structures at

a rate faster than the current Mesa debugger. This is probably an unfair

comparison, however, and Incense clearly needs to exccute faster. The Cedar

implementation will run at least three to ten times faster due to some
reprogramming and better hardware and microcode support.

The displays produced by Incense will be uscful to programmers. Sutherland [63, p. 67]
claimed that "it is worthwhile to make a drawing on the computer only if you get something more
out of the drawing than just a drawing.” The pictures and the associated data structures can be
dynamically rearranged and modified. The displays from future Incense systems will be useful for
monitoring of running programs. Since the user can specify documents, the resulting pictures can
be used to provide documentation for the data structures themsclves (as in Figure 7.1 and 7.2).
Finally, dcbugging will probably be more -fun when using picturcs rather than long strings of
characters. This combined with the higher conceptual level provided by the pictures may make the
debugging task easier and thereby incrcase programmer productivity and reduce the number of
misscd bugs.
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Thus, while it could not actually be described as finished, Incense has fulfilled most of its
goals. It was an enjoyable project designing and implementing Incense, and 1 appreciate the
opportunity to be a part of the Cedar effort. It should be exciting to fit Incense into Cedar and to
study its actual use in the debugging of programs. Only this final test will demonstrate if analogical
display of data structures as provided by Incense increases programmer productivity.






APPENDIX A. Informal Poll on the Current Mesa Debugger

A.1 The Questionnaire.

As part of my research for the discussion of section 4.2.1.2 on the current Mesa debugger, 1
distributed a questionnaire about the debugger. The questions were:

CONTEXT:

(1) Compare the Mesa debugger to others you have used and list the advantages/disadvantages.
(2) Can you debug faster with the Mesa system than with your previous system(s)? Why?

GENERAL:

(3) What do you like about the debugger?
{4) What are the debugger's biggest weaknesses?
(5) Where does the debugger fail to allow you to "think in Mesa"?

DATADISPLAY:

(6) How would you like data structures (records, pointers, arrays, etc.) to be displayed and would that help you
debug programs?

(7) What are the hardest probiems to debug and couid a clever data display system help with them?
(8) How much additional delay would you be willing to tolerate to have your data structures displayed as pictures?

(9) Would you ever be willing to write a program to specify the picture to be used for displaying data of a certain
type? If so, for what kinds of data types?

A.2 Results.

I received 19 responses from Mesa users. They were generally not surprising and are
summarized below:

Most people answered questions 1, 3 and 4 together. The advantages of the Mcsa debugger
were given as:
*  The debugger’s knowledge of user-defined types and local variables;
*  The ability to display multi-item data structures symbolically all at once;
*  The ébility to avoid knowledge of machinc instructions. ’
*  The ability to sect an apparcently arbitrary number of breakpoints by pointing at
source text;
*  The easc of using the dcbugger for beginners. (Note: This was disputed by other

respondents);
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The existence of an interpreter;
The ability to look at source code while debugging; and
The lack of planning required to usc the debugger.

Disadvantages of the Mesa debugger were given as:

In answer to question 2, almost cveryone agreed that he could not debug faster in Mesa than
in other languages. Those who disagreed did so only because the Mesa compiler caught many bugs
that would have gotten through in the other languages. In addition, some felt that the Mesa

debugger allowed them to debug faster when dealing with highly typed data structurcs since it

The slowness of many operations such as getting into the debugger and finding the
types of data when using multiple symbol tables;

The debugger’s lack of the ability to mix and manipulate contexts; _

The inability to patch code and proceed from crrors. In fact, a Mesa program
cannot be continued in any location except exactly where it stopped;

The incomplete interpretive mode: many of the types and operations of full Mesa
arc not supported in the debugger’s interpreter; '

The lack of conditional breakpoints;

The lack of the ability to automatically display certain variables and then proceed
at a breakpoint (which would allow easier monitoring);

The lack of the ability to omit from the display sclected portions of arrays or
records;

The lack of the ability to use command files with the debugger;

The reliability problems. with the dcbugger itself: "A decbugger must be
trustworthy;" '

The lack of the ability to monitor variables by having them continuously updated
on the screen;

The extreme difficuity of single-stepping through a Mesa program;

The lack of information provided about a signal or error if the symbol table
describing it is not on the disk. (All that is displayed is an octal number);

The inability of the wuser to provide formatting information and/or
validity/consistency checks;

The excessively symbolic and verbose command language of the debugger; and

The inadequate presentation for arrays.

interprets the data. Everyonc felt that the debugger was too slow, however.

Although the debugger attempts to prevent the user from having to use the underlying
representations for data and instructions, it docs not always succeed in allowing the programmer to

"think in Mesa" (question 5). Some places where this happens are:
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When using monitors;

*  When using COMPUTED VARIANT RECORDS Or OVERLAID VARIANT RECORDS;

When using enumerated types in the intcrpreter;

When investigating variables in catch phrases for signals;

When investigating multiple processes; and

When trying to construct arguments for calling of procedurcs from the debugger.

On the data display part of the questionnaire, the responses were encouraging for Incense.
For question 6, some people felt that the "facilities of Incense arc in the right direction™ but should
be augmented with some ability to "window™ onto large structures. Most pcople felt that some
method for pretty-printing of aggregate structurcs was necessary, cven if only textually. Since one
can split and scroll the debugger's window, many felt there was no reason not to use cxtra spaces,
tabs and carriage-returns to make data structures casier to rcad. - Others disagreed, however, and
thought it was more important to have a lot of information on the screen at once. Some specific
data types were mentioned as problems: one respondent wanted to be able to use the mouse to
move around in a data structurc tree, and another mentioned that it would be nice to be able to
display sparse structures such as hash tables in a reasonable manner.

There was surprising agreement in answer to question 7 concerning the hardest problems to
debug. The two problems mentioned most were random core smashes and timing problems related
to multiple processes. It was felt that a data display system would not help with this, unless it
allowed true monitoring of variables and control flow. Other uscful features would be user-defined
write protection and "a flavor of breakpoint that invoked frequent consistency checking on the data
structures involved.” Onc person mentioned that a hard problem is cnsuring that all storage is
deallocated when no longer nceded. -

For the delay that pcople would tolerate (question 8), most pcop]e said "none”. A few said
that they would tolerate a small amount if the overall time it took to display a data structure was
faster than without the pictorial display, and one mentioned that as long as he could watch it
happening, up to 10 seconds to complete the drawing would be tolerable. If the fancy display took
longer, it should be an option and not the default, according to one respondent.

The responses to question 9 were also very encouraging. Most pcople felt that they were
currently in the habit of writing data display routines to allow debugging of complex structures.
Other people claimed they might do this if there were fancy tools to encourage it apd it could be
done in a "simple language." Otherwise, the displaying procedures would have to be debugged and
"debugging the debugging facilities is almost always a waste of time." Many pecople hoped that a
large number of standard displays would be available in a library that they could use or modify
slightly to display their own data structures. ‘ ’
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