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I. FURTHER EXAMPLES

A. Examples of leakage (rejected by CONSESSION)

This subsection gives several example programs that leak information by exploiting non-termination and concurrency. None
of the examples use secrecy polymorphism to orchestrate the balance between a process’ maximal secrecy and running secrecy
and to ensure that a process’ running secrecy stands for an arbitrary iteration of the process. The examples thus do not use
secrecy variables nor running secrecy annotations, and hence do not type check in CONSESSION.

1) Different recursive calls after branching on a high secrecy channel: In our first example, the sneaky verification process
(Sneaky Verifier1) leaks, with the help of an accomplice (Sneaky Partner1), the information of whether Alice’s PIN provides a
correct token. If verification of Alice’s PIN is successful, the sneaky verifier calls itself recursively, and if not, it calls its partner.
Sneaky Verifier1 and its partner, Sneaky Partner1, differ on how they interact with the attacker right after being spawned: the
sneaky verifier sends the label s to the attacker, signaling preceding successful authentication, and its partner sends the label f
to the attacker, signaling preceding unsuccessful authentication. We point out that the code would be perfectly secure without
the recursive calls: the sends of label s and f in the Sneaky Verifier1 and Sneaky Partner1, resp., happen before the security
token is received. Recursion, however, provides a way of “rolling forward” information learned in one iteration to the next.

ver = pin ⊸ ⊕{succ:pin⊗ ver, fail :pin⊗ ver}
pin = ⊕{tok1 :pin, . . . , tokn :pin}
attacker = &{s:attacker, f :attacker}
y:attacker[guest] ⊢ Sneaky Verifier1 :: x:ver[alice]
x← Sneaky Verifier1 ← y = (y.s; z ← recv x

case z (tok j ⇒ x.succ; send z x; (x:ver← Sneaky Verifier1 ← y:attacker)
| tok i̸=j ⇒ x.fail ; send z x; (x:ver← Sneaky Partner1 ← y:attacker)))

y:attacker[guest] ⊢ Sneaky Partner1 :: x:ver[alice]
x← Sneaky Partner1 ← y = (y.f ; z ← recv x
case z (tok j ⇒ x.succ; send z x; (x:ver← Sneaky Verifier1 ← y:attacker)

| tok i̸=j ⇒ x.fail ; send z x; (x:ver← Sneaky Partner1 ← y:attacker)))

2) Exploiting non-termination: Recursive protocols significantly improve the expressiveness of the language but at the same
time degrade liveness. In particular, we lose the guarantee that a process will eventually communicate with its provider or
client. The process Diverge is an example of a process that is supposed to provide an infinite stream of terminating channel
references x1 : term, but instead calls itself recursively without ever interacting with its client.

term = 1⊗ term

· ⊢ Diverge :: x1:term[guest]
x1 ← Diverge← · =(x1:term← Diverge← ·)

Diverge is only a trivial implementation of a non-reactive process, but there are more ingenious ways to implement such
processes, and identifying them was shown to be undecidable 1.

A sneaky verifier can exploit the non-reactivity of Diverge to leak information to the attacker. In our second example, the
sneaky verifier, Sneaky Verifier2, spawns the diverging process along channel x1 and continues as its partner Sneaky Partner2.
The partner only interacts with the diverging channel x1 when Alice’s PIN provides the incorrect token. As a result, if Alice
provides an incorrect token, the process will wait forever for x1 to send it a terminating channel x2, and the attacker will
receive no further messages. Otherwise, if Alice’s token is correct, Sneaky Partner2 continues by recursively calling itself, and
right at the beginning of the recursive call, sends the label s to the attacker, signaling the previous successful login.

1Farzaneh Derakhshan and Frank Pfenning. Circular proofs as session-typed processes: A local validity condition. CoRR abs/1908.01909 (2019),
http://arxiv.org/abs/1908. 01909.



y:attacker[guest] ⊢ Sneaky Verifier2 :: x:ver[alice]
x← Sneaky Verifier2 ← y =((x1:term[guest]← Diverge← ·);

(x:ver← Sneaky Partner2 ← y:attacker, x1:term))

y:attacker[guest], x1:term[guest] ⊢ Sneaky Partner2 :: x:ver[alice]
x← Sneaky Partner2 ← y, x1 =
(y.s; z ← recv x // y:attacker, z:pin, x1:term ⊢ x:⊕ {succ : pin⊗ ver, fail :pin⊗ ver}
case z (tok j ⇒ x.succ; send z x; (x:ver← Sneaky Partner2 ← y:attacker, x1:term)

| tok i̸=j ⇒ x.fail ; send z x;x2 ← recv x1;waitx2;
(x:ver← Sneaky Partner2 ← y:attacker, x1:term)))

3) Exploiting concurrency: The following example shows how two attackers can exploit concurrency to infer Alice’s
success or failure in verifying her PIN by observing the verifier’s pattern in producing their low-secrecy messages. Process
Sneaky Verifier3 leaks secret information with the help of process Alternate bits that produces an alternating sequence of bits
b0 ; b1 ; b0 ; b1 ; . . . and its two mutually recursive partners, Sneaky Partnerb0 and Sneaky Partnerb1.

bits = ⊕{b0 : bits, b1 : bits}
cobits = &{b0 : bits, b1 : bits}
leak = &{succ : leak, fail : leak}
x1:bits[guest], x2:cobits[guest] ⊢ Sneaky Verifier3 :: x:ver[alice]
x← Sneaky Verifier3 ← x1, x2 =
casex1 (b0 ⇒ x2.b0 ; z ← recvx; case z (tokj ⇒ x.succ; send z x;

casex1(b0 ⇒ x← Sneaky Verifier3 ← x1, x2,
| b1 ⇒ x← Sneaky Verifier3 ← x1, x2)

| toki ̸=j ⇒ x← Sneaky Verifier3 ← x1, x2)
| b1 ⇒ x2.b1 ; z ← recvx; casez (tokj ⇒ x.succ; send z x;

casex1(b0 ⇒ x← Sneaky Verifier3 ← x1, x2,
| b1 ⇒ x← Sneaky Verifier3 ← x1, x2)

| toki ̸=j ⇒ x← Sneaky Verifier3 ← x1, x2)))

· ⊢ Alternate bits :: x1:bits[guest]
x1 ← Alternate bits← · =(x1.b0 ;x2.b1 ; (x1:bits← Alternate bits← ·))
x3:leak[guest] ⊢ Sneaky Partnerb0 :: x2:cobits[guest]
x2 ← Sneaky Partnerb0 ← x3 = casex2(b0 ⇒ x3.succ;x2 ← Sneaky Partnerb0 ← x3;

| b1 ⇒ x3.fail ;x2 ← Sneaky Partnerb1 ← x3))

x3:leak[guest] ⊢ Sneaky Partnerb1 :: x2:cobits[guest]
x2 ← Sneaky Partnerb1 ← x3 = casex2(b0 ⇒ x3.fail ;x2 ← Sneaky Partnerb0 ← x3;

| b1 ⇒ x3.succ;x2 ← Sneaky Partnerb1 ← x3))

At the beginning, the Sneaky Verifier3 is connected to Alternate bits along channel x1, and to Sneaky Partnerb0 along channel
x2. The sneaky verifier starts by relaying the first bit (b0 ) that it receives from x1 to its accomplice along x2. Next, if the
verification of Alice’s PIN is successful it receives one extra bit (b1 ) from the sequence provided by Alternate bits without
relaying it to its partner and then calls itself recursively. In this case, again, the next bit that it sends to Sneaky Partnerb0 is b0 .
In fact, as long as the verification is successful, the verifier only sends b0 messages to its partner. As soon as a failure occurs,
the verifier skips receiving the extra bit from Alternate bits and instead relays a b1 label to Sneaky Partnerb0 after its recursive
call. With the same argument, we can observe that Sneaky Verifier3 continues to send b1 labels until the next verification failure,
after which it again flips to sending b0 . The mutually recursive partners observe these flips in the sequence they receive along
x2 and restore the sequence of Alice’s successful and failed logins by building a sequence of type leak.

In all the above examples, the leak is caused by sending to an attacker after receiving along a high-secrecy channel, which
is prevented by a flow-sensitive IFC type system. However, in contrast to the non-recursive case, causality between actions
can no longer determined locally, by just considering one iteration of either a sneaky verifier or its partners. The leaks come
about because of mutually recursive calls, non-termination of spawned processes, and concurrent communications.

Our solution is to type processes not only by considering one iteration in isolation but considering both the maximal and
running secrecy. The running secrecy must thereby be a sound approximation of an arbitrary iteration. To ensure composition-
ality, we moreover allow process definitions to be polymorphic in their maximal and running secrecy, given restrictions on the
relationships between those variables.

To illustrate the use of polymorphic process definitions, we revisit the unsafe example from § I-A1 and explain why our
type system rejects it. We focus on this example, but the same argument holds for the remaining ones.

Consider the below definition of Sneaky Verifier1 and assume that the security theory Ψ contains the constraints ψ1 = guest
and ψ = alice.
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Ψ; y:attacker[ψ1] ⊢ Sneaky Verifier1@ψ
′ :: x:ver[ψ]

x← Sneaky Verifier1 ← y = (y.s; z ← recv x
case z (tok j ⇒ x.succ; send z x;x:ver← Sneaky Verifier1@d2 ← y:attacker

| tok i̸=j ⇒ x.fail ; send z x;x:ver← Sneaky Partner1@d3 ← y:attacker))@ψ′

Following the signature typing rule, the security theory Ψ, must satisfy Ψ ⊩ guest = ψ1 ⊏ alice = ψ , ψ′ ⊑ ψ = alice.
Moreover, by &L, we must have Ψ ⊩ ψ′ ⊑ ψ1, to execute y.s . By ⊸ R, we know that the running secrecy of the process
after executing z ← recv xψ increases to ψ. And by the spawn rule, we need to know that the running secrecy d2 specified
for the callee is at least as high as the caller’s, i.e. Ψ ⊩ ψ ⊑ d2. It is straightforward to observe that there is no possible
substitution γ to unify d2 with ψ′ as required by the spawn rule, i.e. γ̂(Ψ) ̸⊩ d2 ⊑ ψ1 = guest ⊏ alice = ψ ⊑ d2.

B. Sneaky verifier - revisited.

We briefly illustrate polymorphic processes on the SneakyVerifier discussed in § II in the main text and show that it is not
a well-typed process in CONSESSION.

attacker = &{s:attacker, f :attacker}
Ψ; y:attacker[ψ1] ⊢ SneakyVerifier@ψ′ :: x:ver[ψ]
x← SneakyVerifier← y = (z ← recv x;
case z (tok j⇒ x.succ; y.s; send z x;

x[γ̂(ψ1)] ← SneakyVerifier[γ]@γ̂(ψ′)←y
| tok i̸=j⇒ x.fail ; y.f ; send z x;

x[γ̂1(ψ1)] ← SneakyVerifier[γ1]@γ̂1(ψ
′)← y))@ψ′

Assume that the security theory Ψ contains the constraints ψ1 = guest and ψ = alice. By Σ3, Ψ must satisfy Ψ ⊩ guest =

ψ1 ⊏ alice = ψ and Ψ ⊩ ψ′ ⊑ ψ = alice. Moreover, by &L, we must have Ψ ⊩ ψ′ ⊑ ψ1, to execute y.s. By ⊸ R, we
know that the running secrecy of the process after executing z ← recv xψ increases to ψ. And by SPAWN, we need to know
that the running secrecy γ̂(ψ′) specified for the callee is at least as high as the caller’s, i.e. Ψ ⊩ ψ ⊑ γ̂(ψ′). Moreover, the
caller must satisfy the instantiation of the callee’s constraints, i.e., Ψ ⊩ γ : Ψ. and thus Ψ ⊩ γ̂(ψ′) ⊑ γ̂(ψ1) = guest must
hold. It is straightforward to observe that there is no possible substitution Ψ ⊩ γ : Ψ that satisfies all these requirements, i.e.,
Ψ ⊩ γ̂(ψ′) ⊑ γ̂(ψ1) = guest ⊏ alice = ψ ⊑ γ̂(ψ′).

C. Secrecy-polymorphic processes to the rescue

As a bonus to our polymorphic treatment of processes, we get to define generic process definitions. This section completes
our banking example by providing generic implementations for a customer and its authorization process that can be spawned
for any specific customer of the bank. We add the following session types to our example:

customer = pin ⊸ authout ⊸ 1

pin= ⊕{tok1 :pin, . . . , tokn :pin}
authout= pin ⊸ ⊕{succ:account⊗ authin, fail :pin⊗ authout}
authin= account ⊸ pin⊗ authout
ver= pin ⊸ ⊕{succ:pin⊗ ver, fail :pin⊗ ver}
account = ⊕{high:account, med :account, low :account}

The bank sets up a new customer by sending the customer an authentication PIN and an authorization process that guards
their account.

Ψ; y1: customer[ψ1], u1: pin[ψ1], z1:authout[ψ1], Ψ:=ψ1=alice, ψ2=bob, ψ=bank, ψ′=guest,Ψ0

y2: customer[ψ2], u2:pin[ψ2], z2:authout[ψ2] ⊢ Bank :: w:1[ψ]

w ← Bank@ψ′ ← y = ( senduψ1
1 y1; send z

ψ1
1 y1; sendu

ψ2
2 y2; send z

ψ2
2 y2;wait y1;waity2; closew)

Ψ1; · ⊢ New Customer@ψ′ :: y: customer[ψ] Ψ1 := ψ′ ⊑ ψ,Ψ0

y ← New Customer← · = ( uψ ← recv y; zψ ← recv y; // u:pin[ψ], z:authout[ψ] ⊢ y:1[ψ]
yγ̂(ψ):1← Customer[γ1]@γ̂(ψ

′)← u:pin, z:authout)@ψ
′

where γ1 := {ψ 7→ bank, ψ1 7→ alice, ψ2 7→ bob, ψ′ 7→ guest}.
The types authout and authin describe the communication of the authorization process with the customer. The authorization

process receives a PIN from the customer and sends it to the verifier to validate the login. If the verifier process signals a
successful verification, the authorization goes ahead and logs in the customer by sending a succ label, followed by the account
to the customer. If the PIN verification is unsuccessful, the authorization process returns the incorrect PIN to the customer
and remains logged out. In the case of a successful verification, the customer remains logged in until it requests a log out by
sending back its account to the authorization process; upon such a request, the account sends back the PIN to the customer
and logs them out.
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Ψ1;x:ver[ψ], v:account[ψ] ⊢ Authout@ψ
′ :: z: authout[ψ] Ψ1 = ψ′ ⊑ ψ,Ψ0

z:authout ← Authout ← x:ver, v:account = ( // x:ver, v:account ⊢ z:authout
wψ3 ← recv z; sendwψ3 x;
casex (succ ⇒z.succ; sendvψz; // x:pin⊗ ver ⊢ z:authin

(zψ:authin ← Authin[γ2]@ψ ← x:pin⊗ ver)

| fail ⇒ wψ4 ← recvx; sendwψ4 z; // x:ver, v:account ⊢ z:authout
(zψ:authout ← Authout[γ2]@ψ ← x:ver, v:account)))@ψ′

Ψ1;x:pin⊗ ver[ψ] ⊢ Authin@ψ
′ :: z: authin[ψ] Ψ1 = ψ′ ⊑ ψ,Ψ0

z:authin ← Authin ← x:pin⊗ ver = (

vψ ← recv z;wψ5 ← recvx; sendwψ5 z; // x:ver, v:account ⊢ z:authout}
(zψ:authout ← Authout[γ2]@ψ ← x:ver, v:account)))@ψ′

Ψ1;u:pin[ψ], z:authout[ψ] ⊢ Customer@ψ′ :: y: 1[ψ] Ψ1 = ψ′ ⊑ ψ,Ψ0

y ← Customer← · = ( // u:pin, z:authout ⊢ y:customer
senduψz; case z (succ ⇒ vψ ← recv z; // v:account, z:authin ⊢ y:1

case v (high ⇒ sendvψ z, wψ6 ← recv z; (yψ: 1← Customer[γ2] @ψ ← w6:pin, z:authout)

| med ⇒ sendvψ z, wψ6 ← recv z; (yψ: 1← Customer[γ2] @ψ ← w6:pin, z:authout)

| low ⇒ sendvψ z, wψ6 ← recv z; (yψ: 1← Customer[γ2] @ψ ← w6:pin, z:authout)

| fail ⇒ wψ6 ← recv z; (yψ:1← Customer[γ2] @ψ ← w6:pin, z:authout)))@ψ
′

where γ2 := {ψ 7→ ψ,ψ′ 7→ ψ}.
The account provides a customer’s balance by signaling the corresponding label along v:account. For example, Alice’s

account sends label high to her after being authorized.

Ψ2; · ⊢ aAccount@ψ′ :: v:account[ψ] Ψ2 := ψ = alice, ψ′ ⊑ ψ,Ψ0

v ← aAccount← · = (v.high;
vψ:account← aAccount[γ3]@ψ

′ ← ·)@ψ′

where γ3 := {ψ 7→ ψ,ψ′ 7→ ψ′}. We repeat the definition of Alice’s verifier and her pin from the main part of the paper here
for convenience.

Ψ2; · ⊢ aVerifier@ψ′ :: x:ver[ψ] Ψ2 := ψ = alice, ψ′ ⊑ ψ,Ψ0

x← aVerifier← · = (zψ ← recv x // z:pin[ψ] ⊢ x:⊕ {succ : pin[ψ]⊗ ver, fail :pin[ψ]⊗ ver}[ψ]
case z (tok j ⇒ x.succ; send zψ x; (xψ:ver← aVerifier[γ2] @ψ ← ·)

| tok i ̸=j ⇒ x.fail ; send zψ x; (xψ:ver← aVerifier[γ2] @ψ ← ·)))@ψ′

Ψ2; · ⊢ apin@ψ′ :: u:pin[ψ] Ψ2 := ψ = alice, ψ′ ⊑ ψ,Ψ0

u← apin← · = (u.tokj ; (u
ψ:pin← apin[γ3] @ψ

′ ← ·)))@ψ′

We provide the security theory of each process variable consisting of its essential constraints next to its definition. We leave
it to the reader to check that in each spawn, the caller can assert the security theory of their callee.

In contrast to Alice’s verifier, her PIN, and her account, the customer and authorization processes do not have any specific
information about Alice, e.g., her correct PIN, hard-coded in their code. Thus, we can define them as generic processes that
can be spawned for any customer. Their caller only needs to instantiate their secrecy variables with the customer’s correct
secrecy level when spawned for a specific customer.
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Sort Abstract Form Remarks
Metavariable ≜ Ψ0 concrete security lattice ⟨L, E0,⊔,⊓⟩

ι, η ∈ L set of concrete security levels
ξ ∈ L concrete security level of observer
E0 ∈ E0 set of relations E0 of form ι ⊑ ι′
Ψ security theory ⟨V, E ,⊔,⊓⟩
ψ, ω ∈ V set of security variables
c, d, e, f ∈ S security terms of Ψ
p ∈ S × S pair of security terms of Ψ
E ∈ E set of relations E of form c ⊑ d
xα, xβ , xγ , xδ channel
x, y, z, u, v, w channel variable
j, k, ℓ ∈ I, L set of labels
∆,Λ linear typing contexts(channels)
Ω linear typing contexts (variables)
Γ linear security typing contexts (channels)
Ξ linear security typing contexts(variables)
K linear typing context singleton(channel)
Ks linear security typing context singleton(channel)
γsec, ˆγsec, δsec, ˆδsec order-preserving substitution of security elements
γ, γ̂, δ, δ̂ channel variable/ (order-preserving) security substitution
A,B, C,D, T process configuration in SESSION
A,B,C,D,T process configuration in CONSESSION

Type A,B,C, T ≜ ⊕{ℓ:Aℓ}ℓ∈L internal choice, at least one label
&{ℓ:Aℓ}ℓ∈L external choice, at least one label
A⊗B channel output
A⊸ B channel input
1 termination
Y type variable

Definition X,Y ≜ Ψ;∆ ⊢Σ X = P@ψ0 :: x:A[ψ] process definition
Y = A type definition

Process P,Q ≜ x.k;P label output
casex(ℓ⇒Pℓ)ℓ∈L label input
send y x;P channel output
y←recv x;Py channel input
close x terminate process
wait x;Q wait for process to terminate
x← X[γ]← ∆;Qx spawn
x← y forward x to y

Messages M,N ≜ x.k label output
send y x channel output
close x terminate process

Fig. 1: Abstract syntax of SESSION.

II. ABSTRACT SYNTAX

Fig. 1 defines the abstract syntax of SESSION. Lines without a left-hand side are separated by | from their preceding line.
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III. A TYPING SYSTEM FOR SESSION TYPES

a) External and Internal Choice:
Ω ⊢ P :: y:Ak k ∈ L

Ω ⊢ y.k;P :: y:⊕ {ℓ:Aℓ}ℓ∈L
⊕R

Ω, x:Ak ⊢ Qk :: y:C ∀k ∈ L
Ω, x:⊕ {ℓ : Aℓ}ℓ∈L ⊢ casex(ℓ⇒ Qℓ)ℓ∈L :: y:C

⊕L

Ω ⊢ Qk@c :: y:Ak ∀k ∈ L
Ω ⊢ case y(ℓ⇒ Qℓ)ℓ∈I :: y:&{ℓ : Aℓ}ℓ∈L

&R

Ω, x:Ak ⊢ P :: y:C k ∈ L
Ω, x:&{ℓ : Aℓ}ℓ∈I ⊢ (x.k;P ) :: y:C

&L

b) Channel input/output:
Ω ⊢ P :: y:B

Ω, z:A ⊢ send z y;P :: y:A⊗B ⊗R

Ω, z:A, x:B ⊢ P :: y:C

Ω, x:A⊗B ⊢ z ← recv x;P :: y:C
⊗L

Ω, z:A ⊢ P :: y:B

Ω ⊢ z ← recv y;P :: y:A⊸ B
⊸ R

Ω, x:B ⊢ P :: y:C

Ω, z:A, x:A⊸ B ⊢ send z x;P :: y:C
⊸ L

c) Spawn and process definition:

Ω′1 ⊢ X = P :: x′:A ∈ Σ Ω1, x:A ⊩ γ :: Ω′1, x
′:A Ω2, x:A ⊢Σ Q :: y:C

Ω1,Ω2 ⊢Σ (x← X[γ]← Ω1);Qx :: y:C
SPAWN

z′ : C ⊢ FY = FwdC,y′←z′ :: y
′:C ∈ Σ Y = A ∈ Σ z′:C, y′:C ⊩ γ :: z:C, y:C

z:Y ⊢Σ FY [γ] :: y:C
D-FWD

d) Termination::

· ⊢Σ (close y) :: y : 1
1R

Ω ⊢Σ Q :: y : C

Ω, x : 1 ⊢Σ waitx;Q :: y : C
1L

e) Silent unfolding::

Y = A ∈ Σ ∆ ⊢Σ P :: x:A

∆ ⊢Σ P :: x:Y
TVARR

Y = A ∈ Σ ∆, x:A ⊢Σ P :: z:C

∆, x:Y ⊢Σ P :: z:C
TVARL

f) Signature checking::

⊩Σ (·) sig Σ1

⊩Σ Awfmd ⊩Σ Σ′sig

⊩Σ Y = A,Σ′sig
Σ2

Ω ⊢Σ P :: x:A ⊩Σ Σ′sig

⊩Σ Ω ⊢ X = P :: x:A,Σ′sig
Σ3

g) Message Typing:

zβ :A, yα+1:B ⊢ send zβ yα :: yα:A⊗B
⊗R

zβ :A, xα:A⊸ B ⊢ send zβ xα :: xα+1:B
⊸ L

k ∈ L
yα+1:Ak ⊢ yα.k :: yα:⊕ {ℓ:Aℓ}ℓ∈L

⊕R
k ∈ L

xα:&{ℓ : Aℓ}ℓ∈I ⊢ (xα.k;P ) :: xα+1:Ak
&L · ⊢ close yα :: yα:1

1R
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h) Configuration Typing:

xα:A ⊩ · :: (xα:A)
emp1 · ⊩ · :: (·) emp2

∆0 ⊩ C :: ∆ ∆′0,∆, (xα:A) ⊢ δ :: Ω′0,Ω, (x:A) Ω′0,Ω ⊢ P :: (x:A)

∆0,∆
′
0 ⊩ C,proc(xα, δ̂(P )) :: (xα:A)

proc

∆0 ⊩ C :: ∆ ∆′0,∆ ⊢M :: (xα:A)

∆0,∆
′
0 ⊩ C,msg(M) :: (xα:A)

msg

∆0 ⊩ C :: ∆ ∆′0 ⊩ C1 :: xα:A

∆0,∆
′
0 ⊩ C, C1 :: ∆, xα:A

comp

Since Σ is fixed, we may drop it in a configuration typing judgment and a process typing judgment, respectively, for brevity.

Definition 1. For all Y = A ∈ Σ, we extend Σ by adding the following definition to the signature Σ:

x′ : A ⊢ FY = FwdA,y′←x′ :: y′ : A Y = A ∈ Σ

Here FY is a specific process variable assigned to the forwarder process for type variable Y , and FwdA,y←x is defined by
induction on the structure of A as a function from type A to process terms as follows:

Fwd⊕{ℓ:Aℓ}ℓ∈L,y←x := casex(ℓ⇒ y.ℓ; FwdAℓ,y←x)ℓ∈L

Fwd&{ℓ:Aℓ}ℓ∈L,y←x := case y(ℓ⇒ x.ℓ; FwdAℓ,y←x)ℓ∈L

FwdA⊗B,y←x := w ← recvx; sendw y; FwdB,y←x

FwdA⊸B,y←x := w ← recvy; sendw x; FwdB,y←x

Fwd1,y←x := waitx; close y

FwdY ;y←x := FY [x 7→ x′, y 7→ y′] Y = A ∈ Σ

Lemma 1. Given the extended signature Σ, for all type A, there is a derivation for x : A ⊢Σ FwdA,y←x :: y : A.

Proof. The proof is by induction on the structure of type A. In a base case, where A is a type variable Y , i.e., A = Y for
Y = C ∈ Σ, the proof is straightforward by the D-FWD rule since x : C ⊢ FY := FwdC,y←x :: y : A ∈ Σ. The proof of other
cases is straightforward.

Definition 2 (Well-typed configuration). Well-typed configuration(s) are defined in terms of the judgments (D1;D2) ∈ Tree(∆ ⊩
K) and D ∈ Tree(∆ ⊩ K), where K is either of the form x:A or :1 and stands for an arbitrary channel name along
which no observations are made.
• We define D ∈ Tree(∆ ⊩ K) as

∆ ⊩ D :: K

• We define (D1;D2) ∈ Tree(∆ ⊩ K) as D1 ∈ Tree(∆ ⊩ K) and D2 ∈ Tree(∆ ⊩ K)
• We define B ∈ Forest(∆ ⊩ ∆′) as

∆ ⊩ B :: ∆′

• We define the notation T ∈ B meaning T is a particular tree in a forest of trees B: For B ∈ Forest(∆ ⊩ ∆′), we write
T ∈ B iff B = B′T , and B′ ∈ Forest(∆1 ⊩ ∆′1) and T ′ ∈ Tree(∆2 ⊩ K) with ∆ = ∆1,∆2 and ∆′ = ∆′1,K.

⋄
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c ⊑ d ∈ E0
Ψ ⊩ c ⊑ d

c ⊑ d ∈ E(Ψ)

Ψ ⊩ c ⊑ d Ψ ⊩ c ⊑ c
Ψ ⊩ c1 ⊑ c2 Ψ ⊩ c2 ⊑ c3

Ψ ⊩ c1 ⊑ c3
Ψ ⊩ c ⊑ d′ Ψ ⊩ d ⊑ d′

Ψ ⊩ c ⊔ d ⊑ d′

Ψ ⊩ c ⊑ c ⊔ d Ψ ⊩ d ⊑ c ⊔ d

Fig. 2: Inductive definition of Ψ ⊩ E.

IV. CONCRETE SECURITY LATTICE AND SECURITY THEORIES

Process configurations and terms are typed relative to a concrete security lattice and a security theory. A concrete lattice Ψ0

is defined globally for an application and consists of concrete security levels ι. Our running example lattice

guest ⊑ alice ⊑ bank guest ⊑ bob ⊑ bank

is an example of a concrete security lattice. Polymorphic process definitions make use of a security theory Ψ, ranging over
security variables ψ and concrete security levels ι from the given concrete security lattice Ψ0. At run-time, all security variables
occurring in polymorphic processes will be replaced with concrete security levels.

Definition 3 (Concrete security lattice and security theory). Let Ψ0 ≜ ⟨L, E0,⊔⟩ be a concrete join semi-lattice with a partial
order E0 over concrete security levels ι, η ∈ L such that E0 ∈ E0 is of the form ι ⊑ ι′. We define a security theory Ψ ≜ ⟨V, E⟩
that augments Ψ0 with security variables ψ and relations E over them such that
• ψ ∈ V is a set of security variables
• c, d ∈ S is a set of security terms of the security theory Ψ, defined by the grammar

c, d := c ⊔ d | ι | ψ
• E ∈ E is a set of relations over the elements c, d of the security theory where E = c ⊑ d.
For convenience, we define the projection E(Ψ) to extract the relations E of Ψ. We write

Ψ ⊩ E

if E is consequence of the lattice theory based on the relations. The judgment is defined in Fig. 2.

Process definitions and process spawning rely on an order-preserving substitution, defined as follows:

Definition 4 (Order-preserving substitution). Let γ ∈ V → S be a total function that maps security variables to security terms.
Its lifting γ̂ to other syntactic objects, such as security terms c, process terms P , typing contexts ∆, and security lattices Ψ,
is defined by structural induction over the syntactic object, replacing simultaneously all variable occurrences ψi in the object
with γ(ψi). The function γ and its lifting γ̂ must be order-preserving, ensuring that if Ψ′ ⊩ E, then γ̂(Ψ′) ⊩ γ̂(E). To link a
spawner and a spawnee, we define an order-preserving substitution Ψ ⊩ γ : Ψ′

Ψ ⊩ γ : Ψ′ ≜ if Ψ′ ⊩ E, then Ψ ⊩ γ̂(E)

Composition γ ◦ γ′ of two substitutions γ and γ′ is defined as usual. We observe that if both γ and γ′ are order-preserving
so is their composition.

The type system requires every spawner to provide an order-preserving substitution Ψ ⊩ γ : Ψ′ for the security variables of
the spawnee (rule SPAWN). As a result, the security theory Ψ′ of the spawnee must be satisfied by the security theory Ψ of
the spawner, i.e., if Ψ′ ⊩ E, then Ψ ⊩ γ̂(E). Moreover, if the spawner provides a substitution δ for Ψ0, i.e., Ψ0 ⊩ δ : Ψ, so
does the spawnee, i.e., Ψ0 ⊩ γ ◦ δ : Ψ′.
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V. A SECURE TYPING SYSTEM

a) External and Internal Choice:

Ψ;Ξ ⊢ P@d1 :: y:Ak[c] k ∈ L
Ψ;Ξ ⊢ (yc.k;P )@d1 :: y:⊕ {ℓ:Aℓ}ℓ∈L[c]

⊕R

Ψ ⊩ d2 = c ⊔ d1 Ψ;Ξ, x:Ak[c] ⊢ Qk@d2 :: y:C[c′] ∀k ∈ L
Ψ;Ξ, x:⊕ {ℓ : Aℓ}ℓ∈L[c] ⊢ (casexc(ℓ⇒ Qℓ)ℓ∈L)@d1 :: y:C[c′]

⊕L

Ψ;Ξ ⊢ Qk@c :: y:Ak[c] ∀k ∈ L
Ψ;Ξ ⊢ (case yc(ℓ⇒ Qℓ)ℓ∈I)@d1 :: y:&{ℓ : Aℓ}ℓ∈L[c]

&R

Ψ ⊩ d1 ⊑ c Ψ;Ξ, x:Ak[c] ⊢ P@d1 :: y:C[c′] k ∈ L
Ψ;Ξ, x:&{ℓ : Aℓ}ℓ∈I [c] ⊢ (xc.k;P )@d1 :: y:C[c′]

&L

b) Channel input/output:
Ψ;Ξ ⊢ P@d1 :: y:B[c]

Ψ; Ξ, z:A[c] ⊢ (send z yc;P )@d1 :: y:A⊗B[c]
⊗R

Ψ ⊩ d2 = c ⊔ d1 Ψ;Ξ, z:A[c], x:B[c] ⊢ P@d2 :: y:C[c′]

Ψ; Ξ, x:A⊗B[c] ⊢ (z ← recv xc;P )@d1 :: y:C[c′]
⊗L

Ψ;Ξ, z:A[c] ⊢ P@c :: y:B[c]

Ψ; Ξ ⊢ (z ← recv yc;P )@d1 :: y:A⊸ B[c]
R ⊸

Ψ ⊩ d1 ⊑ c Ψ;Ξ, x:B[c] ⊢ P@d1 :: y:C[c′]

Ψ; Ξ, z:A[c], x:A⊸ B[c] ⊢ (send z xc;P )@d1 :: y:C[c′]
L⊸

c) Definition and spawn:

Ψ′; Ξ′1 ⊢Σ X = P@ψ0 :: x′:A[ψ] ∈ Σ Ψ ⊩ γsec : Ψ
′ Ψ ⊩ ˆγsec(ψ) ⊑ d

Ψ ⊩ d0 ⊑ ˆγsec(ψ0) Ξ1, x:A[ ˆγsec(ψ0)] ⊩ (γsec, γvar) :: Ξ
′
1, x
′:A[ψ] Ψ; Ξ2, x:A[ ˆγsec(ψ)] ⊢Σ Q@d0 :: z:C[d]

Ψ; Ξ1,Ξ2 ⊢Σ ((x[ ˆγsec(ψ)] ← X[(γsec, γvar)]← Ξ1)@ ˆγsec(ψ0);Qx)@d0 :: z:C[d]
SPAWN

Rule SPAWN relies on two substitutions, γvar that provides a substitution for channel variables to match them up with the
definitions in the signature, and γsec which is an order-preserving substitution Ψ ⊩ γsec : Ψ′, guaranteeing that the security
terms provided by the spawner comply with the order expected among those terms by the spawnee. Rule SPAWN moreover
establishes the above invariants for the newly spawned process, by the premise Ψ ⊩ γ̂(ψ) ⊑ d, and allows the newly spawned
process to start at least at the spawner’s running secrecy d0, by the premise d0 ⊑ Ψ ⊩ γ̂(ψ).

ψ = ψ; z1 : C[ψ] ⊢Σ FY = FwdC,xψ1←z
ψ
1
@ψ :: x1:C[ψ] ∈ Σ

Y = A ∈ Σ Ψ ⊩ γsec : ψ = ψ z:C[c], y:C[c] ⊩ (γsec, γvar) :: z1:C[ψ], x1:C[ψ]

Ψ; z:C[c] ⊢Σ FY [(γsec, γvar)]@c :: y:C[c]
D-FWD

Here is the forward rule we use in the implementation:

Ψ ⊩ c1 = c2

Ψ; y:A[c1] ⊢Σ (xc2 ← yc1)@c0 :: x:A[c2]
FWD

d) Termination Rules:

Ψ; · ⊢Σ (close yc)@d1 :: y : 1[c]
1R

Ψ;Ξ ⊢Σ Q@d1 :: y : T [d]

Ψ; Ξ, x : 1[c] ⊢Σ (waitxc;Q)@d1 :: y : T [d]
1L

e) Silent unfolding::

Y = A ∈ Σ Ψ;Ξ ⊢Σ P :: x:A[c]

Ψ; Ξ ⊢Σ P :: x:Y [c]
TVARR

Y = A ∈ Σ Ψ;Ξ, x:A[c] ⊢Σ P :: z:C[c′]

Ψ; Ξ, x:Y [c] ⊢Σ P :: z:C[c′]
TVARL
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f) Signature checking:

⊩Σ;Ψ0 (·) sig Σ1

⊩Σ;Ψ0
A wfmd ⊩Σ;Ψ0

Σ′ sig

⊩Σ;Ψ0 Y = A,Σ′ sig
Σ2

∀i ∈ {1 . . . n}.Ψ ⊩ ψi ⊑ ψ Ψ ⊩ ψ0 ⊑ ψ Ψ; y1:B1[ψ1], . . . , yn:Bn[ψn] ⊢Σ P@ψ0 :: x:A[ψ] ⊩Σ;Ψ0
Σ′ sig

⊩Σ;Ψ0 Ψ; y1:B1[ψ1], . . . , yn:Bn[ψn] ⊢ X = P@ψ0 :: x:A[ψ],Σ′ sig
Σ3

g) Message Typing:

Ψ0; zβ :A[c], yα+1:B[c] ⊢ send zβ yα :: yα:A⊗B[c]
⊗R

Ψ0; zβ :A[c], xα:A⊸ B[c] ⊢ send zβ xα :: xα+1:B[c]
⊸ L

k ∈ L
Ψ0; yα+1:Ak[c] ⊢ yα.k :: yα:⊕ {ℓ:Aℓ}ℓ∈L[c]

⊕R
k ∈ L

Ψ0;xα:&{ℓ : Aℓ}ℓ∈I [c] ⊢ (xα.k;P ) :: xα+1:Ak[c]
&L

Ψ0; · ⊢ close yα :: yα:1[c]
1R

h) Configuration Typing:

Ψ0;x:A[d] ⊩ · :: (x:A[d])
emp1

Ψ0; · ⊩ · :: (·)
emp2

Ψ0 ⊩ d1 ⊑ d ∀y:B[d′] ∈ Γ′0,Γ (Ψ0 ⊩ d′ ⊑ d)
Ψ0; Γ0 ⊩ C :: Γ Γ′0,Γ, xα:A[d] ⊢ δ :: Ξ′0,Ξ, x:A[d] Ψ0; Ξ

′
0,Ξ ⊢ P@d1 :: (x:A[d])

Ψ0; Γ0,Γ
′
0 ⊩ C,proc(x[d], P@d1) :: (x:A[d])

proc

∀y:B[d′] ∈ Γ′0,Γ (Ψ0 ⊩ d′ ⊑ d) Ψ0; Γ0 ⊩ C :: Γ Ψ0; Γ
′
0,Γ ⊢M :: (x:A[d])

Ψ0; Γ0,Γ
′
0 ⊩ C,msg(M) :: (x:A[d])

msg

Ψ0; Γ0 ⊩ C :: Γ Ψ0; Γ
′
0 ⊩ C1 :: x:A[d]

Ψ0; Γ0,Γ
′
0 ⊩ C, C1 :: Γ, x:A[d]

comp

Since Ψ0 and Σ are fixed, we may drop Ψ0 and Σ in a configuration typing judgment and a process typing judgment,
respectively, for brevity.

Definition 5. For all Y = A ∈ Σ, we extend Σ by adding the followingIFC-typed forwarder definition to the signature Σ:

ψ = ψ;x : A[ψ] ⊢ FA = FwdA,yψ←xψ@ψ :: y : A[ψ] Y = A ∈ Σ

Here FY is a specific process variable assigned to the forwarder process for type variable Y , and FwdA,y←x is defined similar
to Def. 1 as

Fwd⊕{ℓ:Aℓ}ℓ∈L,y←x := casex(ℓ⇒ y.ℓ; FwdAℓ,yc←xc)ℓ∈L

Fwd&{ℓ:Aℓ}ℓ∈L,yc←xc := case y(ℓ⇒ x.ℓ; FwdAℓ,yc←xc)ℓ∈L

FwdA⊗B,yc←xc := w ← recvx; sendw y; FwdB,yc←xc

FwdA⊸B,yc←xc := w ← recvy; sendw x; FwdB,yc←xc

Fwd1,yc←xc := waitx; close y

FwdY ;yc←xc := FY [(x
′ 7→ x, y′ 7→ y), (ψ 7→ c)] Y = A ∈ Σ

Lemma 2. Given the extended signature Σ, for all type A, there are derivations for
(i) Ψ;x : A[ψ] ⊢Σ FwdA,yψ←xψ@ψ :: y : A[ψ], and

(ii) Ψ;x : A[ψ] ⊢Σ FwdA,yψ←xψ@ψ
′ :: y : A[ψ], when Ψ ⊩ ψ′ ⊑ ψ and A ̸= Y for a type variable Y .

Proof.(i) The proof is by induction on the structure of type A. In a base case, where A is a type variable Y , i.e., A = Y for
Y = C ∈ Σ, the proof is straightforward by the D-FWD rule since ψ = ψ;x : C[ψ] ⊢ FY := FwdC,yψ←xψ@ψ :: y : A[ψ] ∈ Σ,
and the substitutions γsec and γvar enforce the premises of the rule. The proof of other cases is straightforward.

(ii) The proof is by case analysis on the structure of type A. In all cases, by the way we defined the process terms, after the
very first applicationof a rule (the first communication which is always a receive), the running secrecy increses to ψ and we
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can apply the previous item. Note that by the tree invariant every judgment in our typing derivation satisfies the condition
Ψ ⊩ ψ′ ⊑ ψ.

Definition 6. Define security-erasure |Σ| of the signature Σ as

|·| = ·
|Y = A,Σ′| = Y = A, |Σ′|
|Ψ;Ξ ⊢ X = P@ψ0 :: x:A[ψ], Σ′| = |Ξ| ⊢ X = P :: x:A , |Σ′|

Definition 7. Define security-erasures |Ξ|, |x:A[c]|, |Γ|, and |Ks| of the security linear variable context Ξ, security channel
variable, security linear channel context Γ, and security channel singleton Ks, respectively, as

|Ξ, x:A[c]| def
= |Ξ|, x:A

|x:A[c]| def
= x:A

|Γ, xα:A[c]| def
= |Γ|, xα:A

|·| def
= ·

|xα:A[c]| def
= xα:A

| :1[⊤]| def
= :1

Definition 8. Define a security-erasure |C| of the configuration C as

|·| = ·
|C,proc(x[d], P@d1)| = |C|,proc(x, P )
|C,msg(M)| = |C|,msg(M)

Theorem 1. Every IFC well-typed configuration Ψ0; Γ ⊩ C :: Ks is session-typed |C| ∈ Tree(|Γ| ⊩ |Ks|).
Proof. By induction on the derivation of Ψ0; Γ ⊩ C :: Ks.
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SPAWN proc(yα, (x← X[γ]← ∆1);Q) 7→ (∆′1 ⊢ X = P :: x′ : B ∈ Σ)
proc(x0, γ̂(P )) proc(yα, [x0/x]Q) (∆′1, x

′ ⊩ γ : ∆1, x0, x0 fresh)
D-FWD proc(yα, FY [γ]) 7→ (x′ : C ⊢ Fy = FwdC,y′←x′ :: y

′ : C ∈ Σ)
proc(yα, FwdC,yα←xβ ) (x′, y′ ⊩ γ : xβ , yα)

1snd proc(yα, (close yα)) 7→ msg(close yα)
1rcv msg(close yα) proc(xβ , (wait yα;Q)) 7→ proc(xβ , Q)
⊕snd proc(yα, yα.k;P ) 7→ proc(yα+1, ([yα+1/yα]P )) msg(yα.k)
⊕rcv msg(yα.k)) proc(uγ , case yα((ℓ⇒ Pℓ)ℓ∈L)) 7→ proc(uγ , ([yα+1/yα]Pk))
&snd proc(yα, (xβ .k;P )) 7→ msg(xβ .k) proc(yα, ([xβ+1/xβ ]P ))
&rcv proc(yα, (case yα(ℓ⇒ Pℓ)ℓ∈L)) msg(yα.k) 7→ proc(yα+1, ([yα+1/yα]Pk))
⊗snd proc(yα, (sendxβ yα;P )) 7→ proc(yα+1, ([yα+1/yα]P )) msg(sendxβ yα)
⊗rcv msg(sendxβ yα) proc(uγ , (w ← recv yα;P )) 7→ proc(uγ , ([xβ/w][yα+1/yα]P ))
⊸snd proc(yα, (sendxβ uγ ;P )) 7→ msg(sendxβ uγ) proc(yα, ([uγ+1/uγ ]P ))
⊸rcv proc(yα, (w ← recv yα;P )) msg(sendxβ yα) 7→ proc(yα+1, ([xβ/w][yα+1/yα]P ))

Fig. 3: Asynchronous dynamics of SESSION

VI. PROGRESS AND PRESERVATION

A. Session-typed processes

This section proves type safety of session-typed processes in SESSION. We first start with defining the notion of a poised
configuration and proofs of necessary lemmas.

1) Poised configuration and configuration permutation: Progress relies on the notion of a poised configuration. A config-
uration is poised if it is empty or cannot take any internal steps but wants to engage in a message exchange along any of its
free channels.

Definition 9 (Poised Configuration). A configuration ∆1,∆2 ⊩ C1, C2 :: Λ, w:A′ is poised iff either C1, C2 is empty or
∆1 ⊩ C1 :: Λ is poised and ∆2 ⊩ C2 :: w:A′ is poised. The configuration ∆2 ⊩ C2 :: w:A′ is poised iff it cannot take any
steps and at least one of the following conditions hold:
1) C2 is an empty configuration.
2) C2 = C′2 msg(M) C′′2 such that msg(M) is a negative message along yα ∈ ∆2, i.e. yα:&{ℓ:Aℓ}ℓ∈L ⊩ msg(M) :: yα+1:Ak

or yα:A⊸ B, zβ :A ⊩ msg(M) :: yα+1:B, and both subconfigurations C′2 and C′′2 are poised.
3) C2 = C′2 proc(x, P ) C′′2 such that proc(x, P ) attempts to receive along a channel yα∈∆2, and both subconfigurations C′2

and C′′2 are poised.
4) C2 = C′2 msg(P ) such that msg(M) is a positive message sent along wβ :A′, i.e. wβ+1:Ak ⊩ msg(M) :: wβ :⊕{ℓ:Aℓ}ℓ∈L

or wβ+1:B, zγ :A ⊩ msg(M) :: wβ :A⊗B,or · ⊩ msg(M) :: w:1, and subconfiguration C′2 is poised.
5) C2 = C′2 proc(w,P ) such that proc(w,P ) attempts to receive along w:A′, and subconfiguration C′2 is poised.

⋄
The dynamics is expressed in terms of multiset rewriting rules, which update a configuration locally, without regard for the

remaining configuration. As a result, the updated configuration may not necessarily be well-typed, according to the rules in
the configuration typing. For example, stepping the configuration

C1T proc(yα, (sendxβ yα;P )) C2 7→
using rule ⊗snd (see Fig. 3), yields the configuration

C1T proc(yα+1, ([yα+1/yα]P )) msg(sendxβ yα) C2
For well-typedness, the subtree T rooted at the message msg(sendxβ yα) would have to be moved left to the message. Our
proofs account for this possibility and only require that the dynamics yield a valid permutation of a well-typed configuration,
assuming that the pre-state is a valid permutation of well-typed configuration as well. We define the notion of a valid permutation
next. A valid permutation may rearrange the order of processes and messages in a configuration as long as parent-child
relationships are preserved.

Definition 10 (Valid configuration permutation). For a well-typed configuration Ψ0; ∆ ⊩ C :: ∆′, a valid permutation P(C) can
be derived by simultaneously changing the position of a process or message in C, yielding the permutation C′, i.e., P(C) = C′,
as long as the following conditions are met:
1) For a process proc(zα, P ) in C′ such that C′ = C1proc(zα, P )C2 and for all yβ /∈ dom(∆) that P is using, there must

exist either a process proc(yβ , ) or a message msg( ⟨yβ⟩) in C1.
2) For a positive message msg(M⟨zα⟩) in C′ such that C′ = C1msg(M⟨zα⟩)C2, if zα /∈ dom(∆), there must exist either

a process proc(zα, ) or a message msg( ⟨zα⟩) in C1. Moreover, for all y /∈ dom(∆) that P is using, there must exist
either a process proc(y, ) or a message msg(y. ) in C1.
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3) For a negative message msg(P ⟨vβ⟩) in C′ such that C′ = C1msg(P ⟨vβ⟩)C2, if vβ /∈ dom(∆), there must exist either a
process proc(vβ , ) or a message msg( ⟨w⟩) in C1. Moreover, for all yα /∈ dom(∆) that P is using, there must exist
either a process proc(yα, ) or a message msg(yα. ) in C1.

⋄
2) Lemmas:

Lemma 3 (Term variable substitution). The following substitutions are type-preserving and thus admissible:
1) If ∆ ⊢Σ P :: x : A then, for any fresh y : A, we have ∆ ⊢Σ [y/x]P :: y : A.
2) If ∆, y : B ⊢Σ P :: x : A then, for any fresh z : B, we have ∆, z : B ⊢Σ [z/y]P :: x : A.

Proof. The proof is by induction on the process term typing rules.

The next lemma allows us to break up an open forest into two sub-forests, as illustrated in Fig. 4.

Lemma 4 (Making two forests out of one). If ∆ ⊩ C C′ :: ∆′, then for some ∆1 we have Λ1 ⊩ C :: Λ′1,∆1 and Λ2,∆1 ⊩
C′ :: Λ′2, where ∆ = Λ1,Λ2 and ∆′ = Λ′1,Λ

′
2.

Proof. The proof is by a straightforward induction on the configuration typing rules.

3) Progress:

Theorem 2 (Progress). For any configuration C, if C is a valid permutation of a configuration C′′ such that ∆ ⊩ C′′ :: ∆′,
then either C 7→ C′ or C is poised.

Proof. The proof is standard and can be find in the literature of intuitionistic linear session types.

4) Preservation:

Theorem 3 (Preservation). For any configuration C that is a valid permutation of a configuration C′′ such that ∆ ⊩ C′′ :: ∆′,
if C 7→ C′, then C′ is a valid permutation of a configuration C′′′ such that ∆ ⊩ C′′′ :: ∆′.
Proof. The proof is standard and can be find in the literature for intuitionistic linear session types.

B. IFC-typed processes

This section proves type safety of CONSESSION.

Lemma 5 (Term variable substitution). The following substitutions are type-preserving and thus admissible:
1) If Ψ;Ξ ⊢Σ P@c :: x : A[c′] with the tree invariant satisfied, then, for any fresh y : A, we have Ψ;Ξ ⊢Σ [y/x]P@c :: y : A[c′]

with the tree invariant still satisfied.
2) If Ψ;Ξ, y : B[c′′] ⊢Σ P@c :: x : A[c′] with the tree invariant satisfied, then, for any fresh z : B, we have Ψ;Ξ, z : B[c′′] ⊢Σ

[z/y]P@c :: x : A[c′] with the tree invariant still satisfied.

Lemma 6 (Making two forests out of one). If Ψ0; Γ ⊩ CC′ :: Γ′, then for some Γ1 we have Ψ0; Γ
′′
1 ⊩ C :: Γ′′′1 ,Γ1 and

Ψ0; Γ
′′
2 ,Γ1 ⊩ C′ :: Γ′′′2 , where Γ = Γ′′1 ,Γ

′′
2 and Γ′ = Γ′′′1 ,Γ

′′′
2 .

Proof. The proof is a straightforward induction on the configuration typing rules.

Lemma 7 (Security variable substitution). If Ψ;Ξ ⊢Σ P@c :: x : B[d] with the tree invariant satisfied, then for every
substitution Ψ′ ⊩ γ : Ψ, we have

γ̂(Ψ); γ̂(Ξ) ⊢Σ γ̂(P )@γ̂(c) :: x:B[γ̂(d)],

with the tree invariant satisfied as well.

Proof. The proof is by induction on process term typing derivations Ψ;Ξ ⊢Σ P@c :: x : B[d]. We consider cases for the last
step in the derivation.
Case 1.

Ψ;Ξ ⊢Σ Qk@c :: y : Ak[c] ∀k ∈ L
Ψ;Ξ ⊢Σ (case yc(ℓ⇒ Qℓ)ℓ∈L)@d1 :: y : &{ℓ : Aℓ}ℓ∈L[c] &R

By the induction hypothesis, for all k ∈ L, we have

γ̂(Ψ); γ̂(Ξ) ⊢Σ γ̂(Qk)@γ̂(c) :: y:Ak[γ̂(c)],
which preserves the invariant.
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By the &R rule, we get

γ̂(Ψ); γ̂(Ξ) ⊢Σ case yγ̂(c)(ℓ⇒ γ̂(Qℓ))ℓ∈L)@γ̂(d1) :: y : &{ℓ : Aℓ}ℓ∈L[γ̂(c)].
By the first part of the tree invariant for the original sequent, we get Ψ ⊩ d1 ⊑ c, and thus γ̂(Ψ) ⊩ γ̂(d1) ⊑ γ̂(c). The
second part of the tree invariant is guaranteed by the induction hypothesis on the premise.
By a simple rewrite according to how the lifting of γ is defined we get

γ̂(Ψ); γ̂(Ξ) ⊢Σ γ̂(case yc(ℓ⇒ Qℓ)ℓ∈L)@γ̂(d1) :: y:&{ℓ : Aℓ}ℓ∈L[γ̂(c)].
Case 2.

Ψ ⊩ d1 ⊑ c
Ψ;Ξ, x : Ak[c] ⊢Σ P@d1 :: y : T [d] k ∈ L

Ψ;Ξ, x : &{ℓ : Aℓ}ℓ∈L[c] ⊢Σ (xc.k;P )@d1 :: y : T [d]
&L

By the induction hypothesis on the first premise and definition of the lifting of γ we have

γ̂(Ψ); γ̂(Ξ), x:Ak[γ̂(c)] ⊢Σ γ̂(P )@γ̂(d1) :: y:T [γ̂(d)],
which preserves the tree invariant. By applying substitution on the second premise (Ψ ⊩ d1 ⊑ c) we get γ̂(Ψ) ⊩ γ̂(d1) ⊑ γ̂(c).
By the &L rule, we get

γ̂(Ψ); γ̂(Ξ), x:&{Aℓ}ℓ∈L[γ̂(c)] ⊢Σ xγ̂(c).k; γ̂(P )@γ̂(d1) :: y : T [γ̂(d)],

which satisfies the tree invariant since the premise satisfies it. Again by a simple rewrite according to how the lifting of γ
is defined we get

γ̂(Ψ); γ̂(Ξ, x:&{Aℓ}ℓ∈L[c]) ⊢Σ γ̂(xc.k;P )@γ̂(d1) :: y : T [γ̂(d)].

Case 3.
Ψ;Ξ ⊢Σ P@c :: y : B[d]

Ψ; Ξ, z : A[d] ⊢Σ (send zd y;P )@c :: y : (A[d]⊗B) [d]
⊗R

By the induction hypothesis on the premise we have

γ̂(Ψ); γ̂(Ξ) ⊢Σ γ̂(P )@γ̂(c) :: y:B[γ̂(d)],

which preserves the tree invariant and thus γ̂(Ψ) ⊩ γ̂(d) ⊑ γ̂(d).
By the ⊗R rule, we get

γ̂(Ψ); γ̂(Ξ), z:A[γ̂(d)] ⊢Σ send zγ̂(d) y; γ̂(P )@γ̂(c) :: y : (A⊗B)[γ̂(d)],

the resulting sequent satisfies the tree invariant. Again by a simple rewrite according to how the lifting of γ is defined we
get

γ̂(Ψ); γ̂(Ξ, z:A[d]) ⊢Σ γ̂(send zd y;P )@γ̂(c) :: y : (A⊗B)[γ̂(d)].

Case 4.
Ψ ⊩ c′ = c ⊔ d

Ψ;Ξ, z : A[d], x : B[d] ⊢Σ P@c′ :: y : T [d1]

Ψ; Ξ, x : (A⊗B) [d] ⊢Σ (zd ← recv x;P )@c :: y : T [d1]
⊗L

By the induction hypothesis on the second premise and definition of the lifting of γ we have

γ̂(Ψ); γ̂(Ξ), z:A[γ̂(d)], x:B[γ̂(d)] ⊢Σ γ̂(P )@γ̂(c′) :: y:T [γ̂(d1)],
which preserves the tree invariant. Moreover, by applying the substitution on the first premise, we get γ̂(Ψ) ⊩ γ̂(c′) =
γ̂(c) ⊔ γ̂(d).
By the ⊗L rule, we get

γ̂(Ψ); γ̂(Ξ), x:(A⊗B)[γ̂(d)] ⊢Σ zγ̂(d) ← recv x; γ̂(P )@γ̂(c) :: y:T [γ̂(d1)],

It is straightforward to observe that the resulting sequent satisfies the tree invariant and can be rewritten as before according
to the definition of the lifting of γ.
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<latexit sha1_base64="dI9E2oexXVBwhm5r9QEVj+eX2f0=">AAAb0XicrVnrbxu5EdddX1f3lbt+q78sqgR1UMW17Lwu6QFO4jQ51Ie4sfMAtI6Ou0tJPHMfIbmyhO0WRb/2f+lf0y/90P4tnSF3JS2XmxhFDUSiOL+ZIWeGwxkmyDiTam/vX598+r3v/+CHP/rsx1s/+enPfv6La59/8VqmuQjpqzDlqXgbEEk5S+grxRSnbzNBSRxw+ia4eIL0N3MqJEuTM7XM6HlMpgmbsJAomBpfe+5HdAK8WlIRL1NBkikti5fPHpfF/u29wfD+/cFweKfcul74FsiPiZqFhBdPyvL6+Fp/b3dP/3ntwbAa9HvV38n481+996M0zGOaqJATKUfDvUydF0QoFnJabvm5pBkJL8iUjmCYkJjK80KvofRuwEzkTVIB/xLl6dlNjoLEUi7jAJC4SmnTcNJFG+Vqcv+8YEmWK5qERtEk555KPbSfFzFBQ8WXMCChYLBWL5wRQUIFVt7auuGdPHryx0fPnp7i2Czrhmsng2jOMmmGXiYAOM3pebEw+9uy3DIVlCa1Vw4Gw70vB/v7JWiIc67YLYDlcSIbmgpNAkrDkgVPk6kiARoY2EELbD+hl2EaxySJCp+Da8vCj4vTr4+PyzGOJA3Ld78tyyYw5VEH1kZKxvkaZhFxgBFQjobnha/oQpk9PyERVY95DrHYH9pMMVmgIovlsWDhxUsauThEnjg4XnA2p8+MbTUPmGTCprmgzYCZCpLNWLhompJmEsDNOZkHRgA65xLYzK8GppoGbehAiMCm3yA61SxuikWUSlMuS2cgb/mcKv9xEFz4gnKycJ6ExiREXDppToHSW7BxRRRtK8/wWAo0kC8zMKya0VTQGA7KvCy+TuZEMJIo8HIwkVQwKmHIlJyRDANtU1pIMkw9TRUzOFpC0In2QDUp9fFGyWkuPdwC7L9pbBUTsRSR5jp7+vbM++bF0VP8MaUJFYR7cpYKFebKCnIKYUt3p7uDv1hhwiDc2C5tE8gFKQuye7FL2jQwWlYW+KlpoJ6TgHJLp4qIDr8dHX8mCmVYnN3CwLtZ2uCgHO07wdfxnIFHRFz09yHxupgh0A8+zjwu+gdlhwTeudgNEcddzFdZPCaMzg2Iq6h/2cV8FfUvu9VLmcp1plgJONKewlMLHv7m0dnzVbRVnJbD4yrd1LekI42xNYIpF2BNlxMXXa0ByikgWAMClwRJYRGVUSgvHtp0wvFQD2CpkT+weWeRnVAFZl/QqjXB5QkHkMCcPsV46UiPJWCuiFrLjGFKy6rMNUtZSPHKQDnrbwk3bqaqT7Xk9KOUlkGOy0pd0bqK4tMV7bRlh/B9pKOqP/R+P65hK98+wt1CODWZkk0uP4Hty6uyymUSfkjhqZPrkjD1Ia43Di6sNOj7dQj4KdaLVOHMBQ3SxUiXZeDUdAFbSkVMONZcvmLJ0peTCYkZlkOQvMERX6HFb2yKj/8PwmM5XQlvuoy+h+mxv2B4336XR1MsJqAQ8o4oV8T78y3v5DDyHjzwdhbvQu+B9+gm0PwMSrnCPyqLk7KAgF2URViCI5qyEVSO7hrnQdWmCOMSrOcdev0DLbJ/+13/Dgjt37VTyDO4LeADflkE0OnrpVnzpwwrKfhscbyIkfIiplObUi1Jn895ROQMTyjsrnm+VyANGRtVbVy4ATzaBH5QnE22pVh0U9RGesUKK4Ypp+9beSVMk1BoDJ85sg7Fs6GDfO2Vnf5wAK656fkPPV2FakxLu6wuxv4QkAPPh7RUL0Ow6UzhJDgYhHyFHzv9A9uxYmpSnkl37XzKhdZQA0RdjQ7qmUCkl1ht7m/OmTL3oBXeHOpIpziHtI8Kg9JUQp3dkLXZwrngE0vsCv+H9lFMMIdbC1vhj9p4BXV3J/6sNNU4tgwd9ysk11Vu5XSiiAAZ6H0g5NClleDBVoYkYdjFFNJMOXkgcUk3E1AoNN9OLmhfOlQBhYQzJ1MI0qAu18EdF/irxEBEEXEBBB3fmEOx3y+457/EsDWSMQhapzWqZemxFuXeYjjv2iJQnEvlVZEE6+RpZYSh40KqUXrsAk0uV6vEYbVfh8pLwU3F0VoloPzxZYp000KINITb1oOmPLbCJpN0HTcDz6ixsmGmC/gateuEaOeYrQW1pwZ6cy5kUO2wAfW8HZ9y24uQeWGyvGm+PR8qpuN2ws42nBtU3kWZOoO10Z0ODioPu9nWTg5qL7v3uOHooPL0oO3prHZ1cxUtR2fQsl0JJzMCaQNTpI1s/Dpw8gUdKuy9dSWaYJ1p3NbrSjbBKtt0OYuvbLlKMW67Qy7pUFFnGbeKKDV1OnxjLO44PDpj3AS4uSvRr3oK6x9XBNBFJuq1HGqlgIGbGN8e9duZ3YRD06DrfHw1YAmJMygNgWK35MkalmY8lxZ9TniaY5PC27xAY3iryByOi7IT2IwkhjNVLKa2XCRrZv2OFpPMoufQ8+Ontnir1NC3mfl2Ai7ZXIftCK9zfwbxCP3OrX2MiTxbcb3De1z3qee2glrAFfnta1DV/If/m4BoLQEwuvga4Dkzr4pL8CYLLX+nUlGwWcfzm/9Ql24kkyodVzWy57/GItMzv36Dt5//ULeVaUYTD+U5VGS6jPiQHJQAKR4S61qOlSDg/sCOprq6cLgDPTDa6mazvzFYbQgA6nGNHJhzg9arhgzNaZeUqRGw3ymAoQSbK0/mNU+ekDlUwS69LV2abehkaz2DpPo0FiiuTVKCJNXdgE/KYn2Dea7Mr6tJE/GQHn4H4XLu64CpbuvUfocOqteTb7G2b73xsPXDQ/1wAnKqR0lpHFQ/UVbfZXFWDZrkMBUp50Qsy+LJatiEcIqNXHGsv5ok3dEw/aBZHK3HLv6R5j/fKE/sjBhilixHtzGFPtR3mIlb0272bzsaVIDfW8PnDTic27tl8aDs3xv179gJJIQ1fFelazgmqzzVvmPX4W0ekUyImjMPPsRu2PYP9uub707427hx6wZN5kykienTLa76xUy/BsjQqx3L0ymDrsDDx220rxVbXLDJpDuzxAWSUdL4Wn9o/5dUe/B6f3d4d/f2n/b7h19W/131WW+79+veTm/Yu9c77D3vnfRe9cLeP3r/7P2795/t0+3l9l+3/2agn35S8fyy1/jb/vt/AYopSDY=</latexit>C <latexit sha1_base64="O+KVwnBTFypbpa456nh03r2glxQ="></latexit>

C0

<latexit sha1_base64="C/9MEkUcJaK271HG2suRCjFoDXk="></latexit>

⇤1

<latexit sha1_base64="MfG0dBXy/Ku84cy3H3/h5k/HLYE="></latexit>

⇤2

<latexit sha1_base64="v2vqQDQRtJuVxnKpdbFX57pkLsY="></latexit>

⇤01
<latexit sha1_base64="6knGVc7QVNm84TTovz5b+1m9HBk="></latexit>

⇤02

<latexit sha1_base64="yW7EAbVKZzEVrrd0YvWyPPZdrD0=">AAAbzXicrVnrcxu3EWfSV6q+nPRb9eWmtKbylFJFyo/EbmZkW66TqTJ2Lfkxw5MZ3B1IIsI9DOAoai6Xr/1f+tf0a/rXdBe4I3k4nK3pVDMmQexvd4HdxWIXDjLOpDo4+PGjj3/y05/9/Bef/HLrV7/+zW9/d+PTz17JNBchfRmmPBVvAiIpZwl9qZji9E0mKIkDTl8HF4+R/npBhWRpcqauMnoek1nCpiwkCqYmN453vNGdTG35EZ2CCC2wiK8EjcrixdNHZTG6c2dw+PngoNy6WfibZP+YckUmw/Lm1uRG/2D/QP957cGwGvR71d/zyad/eOdHaZjHNFEhJ1KOhweZOi+IUCzktNzyc0kzEl6QGR3DMCExleeFVl96OzATedNUwL9EeXp2k6MgsZRXcQDImKi5tGk46aKNczX9/LxgSZYrmoRG0TTnnko9tJ0XMUFDxa9gQELBYK1eOCeChAosvLW14z1/+PjvD58+OcWxWdaOayeDaMEyaYZeJgA4y+l5sTT7s30xE5QmtTcOB8ODLwajUQka4pwrtgewPE5kQ1OhSUBpWLLgaTJTJEADAztoge0n9DJM45gkUeFzkszKwo+L069PTsoJjiQNy7d/LssmMOVRB9ZGSsb5GmYRcYARUI6H54Wv6FKZPT8mEVWPeE7Loj+0mWKyREUWyyPBwosXGLVtDpEnDo5nnC3oU2NbzQMmmbJZLmgzYGaCZHMWLpumpJkEcHNO5oERgM65BDbzq4GppkEbOhAisOk3iE41j5tiEaXSlMvSGchbPqfKfxQEF76gnCydJ6ExCRGXTptToHQPNq6Iom3lGR5LgQbyZQaGVXOaChrDQVmUxdfJgghGEgVeDqaSCkYlDJmSc5JhoG1KC0mGaaepYg5HSwg61R6oJqU+3ig5zaWHW4D9N42tYiKuRKS5zp68OfO+eXb8BH/MaEIF4Z6cp0KFubKCnELY0v3Z/uAHK0wYhBvbp20CuSBlQfYv9kmbBkbLygI/NQ3UcxJQbulUEdHht6vjz0ShDIuzPQy8W6UNDsrxyAm+iecMPCLioj8qy5suZgj0ww8zT4r+YdkhgXcudkPESRfzdRaPCaNzA+I66l90MV9H/Ytu9VKmcp0pVgKOtafw1IKHv3l49tUq2ipOy+FxlW5QYUi4K42xNYIpF2BNl1MXXa0ByikgWAMClwRJYRGVUSgvHth0wvFQD2CpkT+weeeRnVB1zQBatSa4POEAEpjTpxgvHemxBMwVUWuZMUxpWZW55ikLKV4ZKGf9LeHGzVT1qa44/SClZZCTslJXtK6i+HRFO23ZIXwX6ajqD72/TmrYyrcPcbcQTk2mZJPLT2D78rqs8ioJ36fw1Ml1SZh6H9drBxdWGvTdOgT8FGtFqnDmggbpcqzLMnBquoQtpSImHGsuX7HkypfTKYkZlkOQvMERX6LFdzbFx/8H4bGcrYQ3XUbfwfTEXzK8b7/LoxkWE1AIeboy9b7f854fRd79+97u8m3o3fce3gKan0EpV/jHZfG8LCBgl2URluCIpmwEleO7xnlQtSnCuATreUde/1CL7N9+278DQvt37RTyFG4L+IBfFgF0mqLZmj9lWEnBZ4vjWYyUZzGd2ZRqSfp8LiIi53hCYXfN870CacjEqGrjwg3g8SbwveJssi3FopuiNtIrVlgxzDh918orYZqEQmP43JF1KJ4NHeRrr+z2hwNwzS3Pf+DpKlRjWtpldTH2h4AceD6kpXoZgs3mCifBwSDkS/zY7R/ajhUzk/JMumvnUy60hhog6mp0UM8EIr3EanO0OWfK3MNWeHOoI53iHNI+KAxKUwl1dkPWKjM8dsOnltgV/m/to5hgDrcWtsIft/EK6u5O/FlpqnFsGTruV0iuq9zK6VQRATLQ+0DIoUsrwYOtDEnCsIsppJly8kDikm4moFBovJ1c0L50qAIKCedOphCkQV2ugzsu8FeJgYgi4gIIOr4xh2KvX3DPf4FhayRjELROa1TL0mMtyr3FcNG1RaA4l8qrIgnWydPKCEPHhVSj9NgFml6uVonDar8OlZeCm4qjtUpA+ZPLFOmmhRBpCLetB015bIVNJuk6bgaeUWNlw0wX8DVq3wnRzjFbC2pPDfTmXMig2mED6nm7PuW2FyHzwmR5y3x7PlRMJ+2EnW04N6i8izJ1BmujOx0cVB52s62dHNRedu9xw9FB5elB29NZ7ermKlqOzqBluxZOZgTSBqZIG9n4dejkCzpU2HvrSjTBOtO4rdeVbIJVtulyFl/ZcpVi3HaHXNKhos4ybhVRaup0+MZY3HV4dM64CXBzV6Jf9RTWP64IoMtM1Gs50koBAzcxvjvqtzO7CYemQdf5+GrAEhJnUBoCxW7JkzUszXguLfqC8DTHJoW3eYHG8FaRORwXZSewOUkMZ6pYTG25SNbM+h0tJplFz6Hnx09t8VapoW8z8+0EXLKFDtsxXuf+HOIR+p29EcZEnq243uI9rvvUc1tBLeCa/PY1qGr+o/9NQLSWABhdfA3wnJlXxSvwJgstf6dSUbBZx/Ob/0CXbiSTKp1UNbLnv8Ii0zO//oS3n/9At5VpRhMP5TlUZLqMeJ8clAApHhLrWo6VIOD+wI6murpwuAs9MNrqVrO/MVhtCADqcY0cmHOD1quGDM1pl5SpETDqFMBQgs2VJ4uaJ0/IAqpgl96WLs02dLK1nkFSfRoLFNcmKUGS6m7AJ2WxvsE8V+bX1aSJeEgPf4FwOfd1wFS3dWq/QwfV68m3WNu33njY+uGhfjgBOdWjpDQOqp8oq++yOKsGTXKYipRzIq7K4vFq2IRwio1ccaK/miTd0TD9oFkcr8cu/rHmP98oT+yMGGKWLMe3MYU+0HeYiVvTbvZvOxpUgN9bwxcNOJzbu2Vxv+zfG/fv2AkkhDV8V6VrOCarPNW+Y9fhbR6RTIiaMw8+xG7Y9g/265vvTvjbuHFrhyYLJtLE9OkWV/1ipl8DZOjVjuXpjEFX4OHjNtrXii0u2HTanVniAskoaXKjP7T/S6o9eDXaH97dv/2PUf/oi+q/qz7pbff+2NvtDXv3eke9r3rPey97Ye9fvX/3fuz9Z/vZdr79/fYPBvrxRxXP73uNv+1//hfG6kT+</latexit>

�1

Fig. 4: Schematic illustration of Lem. 4, allowing us to break up an open forest into two open sub-forests.

Case 5. Here is the interesting case!

Ψ′; Ξ′1 ⊢Σ X = P@ψ0 :: x′:A[ψ] ∈ Σ Ψ ⊩ δsec : Ψ
′ Ψ ⊩ ˆδsec(ψ) ⊑ d

Ψ ⊩ d0 ⊑ ˆδsec(ψ0) Ξ1, x:A[ ˆδsec(ψ0)] ⊩ (δsec, δvar) :: Ξ
′
1, x
′:A[ψ] Ψ; Ξ2, x:A[ ˆδsec(ψ)] ⊢Σ Q@d0 :: z:C[d]

Ψ; Ξ1,Ξ2 ⊢Σ ((x[
ˆδsec(ψ)] ← X[(γsec, γvar)]← Ξ1)@ ˆδsec(ψ0);Qx)@d0 :: z:C[d]

SPAWN

By the induction hypothesis we have

⋆ γ̂(Ψ); γ̂(Ξ2), x:A[γ̂( ˆδsec(ψ))] ⊢Σ γ̂(Q)@γ̂(d0) :: y:γ̂(T )[γ̂(d)],

which preserves the tree invariants. By applying γ on the 3rd and 4th premises, we get

γ̂(Ψ) ⊩ γ̂( ˆδsec(ψ)) ⊑ γ̂(d), γ̂(d0) ⊑ γ̂( ˆδsec(ψ0)).

By applying the substitution γ on the 2nd premise, we get γ̂(Ψ) ⊩ γ̂( ˆδsec) :: Ψ
′. And from the 5th premise, we get

γ̂(Xi1), x:A[γ̂( ˆδsec(ψ0))] ⊩ (γ̂(δsec), δvar) :: Ξ
′
1, x
′:A[ψ]

By the SPAWN rule for the substitution γ′ = (δvar, γ ◦ δsec), we get

γ̂(Ψ); γ̂(Ξ1), γ̂(Ξ2) ⊢Σ ((x[γ̂(
ˆδsec(ψ))] ← X[γ′]← γ̂(Ξ1)@γ̂( ˆδsec(ψ0))); γ̂(Q))@γ̂(d0) :: y : γ̂(T )[γ̂(d)].

To show that this sequent satisfies the tree invariant, we use (a) the fact that the sequent ⋆ satisfies the tree invariant and (b) the
condition on process definitions in the signature. The condition we imposed on process definitions ensures that Ψ′ ⊩ ψ0 ⊑ ψ
and ∀y:A[ψi] ∈ Ξ′1.Ψ

′ ⊩ ψi ⊑ ψ.
By γ̂(Ψ) ⊩ γ̂( ˆδsec) :: Ψ

′, we can rewrite the above judgment as

∀y:A[ψi] ∈ Ξ′1. γ̂(Ψ) ⊩ γ̂( ˆδsec(ψi)) ⊑ γ̂( ˆδsec(ψ)).

By the tree invariant of ⋆ (i.e., γ̂(Ψ) ⊩ γ̂( ˆδsec(ψ)) ⊑ γ̂(d)),

∀y:A[ψi] ∈ Ξ′1. γ̂(Ψ) ⊩ γ̂( ˆδsec(ψi)) ⊑ γ̂( ˆδsec(ψ)) ⊑ γ̂(d).
By (δvar, γ̂( ˆδsec)(Ξ

′
1)) = γ̂(Ξ1),

∀y:γ̂(A)[γ̂(ψi)] ∈ γ̂(Ξ1). γ̂(Ψ) ⊩ γ̂((ψi)) ⊑ γ̂( ˆδsec(ψ)) ⊑ γ̂(d).
Case 6. The case for D-FWD is similar to the previous case.

1) Progress: Progress for IFC-typed processes in CONSESSION follows from the progress of SESSION, as IFC typing
can be viewed as a refinement typing using the same dynamics as the session typed processes.
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FWD proc(yα[c], (yα ← xβ)@d1) 7→ [xβ/yα] (yα ̸∈ ∆′)

SPAWN proc(yα[c], (x
d ← X[γ]← Γ1)@d2;Q@d1) 7→ (Ψ′; Γ′1 ⊢ X = P@ψ′ :: x′ : B[ψ] ∈ Σ)

proc(x0[d], γ̂(P )) proc(yα[c], [x0/x]Q@d1) (Γ′1, x
′[ψ], ψ′ ⊩ γ : Γ1, x0[d], d2 x0 fresh)

D-FWD proc(yα[c], FY [γ]) 7→ (ψ = ψ;x′[ψ] : C ⊢ Fy = FwdC,y′ψ←x′ψ@ψ :: y′ : C[ψ] ∈ Σ)
proc(yα[c], FwdC,ycα←xcβ@c) (x′[ψ], y′[ψ] ⊩ γ : xβ [c], yα[c])

1snd proc(yα[c], (close yα)@d1) 7→ msg(close yα)

1rcv msg(close yα) proc(xβ [c
′], (wait yα;Q)@d1) 7→ proc(xβ [c

′], Q@(d1 ⊔ c))
⊕snd proc(yα[c], yα.k;P@d1) 7→ proc(yα+1[c], ([yα+1/yα]P )@d1) msg(yα.k)
⊕rcv msg(yα[c].k) proc(uγ [c

′], case yα((ℓ⇒ Pℓ)ℓ∈L)@d1) 7→ proc(uγ [c
′], ([yα+1/yα]Pk)@(d1 ⊔ c))

&snd proc(yα[c], (xβ .k;P )@d1) 7→ msg(xβ .k) proc(yα[c], ([xβ+1/xβ ]P )@d1)

&rcv proc(yα[c], (case yα(ℓ⇒ Pℓ)ℓ∈L)@d1) msg(yα.k) 7→ proc(vδ[c], ([yα+1/yα]Pk)@c)

⊗snd proc(yα[c], (sendxβ yα;P )@d1) 7→ proc(yα+1[c], ([yα+1/yα]P )@d1) msg(sendxβ yα)

⊗rcv msg(sendxβ yα) proc(uγ [c
′], (w ← recv yα;P )@d1) 7→ proc(uγ [c

′], ([xβ/w][yα+1/yα]P )@(d1 ⊔ c))
⊸snd proc(yα[c], (sendxβ uγ ;P )@d1) 7→ msg(sendxβ uγ) proc(yα[c], ([uγ+1/uγ ]P )@d1)

⊸rcv proc(yα[c], (w ← recv yα;P )@d1) msg(sendxβ yα) 7→ proc(vδ[c], ([xβ/w][yα+1/yα]P )@c)

Fig. 5: Annotated asynchronous dynamics–proof of preservation.

2) Preservation:

Theorem 4 (Preservation). For any configuration C that is a valid permutation of a configuration C′′ such that Ψ0; Γ ⊩ C′′ :: Γ′,
if |C| 7→ C′, then there exists a security annotated program C′ such that |C′| = C′ and is a valid permutation of a configuration
C′′′ such that Ψ0; Γ ⊩ C′′′ :: Γ′. Moreover, the stepping preserves the tree invariant.

Proof. The proof is by considering different cases of |C| 7→ C′. For each step we provide a security annotated configuration
C′ and then by inversion on the typing derivations show that it is IFC-typed. For the purpose of presentation, we put security
annotations of the post-steps for all possible steps in Fig. 5. We provide the detailed proof by inversion for a couple of cases.
The rest of the cases are similar.

Case 1. (⊗)
Subcase 1. (send)

C1proc(yα[c], (sendx
c
β yα;P )@d1)C2 7→ C1proc(yα+1[c], ([yα+1/yα]P )@d1)msg(sendxcβ yα)C2

By assumption of the theorem: Ψ0; Γ ⊩ C1proc(yα[c], (sendx
c
β yα;P )@d1)C2 :: Γ′.

By Lem. 6: Ψ0; Γ
1
1 ⊩ C1 :: Γ1,Γ2,Γ

1′
1 and Ψ0; Γ

1′′

2 ,Γ′1, xβ :A[c] ⊩ proc(yα[c], (sendx
c
β yα;P )@d1) :: yα:(A ⊗ B)[c]

and Ψ0; Γ
1
3,Γ2 ⊩ C2 :: Γ1′

2 .
Where Γ = Γ1

1,Γ
1
2,Γ

1
3 and Γ′ = Γ1′

1 ,Γ
1′

2 . If xβ :A[c] ∈ Γ we have Γ′1 = Γ1 and Γ1′′

2 , xβ :A[c] = Γ1
2, and otherwise

Γ′1, xβ :A[c] = Γ1 and Γ1′′

2 = Γ1
2.

By inversion on proc rule Ψ0; Γ
1′′

2 ,Γ′1, xβ :A[c] ⊢ (sendxcβ y
c
α;P )@d1 :: yα:(A ⊗ B)[c]. Moreover, (⋆) ∀uγ :T [d2] ∈

Γ1′′

2 ,Γ′1, xβ :A[c].Ψ0 ⊩ d2 ⊑ c.
By inversion on ⊗R rule Ψ0; Γ

1′′

2 ,Γ′1 ⊢ P@d1 :: yα:B[c].
By substitution of yα+1 for yα:

Ψ0; Γ
1′′

2 ,Γ′1 ⊢ [yα+1/yα]P@d1 :: yα+1:B[c].

By proc rule and (⋆): † Ψ0; Γ
1′′

2 ,Γ′1 ⊩ proc(yα+1[c], [y
α+1/yα]P@d1) :: yα+1:B[c].

By ⊗R and fwd rule: Ψ0;xβ :A[c], yα+1:B[c] ⊢ (sendxcβ y
c
α; y

c
α ← ycα+1)@c :: yα:(A⊗B)[c].

By msg, ⋆, and †:
Ψ0; Γ

1′′

2 ,Γ′1, xβ :A[c] ⊢ proc(yα+1[c], [y
α+1/yα]P@d1)msg(sendxcβ y

c
α; y

c
α ← ycα+1) :: yα:(A⊗B)[c].

By configuration typing rules: Ψ0; Γ ⊩ C1proc(yα+1[c], [y
α+1/yα]P@d1)msg(sendxcβ y

c
α; y

c
α ← ycα+1)C2 :: Γ′

Remark: To keep the proofs concise we may use Ψ instead of the term secrecy lattice Ψ0, whenever we are clearly working
with configurations defined in the run-time. Moreover, from now on, we write Ψ0; ∆ ⊩ C :: ∆′ also when C is a valid
permutation of a configuration C′ such that Ψ0; ∆ ⊩ C′ :: ∆′ .
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VII. RECURSIVE SESSION LOGICAL RELATION

This section introduces the recursive session logical relation and supporting definitions.

A. Open configuration transition

Definition 11. The configuration ∆ ⊩ C :: ∆′ is ready to send along Λ ⊆ ∆,∆′ iff for all yα:C ∈ Λ, there is a message
msg(M) in C sending along yα, i.e. M is of the form yα.k, sendxβ yα, or close yα.
Similarly, the configuration ∆ ⊩ C :: ∆′ is ready to receive along Λ ⊆ ∆,∆′ iff for all yα:C ∈ Λ, there is a process
proc(zδ, P ) in C waiting to receive along yα, i.e. P is of the form case yα(ℓ⇒ Qℓ)ℓ∈I , w ← recvyα;Q, or wait yα;Q.

⋄
Definition 12. The set Out(∆ ⊩ K), is defined as all channels with the sending semantics in ∆,K, i.e., yα ∈ Out(∆ ⊩ K)
iff for some positive type T , we have yα:T ∈ ∆ or for some negative type T , we have yα:T ∈ K.
Similarly, the set In(∆ ⊩ K), is defined as all channels with the receiving semantics in ∆,K, i.e., yα ∈ Out(∆ ⊩ K) iff for
some negative type T , we have yα:T ∈ ∆ or for some positive type T , we have yα:T ∈ K. ⋄
Definition 13. dom(∆) is a set defined inductively as:

dom(∆, yα : A) = dom(∆) ∪ {y}
dom(·) = ∅

⋄
Definition 14 (Open configuration transitions). We provide some notations used in the logical relation and proofs.
• The notation 7→∗ refers to taking none or many steps with 7→. The notation 7→j refers to taking j steps with 7→.
• We write D 7→∗Υ D′ stating that D 7→∗ D′ and D′ is ready to send along Υ.
• We write D 7→∗Υ;Θ D′ stating that D 7→∗ D′ and D′ is ready to send along Υ and ready to receive along Θ.

⋄
B. Recursive Session Logical Relation

Fig. 6 defines the logical relation for intuitionistic linear logic session types with general recursive types.
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(1) (D1;D2) iff (D1;D2) ∈ Tree(· ⊩ yα) and
∈ VJ· ⊩ yα:1Km+1

·;yα D1 = msg(close yα) andD2 = msg(close yα)

(2) (D1;D2) iff (D1;D2) ∈ Tree(∆ ⊩ yα : ⊕{ℓ:Aℓ}ℓ∈I) and ∃k1, k2 ∈ I.
∈ VJ(∆ ⊩ yα:⊕ {ℓ:Aℓ}ℓ∈I)Km+1

·;yα D1 = D′1msg(yα.k1) andD2 = D′2msg(yα.k2) and k1 = k2
and (D′1;D′2) ∈ EJ∆ ⊩ yα+1:Ak1Km

(3) (D1;D2) iff (D1;D2) ∈ Tree(∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈I) and ∀k1, k2 ∈ I.
∈ VJ∆ ⊩ yα:&{ℓ:Aℓ}ℓ∈IKm+1

yα;· if k1 = k2 then(D1msg(yα.k1);D2msg(yα.k2)) ∈
EJ∆ ⊩ yα+1:Ak1Km

(4) (D1;D2) iff (D1;D2) ∈ Tree(∆′,∆′′ ⊩ yα:A⊗B) and∃xβ s.t.
∈ VJ∆′,∆′′ ⊩ yα:A⊗BKm+1

·;yα D1 = D′1T1msg(sendxβ yα) for T1 ∈ Tree(∆′′ ⊩ xβ :A) and
D2 = D′2T2msg(sendxβ yα) for T2 ∈ Tree(∆′′ ⊩ xβ :A) and
(T1; T2) ∈ EJ∆′′ ⊩ xβ :AKm and
(D′1;D′2) ∈ EJ∆′ ⊩ yα+1:BKm

(5) (D1;D2) iff (D1;D2) ∈ Tree(∆ ⊩ yα:A⊸ B) and∀xβ ̸∈dom(∆, yα:A⊸ B).
∈ VJ∆ ⊩ yα:A⊸ BKm+1

yα;· (D1msg(sendxβ yα);D2msg(sendxβ yα)) ∈
EJ∆, xβ :A ⊩ yα+1:BKm

(6) (D1;D2) iff (D1;D2) ∈ Tree(∆, yα:1 ⊩ K) and
∈ VJ∆, yα:1 ⊩ KKm+1

yα;· (msg(close yα)D1;msg(close yα)D2) ∈ EJ∆ ⊩ KKm

(7) (D1;D2) iff (D1;D2) ∈ Tree(∆, yα:⊕ {ℓ:Aℓ}ℓ∈I ⊩ K) and∀k1, k2 ∈ I.
∈ VJ∆, yα : ⊕{ℓ:Aℓ}ℓ∈I ⊩ KKm+1

yα;· if k1 = k2then (msg(yα.k1)D1;msg(yα.k2)D2) ∈
EJ∆, yα+1:Ak1 ⊩ KKm

(8) (D1;D2) iff (D1;D2) ∈ Tree(∆, yα:&{ℓ:Aℓ}ℓ∈I ⊩ K) and∃k1, k2 ∈ I.
∈ VJ∆, yα:&{ℓ:Aℓ}ℓ∈I ⊩ KKm+1

·;yα D1 = msg(yα.k1)D′1 and D2 = msg(yα.k2)D′2 and k1 = k2
and (D′1;D′2) ∈ EJ∆, yα+1:Ak1 ⊩ KKm

(9) (D1;D2) iff (D1;D2) ∈ Tree(∆, yα:A⊗B ⊩ K) and∀xβ ̸∈dom(∆, yα:A⊗B,K).
∈ VJ∆, yα:A⊗B ⊩ KKm+1

yα;· (msg(sendxβ yα)D1;msg(sendxβ yα)D2) ∈
EJ∆, xβ :A, yα+1:B ⊩ KKm

(10) (D1;D2) iff (D1;D2) ∈ Tree(∆′,∆′′, yα:A⊸ B ⊩ K) and∃xβ s.t.
∈ VJ∆′,∆′′, yα:A⊸ B ⊩ KKm+1

·;yα D1 = T1msg(sendxβ yα)D′′1 for T1 ∈ Tree(∆′ ⊩ xβ :A)
D2 = T2msg(sendxβ yα)D′′2 for T2 ∈ Tree(∆′ ⊩ xβ :A) and
(T1; T2) ∈ EJ∆′ ⊩ xβ :AKm and
(D′′1 ;D′′2 ) ∈ EJ∆′′, yα+1:B ⊩ KKm

(11) (D1;D2) ∈ EJ∆ ⊩ KKm+1 iff (D1;D2) ∈ Tree(∆ ⊩ K) and∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1
then∃Υ2,D′2 such that D2 7→∗Υ2 D′2, andΥ1 ⊆ Υ2 and

∀ yαinOut(∆ ⊩ K). if yα ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKm+1
·;yα and

∀ yα ∈ In(∆ ⊩ K).if yα ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKm+1
yα;·

(12) (D1;D2) ∈ EJ∆ ⊩ KK0 iff (D1;D2) ∈ Tree(∆ ⊩ K)

Fig. 6: Recursive session logical relation
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VIII. NONINTERFERENCE

This section introduces the fundamental theorem for progress-sensitive noninterference for SESSION. We first start with
defining supporting notions and proofs of necessary lemmas.

A. Up-to equivalence, projections, and splitting up closed configuration

The fundamental theorem Thm. 5 is stated in terms of the logical equivalence (∆1 ⊩ D1 :: xα:A1[c1]) ≡Ψ0
ξ (∆2 ⊩ D2 ::

yβ :A2[c2]), expressing that two open configurations D1 and D2 are being related by the term interpretation when plugged into
arbitrary closing contexts and observed for any number of message exchanges m. Next we define this equivalence as well as
typing context projections, on which the former relies.

Definition 15 (Typing context projections). Downward projection on security linear contexts and Ks is defined as follows:

Γ, xα:T [c] ⇓ ξ def
= Γ ⇓ ξ, xα:T [c] if c ⊑ ξ

Γ, xα:T [c] ⇓ ξ def
= Γ ⇓ ξ if c ̸⊑ ξ

· ⇓ ξ def
= ·

xα:T [c] ⇓ ξ def
= xα:T [c] if c ⊑ ξ

xα:T [c] ⇓ ξ def
= :1[⊤] if c ̸⊑ ξ

⋄

Definition 16 (High provider and High client).

· ∈ H-Providerξ(·)
B ∈ H-Providerξ(Γ, xα:A[c]) iff c ̸⊑ ξ andB = B′T and B′ ∈ H-Providerξ(Γ) and T ∈ Tree(· ⊩ xα:A),or

c ⊑ ξ andB ∈ H-Providerξ(Γ)

T ∈ H-Clientξ(xα:A[c]) iff c ̸⊑ ξ and T ∈ Tree(xα:A ⊩ : 1),or
c ⊑ ξ andB = ·

⋄
Definition 17 (Equivalence of trees by the logical relation upto the observer level). We define the relation

(Γ1 ⊩ D1 :: xα:A1[c1]) ≡Ψ0

ξ (Γ2 ⊩ D2 :: yβ :A2[c2]) as

D1 ∈ Tree(|Γ1| ⊩ xα:A1) and D2 ∈ Tree(|Γ2| ⊩ yβ :A2) and
Γ1⇓ξ = Γ2⇓ξ = Γ and xα:A1[c1]⇓ξ = yβ :A2[c2]⇓ξ = Ks and

∀B1 ∈ H-Providerξ(Γ1).∀B2 ∈ H-Providerξ(Γ2).∀T1 ∈ H-Clientξ(xα:A1[c1]).∀T2 ∈ H-Clientξ(yβ :A2[c2]).

∀m. (B1D1T1,B2D2T2) ∈ EJ|Γ| ⊩ |Ks|Km, and
∀m. (B2D2T2,B1D1T1) ∈ EJ|Γ| ⊩ |Ks|Km.

⋄
B. Quasi-running secrecy and relevant nodes

The proof of the fundamental theorem Thm. 5 relies on the notion of a relevant node, introduced in §IV of the main text,
maintaining the invariant that the relevant nodes of the two program runs execute the same code. The latter is guaranteed by
Lem. 8. Next we define the notion of a relevant node, expressed locally for an asynchronous semantics (for ease of illustration
§IV of the main text provides a global and synchronous description). The notion of a relevant node relies on the notion of
quasi-running secrecy, also defined below.

Definition 18 (Quasi-running secrecy). In an open configuration Ψ0; Γ ⊩ C :: Γ′, the quasi-running secrecy of a message or
process is determined by its running secrecy, its process term, and the running secrecy of its parent.
• If the node is a process with a process term other than recv or case, then its quasi-running secrecy is equal to its running

secrecy.
• If the process term is of the form case ycα(ℓ⇒ Pℓ)ℓ∈L@d1 or x← recv ycα;Px@d1, then its quasi-running secrecy is d1⊔c.
• If the node is a message of a negative type along channel ycα, its quasi-running secrecy is c.
• If the node is a message of a positive type along channel ycα and it has a parent with quasi-running secrecy d1, its quasi-

running secrecy is d1 ⊔ c, otherwise its quasi-running secrecy is c.
The quasi-running secrecy can be determined by traversing the tree top to bottom.

⋄
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Definition 19 (Relevant node). Consider a configuration Γ ⊩ D :: Ks and observer level ξ. A channel is relevant in D if (1)
it has a maximal secrecy level less than or equal to ξ, and (2) it is either an observable channel or it shares a process or
message with quasi-running secrecy less than or equal to ξ with a relevant channel. (A channel shares a process with another
channel if they are siblings or one is the parent of another.) A process or message is relevant if (1) it has quasi-running
secrecy less than or equal to ξ, and (2) it has at least one relevant channel. We denote the relevant processes and messages
(i.e., nodes) in D by D⇓ξ. We write D1⇓ξ =ξ D2⇓ξ if the relevant nodes in D1 are identical to those in D2 up to renaming
of channels with higher or incomparable secrecy than the observer.

⋄
We can build the set of all relevant nodes in a configuration by traversing the tree bottom-up as explained in Section 4.

Def. 19 provides us with a local guide to identify whether a process is relevant or not. We note that if Ks is observable, then
by the tree invariant, every channel in D is relevant.

Now we can state and prove and maintaining the invariant that the relevant nodes of the two program runs execute the same
code. The proof of the fundamental theorem Thm. 5 crucially relies on this lemma.

Lemma 8 (Keeping relevant nodes in sync). Consider Ψ0; Γ ⊩ Di :: Ks for i ∈ {1, 2} with the relevant nodes in D1 and
D2 are identical, i.e., D1⇓ξ = D2⇓ξ, with Γ ⇓ ξ = Γ and Ks ⇓ ξ = Ks. If |D1| 7→ |D′1|, then there exists a D′2 such that
|D2| 7→0,1 |D′2|, i.e., |D2| steps to |D′2| in zero or one step, and D1⇓ξ = D2⇓ξ.

Proof. The proof is by cases on the possible steps of |D1| 7→ |D1
1|. In each case we prove that either the step does not change

relevancy of any process in D1 or we can step |D2| such that the same change of relevancy occurs in D2 too. Note that in all
cases, we get (D1

1;D1
2) ∈ Tree(|Γ| ⊩ |Ks|) by the preservation of session-typed processes.

In the following cases, we annotate the post-step of the configuration to reflect the annotations required by the preservation of
IFC-typed configurations.

Case 1. D1 = D′1proc(yα[c], ycα.k;P@d1)D′′1 and

|D′1proc(yα[c], ycα.k;P@d1)D′′1 | 7→ |D′1proc(yα+1[c], [y
c
α+1/y

c
α]P@d1)msg(ycα.k)D′′1 |

where D1
1 = D′1proc(yα+1[c], [y

c
α+1/y

c
α]P@d1)msg(ycα.k)D′′1 . We consider subcases based on relevancy of process offering

along yα[c]:
Subcase 1. proc(yα[c], y

c
α.k;P@d1) is not relevant. By inversion on the typing rules d1 ⊑ c. By definition either

d1 ̸⊑ ξ or none of the channels connected to P including its offering channel ycα are relevant. In both cases neither
proc(yα+1[c], [y

c
α+1/y

c
α]P@d1), nor msg(ycα.k) are relevant in the post step. Note that from d1 ⊑ c and d1 ̸⊑ ξ, we

get c ̸⊑ ξ. Channel ycα is not relevant in the pre-step, and both ycα and ycα+1 are not relevant in pre-step and post-step
configurations. Every not relevant resource of proc(ycα, y

c
α.k;P@d1) will remain irrelevant in the post-step too.

In this subcase, it is enough to show

D′1proc(yα+1[c], [y
c
α+1/y

c
α]P@d1)msg(ycα.k)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ.

To prove this we need two observations:
• Neither proc(yα+1[c], [y

c
α+1/y

c
α]P@d1) nor msg(ycα.k) are relevant and they will be dismissed by the projection. (As

explained above.)
• Replacing proc(yα[c], y

c
α.k;P@d1) with these two nodes, does not affect relevancy of the rest of processes in D′1D′′1 .

Relevancy of processes in D′′1 remains intact since ycα and ycα+1 are irrelevant.
The relevancy of processes in D′1 remains intact too as we replace their irrelevant root with another irrelevant process.
However, we need to be careful about the changes in the quasi-running secrecy of a process and their effect on its
(grand)children. The quasi-running secrecy of the process offering along ycα+1 may be higher or incomparable to d1 based
on the code of P (if it starts with a recv or case). This is of significance only if d1 ⊑ ξ, and in the pre-step the process
has a relevant channel x : [d] as its resource where d ⊑ ξ. But by the assumption of the subcase, either d1 ̸⊑ ξ or x : [d]
is not a relevant channel in the pre-step.

This completes the proof.
Subcase 2. proc(yα[c], ycα.k;P@d1) is relevant. By assumption (D1⇓ξ =ξ D2⇓ξ) we have :

D2 = D′2proc(yα[c], ycα.k;P@d1)D′′2 .

and
D2 7→ D′2proc(yα+1[c], [y

c
α+1/y

c
α]P@d1)msg(ycα.k)D′′2

and D1
2 = D′2proc(yα+1[c], [y

c
α+1/y

c
α]P@d1)msg(ycα.k; )D′′2 .

We need to show:

D′1proc(yα+1[c], [y
c
α+1/y

c
α]P@d1)msg(ycα.k)D′′1⇓ξ =ξ D′2proc(yα+1[c], [y

c
α+1/y

c
α]P@d1)msg(ycα.k)D′′2⇓ξ.

20



• If c ̸⊑ ξ, then msg(ycα.k) is not relevant in both runs, and will be dismissed by the projections. Moreover, in this case
ycα is not relevant in the pre-step and post-step configurations. Thus the relevancy of processes in D′′1 and D′′2 will remain
intact.

• If c ⊑ ξ, then ycα is relevant in the pre-step in both runs. We need to consider the possibility of change in quasi-running
secrecy in the post-step. The quasi-running secrecy of the processes offering along ycα+1 may increase based on their code
(if the code of P starts with a recv or case). But in this case, it cannot become irrelevant since by the tree invariant it is
always bounded by the max secrecy of the offering channel, c ⊑ ξ. Thus, in the post-step of both runs, ycα+1 is relevant.
Relevancy of message msg(ycα.k) in the post-steps of the first and second run is determined by the quasi-running secrecies
(d and d′) of their parents (X and X ′) in D′′1 and D′′2 . If d ⊑ ξ, then the parent (X) is relevant in the first run and by
assumption is identical to a relevant X ′ in the second run. Thus messages msg(ycα.k) are relevant in both runs and ycα
is relevant in the post-step too. The same holds when d′ ⊑ ξ. Otherwise, in both runs the quasi-running secrecy of the
parent is higher than or incomparable to the observer (the parents are both irrelevant). Thus messages msg(ycα.k) are not
relevant in the post step of both runs, and will be dismissed by the projections. The channel ycα will be irrelevant in the
post-step of both runs too. However, this does not affect the processes in D′′1 and D′′2 as the parents of messages (X and
X ′) are already irrelevant in the pre-step.

Finally, we need to show that projections of D′1 and D′2 are equal in the post-step too.
Consider the resources of the process that offeres along yα[c]. By our writing convention, they are all in D′1 and D′2: (i)
Those resources offered by D′1 and D′2 with max secrecies higher than or incomparable to the observer ξ in the pre-step will
remain higher than or incomparable to the observer and thus irrelevant in the post-step too. (ii) Those resources with max
secrecies lower than the observer ξ in the pre-step, i.e., a sub-tree Ti in D′i offering along a channel w[c′] where c′ ⊑ ξ, are
relevant in the pre-step and will remain relevant in the post-step (again, in this case, by the tree invariant, the quasi-running
secrecy of the processes offering along ycα+1 cannot increase in the post-step).
Case 2. D1 = D′1proc(xβ [d], ycα.k;P@d1)D′′1 and

D′1proc(xβ [d], ycα.k;P@d1)D′′1 7→ D′1msg(ycα.k)proc(xβ [d], [y
c
α+1/y

c
α]P@d1)D′′1

We consider subcases based on relevancy of the process offering along xβd :
Subcase 1. proc(xβ [d], y

c
α.k;P@d1) is irrelevant. By inversion on the typing rules, d1 ⊑ c ⊑ d. By definition either

d1 ̸⊑ ξ or none of the channels connected to P including ycα and xdβ are relevant. In both cases, neither msg(ycα.k) nor
proc(xβ [d], [y

c
α+1/y

c
α]P@d1) are relevant. Channel xdβ is irrelevant in the pre-step and post-step configurations.

Channel ycα is irrelevant in the pre-step, and both ycα and ycα+1 are irrelevant in pre-step and post-step configurations. Every
other irrelevant resource of proc(xβ [d], ycα.k;P@d1) will remain irrelevant in the post-step too.
In this subcase, our goal is to show

D′1msg(ycα.k)proc(xβ [d], [y
c
α+1/y

c
α]P@d1)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ

With a same argument as in Case 1. Subcase 1., we can prove that the relevancy of processes in D′1 and D′′1 remain intact.
Subcase 2. proc(xβ [d], ycα.k;P@d1) is relevant. By assumption that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2proc(xβ [d], ycα.k;P@d1)D′′2 ,

and we have
D2 7→ D′2msg(ycα.k)proc(xβ [d], [y

c
α+1/y

c
α]P@d1)D′′2

It remains to show

D′1msg(ycα.k)proc(xβ [d], [y
c
α+1/y

c
α]P@d1)D′′1⇓ξ =ξ D′2msg(ycα.k)proc(xβ [d], [y

c
α+1/y

c
α]P@d1)D′′2⇓ξ.

• If d ⊑ ξ, then xβ is relevant in the pre-steps of both runs and remains relevant in the post-steps. Even if the quasi-running
secrecy increases based on the code of P , by the tree invaiant it will be less than or equal to d ⊑ ξ, and thus remains
observable. As a result, the relevancy of processes in D′′i remain intact. Moreover, every resource of the processes in D′i
is relevant in the pre-steps and post-steps of both runs.

• If d ̸⊑ ξ, then xβ is irrelevant in the pre-step and remains irrelevant in the post-steps of both runs, and thus the relevancy
of processes in D′′i remain intact. It remains to show that the projections of D′1 and D′2 in post-steps are still equal.
We first condider the trees offered along ycα in both runs. The quasi running secrecy of the negative message msg(ycα.k)
is c in the post-steps.
– If c ⊑ ξ then the same message exists in both runs, and the tree offered along ycα is relevant in the pre-steps and

post-steps.
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– If c ̸⊑ ξ then the message is irrelevant in both runs. ycα is irrelevant in the pre-steps of both runs and remain irrelevant
in the post-steps too.

Finally, we need to show that projections of the rest of the trees in D′1 and D′2 are equal in the post-step too. Consider the
resources of the process that offeres along xβ [d]. By our writing convention, they are all in D′1 and D′2. (i) Those resources
offered by D′1 and D′2 with max secrecies higher than or incomparable to the observer ξ in the pre-step will remain higher
than or incomparable to the observer and thus irrelevant in the post-step too. (ii) Those resources with max secrecies lower
than the observer ξ in the pre-step, i.e., a sub-tree Ti in D′i offering along a channel w[c′] where c′ ⊑ ξ, are relevant in
the pre-step and thus T1 = T2. The quasi-running secrecy of the process offering along xβ [d] after stepping is the same
in both runs. If it is still observable, the sub-tree T1 = T2 remains relevant in the post-step of both runs. Otherwise, if the
quasi-running secrecies become nonobservable, T1 = T2 may become irrelevant. However, since T1 = T2 and by the tree
invariant it only consists of low-secrecy channels, T1 becomes irrelevant in the post-step of the first run iff T2 becomes
irrelevant in the post-step of the second run. Which completes the proof of this case.

Case 3. D1 = D′1T1proc(yα[c], sendx
d
β y

c
α@d1)D′′1 and

|D′1T1proc(yα[c], sendx
c
β y

c
α;P@d1)D′′1 | 7→ |D′1T1proc(yα+1[c], [y

c
α+1/y

c
α]P@d1)msg(sendxcβ y

c
α)D′′1 |

such that Γ = Γ′Γt and Ψ0; Γ
′ ⊩ D′1 :: Γ′′ and Ψ0; Γt ⊩ T1 :: (xβ :A[c]) and Γ′′, xβ :A[c] ⊩ proc(yα[c], sendx

c
β y

c
α;P@d1) ::

(yα:A⊗B[c]). (In the case that T1 is empty, we have Γt = xβ :A[c].)
We consider subcases based on relevancy of process offering along ycα:

Subcase 1. proc(yαc , sendxdβ ycα;P@d1) is not relevant.
By inversion on the typing rules d1 ⊑ c. By definition either d1 ̸⊑ ξ or none of the channels connected to P including ycα
and xcβ are relevant. In both cases, neither proc(yα+1[c], [y

c
α+1/y

c
α]P@d1) nor msg(sendxcβ y

c
α) are relevant.

Channel ycα is irrelevant in the pre-step, and both ycα and ycα+1 are irrelevant in pre-step and post-step configurations. In this
subcase, our goal is to show

D′1T1proc(yα+1[c], [y
c
α+1/y

c
α]P@d1)msg(sendxcβ y

c
α)D′′1⇓ξ =ξ D′1T1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ.

We first prove that the relevancy status of T1 remain intact. Note that all channels in T1, except xcβ have the same connections
in the pre-step and post-step. So it is enough to consider the changes made to the tree rooted at xcβ . We show that the relevancy
of xcβ remains intact after the step:
• If c ̸⊑ ξ, then xcβ is irrelevant in the pre-step, and remains irrelevant in the post-step. Moreover, the message is irrelevant

in the post-step since its quasi-running secrecy of is higher than or incomparable to the observer.
• If c ⊑ ξ, then by d1 ⊑ c, we have d1 ⊑ ξ, and thus both xβc and ycα must be irrelevant in the pre-step. In the post-step,

the parent of the message has to be irrelevant, otherwise ycα would be relevant in the pre-step. Since the parent of the
message is irrelevant, we know that xcβ remains irrelevant in the post-step. As a result, the message with three irrelebant
channels connected to it is irrelevant in the post-step.

In both cases, the relevancy status of T1 remains intact: the tree T1 rooted at xcβ offers to an irrelevant node before and after
the step. With a same argument as in Case 1. Subcase 1. and the one given for T1, we can prove that the relevancy status
of processes in D′1 and D′′1 remain intact.

Subcase 2. proc(ycα, sendxcβ ycα;P@d1) is relevant. By assumption that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2T′′2proc(yα[c], sendxcβ ycα;P@d1)D′′2
We have

|D2| 7→ |D′2T′′2proc(yα+1[c], [y
c
α+1/y

c
α]P@d1)msg(sendxcβ y

c
α)D′′2 |

If c ̸⊑ ξ, then msg(sendxcβ y
c
α) is not relevant in both runs, and will be dismissed by the projections. Moreover, ycα is

not relevant in the pre-step and post-step configurations. Thus the relevancy of processes in D′′1 and D′′2 will remain intact.
Moreover, in this case xcβ is irrelevant in both pre-steps and post-steps. Which means that relevancy status of T′′1 and T′′2
remains intact.
If c ⊑ ξ, then ycα is relevant in the pre-step in both runs. We also know that xβ is relevant in the pre-step and T′′1 = T′′2
are relevant in the pre-step. In the post-step, ycα+1 is relevant in both runs. Relevancy of messages msg(sendxcβ y

c
α) in the

post-steps are determined by the quasi-running secrecy (d′ and d′′) of their parents (X and X ′) in D′′1 and D′′2 . If d′ ⊑ ξ,
then the parent (X) is relevant in the first run and by assumption is equal to a relevant X ′ in the second run. Thus messages
msg(sendxcβ y

c
α) are relevant in both runs, ycα are relevant in the post-step, and trees T′′1 = T′′2 and their offering channels

xcβ are relevant in the post-steps too. The same holds when d′ ⊑ ξ.
Otherwise, in both runs the quasi-running secrecy of the parent is higher than or incomparable to the observer level (the
parents are both irrelevant). Thus messages msg(sendxcβ y

c
α) are not relevant in the post step of both runs, and will be
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dismissed by the projections. The channels ycα will be irrelevant in the post-step too. However, this does not affect the
processes in D′′1 and D′′2 as the parents of messages (X and X ′) are already irrelevant in the pre-step. The channels xcβ both
become irrelevant in the post-steps. However, we still have T′′1⇓ξ = T′′2⇓ξ as they have the same type and their parents have
the same quasi-running secrecy.
We show that projections of D′1 and D′2 are equal in the post-step too. The resources with secrecy level higher than or
incomparable to the observer level offered along D′1 and D′2 in the pre-step will remain higher than or incomparable to and
thus irrelevant in the post-step too. For a relevant resources (w) offered along D1 and D2, we need to consider the change
in quasi-running secrecy as in Case 1. Subcase 2. Moreover, we need to consider the scenario that a relevant resource (wc

′
)

in the pre-step loses its relevancy in the post-step because the channel offered along xcβ is transferred to the message. This
case only happens if c′, c ⊑ ξ and thus the trees T1 and T2 offered along wc

′
is present in both runs and T1 = T2. We

know that wc
′

is irrelevant in the post-step of both runs, and the quasi-running secrecy of the processes using the resource
wc

′
in both runs are the same.

The relevant and irrelevant processes in D′′i remain intact.
Case 4. D1 = D′1T′′1proc(wη[c′], sendxcβ ycα@d1)D′′1 and

|D′1T′′1proc(wη[c′], sendxcβ ycα;P@d1)D′′1 | 7→ |D′1T′′1msg(sendxcβ y
c
α)proc(wη[c

′], [ycα+1/y
c
α]P@d1)D′′1 |

such that Γ = Γ1Γ2 and Γ1 ⊩ D′1 :: Γ′, yα:(A⊸ B)[c] and Γ2 ⊩ T′′1 :: (xβ :A[c]) and

Γ′, yα:(A⊸ B)[c], xβ :A[c] ⊩ proc(wη[c
′], sendxcβ y

c
α;P@d1) :: (wη:C[c

′]).

In the case where T′′1 is empty we have Γ2 = xβ :A[c]. We proceed by considering subcases based on relevancy of the process
offering along wη[c′]:
Subcase 1. proc(wη[c′], sendxcβ ycα;P@d1) is not relevant. By inversion on the typing rules d1 ⊑ c ⊑ c′. By definition either
d1 ̸⊑ ξ or none of the channels connected to P including ycα, and xcβ are relevant. In both cases, neither msg(sendxcβ y

c
α)

nor proc(wη[c′], [ycα+1/y
c
α]P@d1) are relevant. Channel wc

′

η is irrelevant in the pre-step and post-step configurations.
Channel ycα is irrelevant in the pre-step, and both ycα and ycα+1 are irrelevant in pre-step and post-step configurations. Every

other irrelevant resource of the process in the pre-step will remain irrelevant in the post-step too. See Case 3. Subcase 1. for
the discussion on the relevancy of T′′1 .

D′1T′′1msg(sendxcβ y
c
α)proc(wη[c

′], [ycα+1/y
c
α]P@d1)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ

Subcase 2. proc(wc
′

η , sendx
c
β y

c
α;P@d1) is relevant. By assumption that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2T′′2proc(wη[c′], sendxcβ ycα;P@d1)D′′2
We have

|D2| 7→ |D′2T′′2msg(sendxcβ y
c
α)proc(wη[c

′], [ycα+1/y
c
α]P@d1)D′′2 |

With the same argument as in Case 2. Subcase 2. we can show that relevancy of D′′i remains intact.
For T′′i , we argue that if c ⊏ ξ, then T′′1 = T′′2 is relevant in the pre-step and remains relevant in the post-step too. If c ̸⊑ ξ,

then the relevancy of T′′i remain intact from pre-step to post-step. See Case 3. Subcase 2. for a more detailed discussion on
transferring a tree via message.

The discussion on relevancy of D′i is similar to the previous cases.
Case 5. D1 = D′1msg(ycα.k)proc(xβ [d], case y

c
α(ℓ⇒ Pℓ)ℓ∈L@d1)D′′1 and

|D′1msg(ycα.k)proc(xβ [d], case y
c
α(ℓ⇒ Pℓ)ℓ∈L@d1)D′′1 | 7→ |D′1proc(wβ [d], [ycα+1/y

c
α]Pk@(d1 ⊔ c))D′′1 |

We consider sub-cases based on relevancy of process offering along wdβ . Observe that ycα is relevant if an only if vc is relevant,
since they share a message of secrecy c.

Subcase 1. proc(xβ [d], case ycα(ℓ⇒ Pℓ)ℓ∈L@d1) is not relevant. By definition either d1 ⊔ c ̸⊑ ξ or none of the channels
connected to P including its offering channel ycα are relevant. In both cases the messages msg(ycα.k) and the continuation
process proc(wβ [d], [y

c
α+1/y

c
α]Pk@(d1 ⊔ c)) are not relevant either. It is straightforward to see that

D′1proc(wβ [d], [ycα+1/y
c
α]Pk@(d1 ⊔ c))D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ.

Subcase 2. proc(xβ [d], case ycα(ℓ ⇒ Pℓ)ℓ∈L@d1) is relevant. By definition of relevancy, we get that c ⊔ d1 ⊑ ξ and thus
ycα is relevant. This means that msg(ycα.k) is relevant too. By assumption that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2msg(ycα.k)proc(xβ [d], case y
c
α(ℓ⇒ Pℓ)ℓ∈L@d1)D′′2 ,
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such that Pℓ is equal to Pℓ modulo renaming of some channels with secrecy level higher than or incomparable to the observer.
We have

|D2| 7→ |D′2proc(xβ [d], [ycα+1/y
c
α]Pk@(d1 ⊔ c))D′′2 |

This completes the proof of the subcase as we know that the relevancy of channels in D′i and D′′i remain intact.
Case 6. D1 = D′1proc(yα[c], case ycα(ℓ⇒ Pℓ)ℓ∈L@d1)msg(ycα.k)D′′1 and

|D′1proc(yα[c], case ycα(ℓ⇒ Pℓ)ℓ∈L@d1)msg(ycα.k)D′′1 | 7→ |D′1proc(x1[c], [ycα+1/y
c
α]Pk@c)D′′1 |

We consider sub-cases based on relevancy of process offering along ycα. Observe that ycα is relevant if an only if xc1 is relevant,
since they share a message of secrecy c.

Subcase 1. proc(yα[c], case ycα(ℓ⇒ Pℓ)ℓ∈L@d1) is not relevant. By definition either d1⊔c = c ̸⊑ ξ or none of the channels
connected to P including its offering channel ycα are relevant. In both cases, means that ycα+1 is not relevant and msg(ycα.k)
is not relevant either. Moreover the continuation process proc(yα+1[c], [y

c
α+1/y

c
α]Pk@c) won’t be relevant. And

D′1proc(yα+1[c], [y
c
α+1/y

c
α]Pk@c)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ

Subcase 2. proc(yα[c], case ycα(ℓ ⇒ Pℓ)ℓ∈L@d1) is relevant. By definition of relevancy, we get that c ⊔ d1 = c ⊑ ξ and
thus ycα is relevant. This means that msg(ycα.k) is relevant too. By assumption that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2proc(yα[c], case ycα(ℓ⇒ Pℓ)ℓ∈L@d1)msg(ycα.k)D′′2 ,

such that Pℓ is equal to Pℓ modulo renaming of some channels with secrecy level higher than or incomparable to the observer.
We have

|D2| 7→ |D′2proc(yα+1[c], [y
c
α+1/y

c
α]Pk@c)D′′2 |

This completes the proof of the subcase as we know that the relevancy of channels in D′i and D′′i remain intact.
Case 7. D1 = D′1msg(sendxcηy

c
α)proc(vη[c

′], wc ← recvycα;P@d1)D′′1 and

D′1msg(sendxcη y
c
α)proc(vη[c

′], wc ← recvycα;P@d1)D′′1 7→ D′1proc(vη[c′], [xη/w][ycα+1/y
c
α]P@c ⊔ d1)D′′1

We consider sub-cases based on relevancy of process offering along vc
′

η .
Subcase 1. proc(vη[c

′], wc ← recvycα;P@d1) is not relevant. By definition either d1 ⊔ c ̸⊑ ξ or none of the channels
connected to P including ycα are relevant.
In both cases by the definition of quasi-running secrecy we know that neither msg(sendxcηy

c
α) nor the continuation process

proc(vη[c
′], [xη/w][ycα+a/y

c
α]P@c ⊔ d1) are relevant. It is then straightforward to see that

D′1proc(vη[c′], [xη/w][ycα+1/y
c
α]P@c ⊔ d1)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ.

Subcase 2. proc(vη[c′], w ← recvycα;P@d1) is relevant. By definition of relevancy, we get that c ⊔ d1 ⊑ ξ. This implies
that ycα is relevant in the pre-step. From relevancy of ycα and the quasi-running secrecy lower than or equal to the observer
of the positive message msg(sendxcη y

c
α; ) we get that the message is relevant too. By assumption:

D2 = D′2msg(sendxcη y
c
α)proc(uγ [c

′], w ← recvycα;P@d1)D′′2 .

We have
|D2| 7→ |D′2proc(uγ [c′], [xη/w][ycα+1/y

c
α]P@d1 ⊔ c)D′′2 |

We need to consider that the quasi-running secrecy of the process may increases in the post step based on the code of P .
The argument for this case is similar to the previous cases of the proof. See Case 1.Subcase 2.. One interesting situation is
when the relevancy of chain of positive and relevant messages in the pre-step of D′i changes in the post-step. By relevancy
in the pre-step we know that these chains exist in both runs, so the same chain of messages will become irrelevant in the
post-step of both runs.
Case 8. D1 = D′1proc(yα[c], w ← recvycα;P@d1)msg(sendxcηy

c
α)D′′1 and

|D′1proc(yα[c], w ← recvycα;P@d1)msg(sendxcηy
c
α)D′′1 | 7→ |D′1proc(yα+1[c], [xη/w][y

c
α+1/y

c
α]P@d1)D′′1 |

We consider sub-cases based on relevancy of process offering along ycα.
Subcase 1. proc(yα[c], w ← recvycα;P@d1) is not relevant. By definition either d1 ⊔ c = c ̸⊑ ξ or none of the channels
connected to P including ycα are relevant. In both cases the negative message msg(sendxcηy

c
α) and the continuation process

proc(yα+1[c], [xη/w][y
c
α+c/y

c
α]P@d1) are not relevant either. It is then straightforward to see that

D′1proc(yα+1[c], [xη/w][y
c
α+1/y

c
α]P@d1)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ.
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Subcase 2. proc(yα[c], w ← recvycα;P@d1) is relevant. By definition of relevancy, we get that c ⊔ d1 = c ⊑ ξ and ycα
is relevant. This means that msg(sendxcη y

c
α) and the channel xcη are relevant. By assumption that D1⇓ξ =ξ D2⇓ξ, and

definition of =ξ:
D2 = D′2proc(yα[c], w ← recvycα;P@d1)msg(sendxcη y

c
α)D′′2 .

We have
|D2| 7→ |D′2proc(yα+1[c], [x

c
η/w][y

c
α+1/y

c
α]P@d1)D′′2 |F2

The proof is similar to previous cases.
Case 9. D1 = D′1proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ

′);Q@d1)D′′1and
def(Ψ′; Ξ′ ⊢ X = P@ψ′ :: x : B′[ψ]) and

|D′1proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ
′);Q@d1)D′′1 |

7→
|D′1proc(x0[d], γ̂(P )@d2)proc(yα[c], [xd0/xd]Q@d1)D′′1 |

where γ = (γsec, γvar) γ̂(ψ) = d, γ̂(ψ′) = d2, and γ̂(Ξ′) = Γ1. We consider sub-cases based on relevancy of process offering
along ycα.
Subcase 1. proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ

′);Q@d1) is not relevant. By definition either d1 ̸⊑ ξ or none of
the channels of this process including ycα are relevant.
In both cases, it means that proc(x0[d], γ̂(P )@d2) and proc(yα[c], [x

d
0/x

d]Q@d1) are not relevant either. Note that d1 ⊑ d2
and thus d2 ̸⊑ ξ if d1 ̸⊑ ξ.

D′1proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ
′);Q@d1)D′′1⇓ξ =ξ D′1D′′1⇓ξ =ξ D1⇓ξ =ξ D2⇓ξ

Subcase 2. proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ
′);Q@d1) is relevant. By definition of relevancy, we get that d1 ⊑ ξ

and all channels of this process with secrecy levels lower than or equal to the observer level are relevant. By assumption
that D1⇓ξ =ξ D2⇓ξ, and definition of =ξ:

D2 = D′2proc(yα[c], (x[ ˆγsec(ψ)] ← X[γ]← Γ1)@ ˆγsec(ψ
′);Q@d1)D′′2 .

We have
|D2| 7→ |D′2proc(x0[d], γ̂(P )@d2)proc(yα[c], [xd0/xd]Q@d1)D′′2 |

Remark: we can assume that the fresh channel being spawned will be x0 in both runs. Moreover, the (unique) substitution
γ̂ is the same when stepping both runs.
Note that if xd0 has secrecy level lower than or equal to the observer level, then taking this step won’t change relevancy
of any channels. Otherwise some resource of the process may become irrelevant after this step, e.g. xd0 may block their
relevancy path if d ̸⊑ ξ or in the case where d2 ̸⊑ ξ. But this happens to the processes in the both runs and can only change
relevant processes/messages in the pre-step to irrelevant processes/messages in the post-step. (similar to the cases 3 and 4
for ⊗ and ⊸)
Case 10. D1 = D′1proc(yα[c], FY [γ]@c)D′′1 and
def(Ψ′;u:C[ψ] ⊢ FY = FwdC,wψ←uψ@ψ :: w : C[ψ]) and

|D′1proc(yα[c], FY [γ]@c)D′′1 | 7→ |D′1proc(yα[c], FwdC,ycα←zcβ@d1)D′′1 |

where γ = (γsec, γvar) γ̂(ψ) = c, γ̂(w) = yα, and γ̂(u) = zβ .
The proof of this case is similar to the proof of Case 9(Spawn) by considering sub-cases based on relevancy of process

offering along ycα.

C. Fundamental theorem

Theorem 5 (Fundamental Theorem). For all security levels ξ, and configurations

Ψ;Γ1 ⊩ D1 :: uα:T1[c1], and Ψ;Γ2 ⊩ D2 :: vβ :T2[c2],

with D1⇓ξ =ξ D2⇓ξ, Γ1 ⇓ ξ = Γ2 ⇓ ξ, and uα:T1[c1] ⇓ ξ = vβ :T2[c2] ⇓ ξ we have

(Γ1 ⊩ D1 :: uα:T1[c1]) ≡Ψ
ξ (Γ2 ⊩ D2 :: vβ :T2[c2]).

Proof. Our goal is to show:
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For all D1 and D2 that are IFC-typed, i.e.,Ψ;Γ1 ⊩ D1 :: uα:T1[c1] and Ψ;Γ2 ⊩ D2 :: vβ :T2[c2], with D1⇓ξ =ξ D2⇓ξ,
and Γ1 ⇓ ξ = Γ2 ⇓ ξ = Γ, and uα:T1[c1] ⇓ ξ = vβ :T2[c2] ⇓ ξ = Ks we have ∀B1 ∈ H-Providerξ(Γ1).∀B2 ∈
H-Providerξ(Γ2).∀T1 ∈ H-Clientξ(xα:A1[c1]).∀T2 ∈ H-Clientξ(yβ :A2[c2]).

∀m. (B1|D1|T1,B2|D|2T2) ∈ EJ|Γ| ⊩ |Ks|Km, and ∀m. (B2|D|2T2,B1|D|1T1) ∈ EJ|Γ| ⊩ |Ks|Km..
Without loss of generality, we only prove one part of this symmetric relation, i.e.:

For all D1 and D2 that are IFC-typed, i.e.,Ψ;Γ1 ⊩ D1 :: uα:T1[c1] and Ψ;Γ2 ⊩ D2 :: vβ :T2[c2], with D1⇓ξ =ξ D2⇓ξ,
and Γ1 ⇓ ξ = Γ2 ⇓ ξ = Γ, and uα:T1[c1] ⇓ ξ = vβ :T2[c2] ⇓ ξ = Ks we have ∀B1 ∈ H-Providerξ(Γ1).∀B2 ∈
H-Providerξ(Γ2).∀T1 ∈ H-Clientξ(xα:A1[c1]).∀T2 ∈ H-Clientξ(yβ :A2[c2]).

∀m. (B1|D|1T1,B2|D|2T2) ∈ EJ|Γ| ⊩ |Ks|Km

The goal is equivalent to:
(⋆1) For all m, for all D1 and D2 that are IFC-typed, i.e.,Ψ;Γ1 ⊩ D1 :: uα:T1[c1] and Ψ;Γ2 ⊩ D2 :: vβ :T2[c2], with
D1⇓ξ =ξ D2⇓ξ, and Γ1 ⇓ ξ = Γ2 ⇓ ξ = Γ, and uα:T1[c1] ⇓ ξ = vβ :T2[c2] ⇓ ξ = Ks we have ∀B1 ∈
H-Providerξ(Γ1).∀B2 ∈ H-Providerξ(Γ2).∀T1 ∈ H-Clientξ(xα:A1[c1]).∀T2 ∈ H-Clientξ(yβ :A2[c2]).

(B1|D|1T1,B2|D|2T2) ∈ EJ|Γ| ⊩ |Ks|Km

First, we show that it is enough to prove the following goal.
(⋆2) For all m, for all D′1 and D′2 that are IFC-typed, i.e.,Ψ;Γ ⊩ D′1 :: Ks and Ψ;Γ ⊩ D′2 :: Ks, with D′1⇓ξ =ξ D′2⇓ξ,
and Γ ⇓ ξ = Γ, and Ks ⇓ ξ = Ks we have

(|D′1|, |D′2|) ∈ EJ|Γ| ⊩ |Ks|Km

We need to show that from ⋆1, we get ⋆2:
Apply a for all introduction on ⋆2 to get an arbitrary number m, configurations D1 and D2, and high providers B1
and B2 and high clients T1 and T2 satisfying the given assumptions. We build well-typed configurations stel D′1 and
D′2 with the following steps:
1) Let’s assume T1 ̸= · and T2 ̸= ·, i.e., T1 ∈ Tree(uα:T1 ⊩ :1) and c1 ̸⊑ ξ and T2 ∈ Tree(vβ :T2 ⊩ :1) and

c1 ̸⊑ ξ. We annotate all channels in T1 with security level c1 and all processes with running secrecy c1. We add
the same security variable ψ correspondingly to all process variables defined in the signature. We also provide a
mapping for the spawns appearing in the process terms such that they map all security variables ψ in the process
definition to the security variable c1. It is straightforward to see that this annotation of T1 which we call T1 is
IFC-typed. With a similar approach we can build the IFC-typed annotation of T1 which we call T2.

2) If T1 = · and T2 = ·, then define T1 = T2 = ·, and observe that they are trivially IFC-typed.
3) Consider every tree A1 ∈ B1, we know that A1 ∈ Tree(xγ :A) for some xγ :A[d] ∈ Γ1 such that d ̸⊑ ξ, we build

a security-annotated version of A1 as A1, similar to (1), by annotating all channels/running secrecy/substitutions
with the level d. From all such annotated trees we build the annotated forest B1. Similarly, we can build annotated
forest B2. Again it is straightforward to show that both B1 and B2 are IFC-typed.

We define D′1 = B1D1T1 and D′2 = B2D2T2. Note that these two configurations are both IFC-typed, and also we
have Ψ;Γ ⊩ D′1 :: Ks and Ψ;Γ ⊩ D′2 :: Ks. We also know that D′1 ⇓ ξ = D′2 ⇓ ξ. Observe that all relevant nodes
occur in D1 and D2, for which by assumption we know D1 ⇓ ξ = D2 ⇓ ξ. Now we can apply ⋆2 to get what we
want.

It remains to prove (⋆2):
(⋆2) For all m, for all D1 and D2 that are IFC-typed, i.e.,Ψ;Γ ⊩ D1 :: Ks and Ψ;Γ ⊩ D2 :: Ks, with D1⇓ξ =ξ D2⇓ξ,
and Γ ⇓ ξ = Γ, and Ks ⇓ ξ = Ks we have

(|D1|; |D2|) ∈ EJ|Γ| ⊩ |Ks|Km

The proof is by induction on the index m.
Base case. m = 0. We consider arbitrary configurations (∀I on the goal). By the configuration typing, we know that

(|D1|; |D2|) ∈ Tree(|Γ| ⊩ |Ks|),
which is enough to complete the proof.

Inductive case. m = m′ + 1.

(B1|D1|T1;B2|D2|T2) ∈ Tree(|Γ| ⊩ |Ks|).
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Consider an arbitrary D′1 such that |D1| 7→∗Υ;Θ |D′1|. By Preservation we know that D′1 is IFC-typed for the same interface
Ψ;Γ ⊩ D′1 :: Ks By Lem. 8, for some D′2, we get |D2| 7→∗Υ |D′2|, such that Ψ;Γ ⊩ D′2 :: Ks with D′2 ⇓ ξ = D′2 ⇓ ξ.

We need to show that

(†1) ∀u′δ ∈ Out(|Γ| ⊩ |K|). if u′δ ∈ Υ. then (|D′1|; |D′2|) ∈ VJ|Γ| ⊩ |Ks|Km·;u′
δ
and

(†2) ∀u′δ ∈ In(|Γ| ⊩ |K|). if u′δ ∈ Θ. then (|D′1|; |D′2|) ∈ VJ|Γ| ⊩ |Ks|Kmu′
δ;·

We prove both †1, and †2. We consider an arbitrary u′δ and provide a case analysis based on its type. If there is no such u′δ
in the specified set, then the statements trivially holds. There might be a channel in both of these sets, if and only if D1 = ·.

Proof of †1. Consider an arbitrary channel u′δ:T ∈ Out(|Γ| ⊩ |K|s) and assume u′δ:T ∈ Υ. We consider different cases
based on the session type T .

Case 1. u′δ:T [c′] = Ks = uα:T1[c1] = uα:1[c1], and D′1 = D′′1msg(closeuc1α ).
By the typing rules and D′1 = D′′1msg(closeuc1α ) we know that D′′1 = ·, and Γ1 = ·.
Note that by the definition of relevancy, all processes in D′1 and D′2 has to be relevant. As a result,

D′2 = msg(closeuc1α ).

Thus, we satisfy the conditions required by Line 1 of the logical relation to establish

†1(|D′1|; |D′2|) ∈ VJ· ⊩ |uα:1[c1]|Km·;u′
δ

as needed.
Case 2. u′δ:T [c′] = Ks = uα:T1[c1] = uα:⊕ {ℓ:Aℓ}ℓ∈I [c1], and D′1 = D′′1msg(uc1α .k).
By the assumption of the theorem, D′1 and D′2 are both relevant, and we have D′2 = D′′2msg(uc1α .k). Removing msg(uc1α .k)
from D′1 and D′2 does not change relevancy of the remaining configuration when c1 ⊑ ξ:

D′′1⇓ξ = D′′2⇓ξ.
We can apply the induction hypothesis on the index m′ < m to get

(|D′′1 |, |D′′2 |) ∈ EJ|Γ| ⊩ |uα+1:Ak[c1]|Km
′
.

By line (2) in the definition of V:

†1(|D′′1msg(uc1α .k)|, |D′′2msg(uc1α .k)|) ∈ VJ|Γ| ⊩ |uα:⊕ {ℓ : Aℓ}ℓ∈I [c1]|Km
′+1
·;u′
δ
.

Case 3. u′δ:T [c′] = Ks = uα:T1[c1] = uα:(A⊗B)[c1], and

D′1 = D′′1A1msg(sendxc1β uc1α )

where Γ = Γ′,Γ′′, and Ψ;Γ′′ ⊩ A1 :: (xβ :A[c1]), and Ψ;Γ′ ⊩ D′′1 :: (uα+1:A[c1]).
Since D′1 and D′2 are both IFC-typed, they enjoy the tree invariant. Thus both of them are relevant and since D′1 ⇓ ξ =
D′2 ⇓ ξ, we have

D′2 = D′′2A2msg(sendxc1β uc1α ),

such that Ψ;Γ′′ ⊩ A2 :: (xβ :A[c1]), and Ψ;Γ′ ⊩ D′′2 :: (uα+1:A[c1]). Moreover, by relevancy of D′i (and relevancy of xc1β )
we get D′′1⇓ξ = D′′2⇓ξ and A1⇓ξ = A2⇓ξ.
Note that in the particular case with xβ :A[c1] ∈ Γ, we have Ai = · and Γ′′ = xβ :A[c1].
We apply the induction hypothesis on the index m′ < m for Ψ;Γ′′ ⊩ Ai :: (xβ :B[c1]) to get

(|A1|, |A2|) ∈ EJ|Γ′′| ⊩ |xβ :A[c1]|Km
′
.

and apply the induction hypothesis on the index m′ < m for Ψ;Γ′ ⊩ D′′i :: (uα+1:A[c1])

(|D′′1 |, |D′′1 |) ∈ EJ|Λ1| ⊩ |wγ :B[c1]|Km
′
.

By line (4) in the definition of V:

†1(|A1D′′1msg(sendxc1β uc1α )|, |A2D′′1msg(sendxc1β uc1α )|) ∈ VJ|∆| ⊩ |uα:A⊗B[c1]|Km
′+1
·;u′
δ
.

Case 4. Γ = Γ′, xγ :&{ℓ : Aℓ}ℓ∈L[c], and u′δ:T [c
′] = xγ :&{ℓ : Aℓ}ℓ∈L[c], and D′1 = msg(xcγ .k)D′′1 .

By the assumption of the theorem, D′2 = msg(xcγ .k)D′′2 . Moreover, D′′1⇓ξ = D′′2⇓ξ. The reason is c ⊑ ξ and thus xcγ+1 is
relevant in D′′i and no relevancy changes in the configurations after removing the negative message.
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We can apply the induction hypothesis on the smaller index m′ < m to get

(|D′′1 |; |D′′2 |) ∈ EJ|Γ′, xγ+1:Ak[c]| ⊩ |Ks|Km′
.

By line (8) in the definition of V:

†1(|msg(xcγ .k)D′′1 |; |msg(xcγ .k)D′′2 |) ∈ VJ|Γ′, xγ :&{ℓ:Aℓ}ℓ∈L[c]| ⊩ |Ks|Km′+1
·;u′

δ
.

Case 5. Γ = Γ′,Γ′′, xγ :(A⊸ B)[c], and u′δ:T
′[c′] = xγ :(A⊸ B)[c], and

D′1 = A1msg(sendycδ x
c
γ)D′′1 ,

such that Ψ0; Γ
′′ ⊩ A1 :: yδ:A[c] and Ψ0; Γ

′, xγ+1:B[c] ⊩ D′′1 :: Ks.
The message msg(sendycδ x

c
γ) is relevant in D′1. By assumption of the theorem, D′2 = A2msg(sendycδ x

c
γ)D′′2 , such that

Ψ0; Γ
′′ ⊩ A2 :: yδ:A[c] and Ψ0; Γ

h
2 ,Γ
′, xγ+1:B[c] ⊩ D′′2 :: Ks with Γh2 being the context of all the channels in Γ2 with

security higher than or incomparable to the observable level ξ. Again because of the tree invariant every resource of A2

has a secrecy less than or equal to the observer. Also, by assumption we know that D′1⇓ξ = D′2⇓ξ. By definition of
relevancy, we know that msg(sendycδ x

c
γ) and the tree A1 connected to it are relevant in D1 and thus A1 is equal to A2,

i.e, A1 ⇓ ξ = A2 ⇓ ξ.
Removing the tress A1 and A2 and the messages from both configurations does not change relevancy of the rest of the
configuration since xcγ+1 will remain relevant, i.e., D′′1⇓ξ = D′′2⇓ξ.
We can apply the induction hypothesis on the smaller index m′ < m and A1 ⇓ ξ = A2 ⇓ ξ and D′′1 ⇓ ξ = D′′2 ⇓ ξ to get

(|A1|, |A2|) ∈ EJ|Γ′′| ⊩ |yδ:A[c]|Km
′
, and

(|D′′1 |, |D′′2 |) ∈ EJ|Γ′, xγ+1:B[c]| ⊩ |Ks|Km′
.

By line (10) in the definition of V:

†1(|A1msg(sendycδ x
c
γ)D′′1 |; |A2msg(sendycδ x

c
γ)D′′2 |) ∈ VJ|Γ′1, xγ :A⊸ B[c]| ⊩ |Ks|Km′+1

·;u′
δ
.

Proof of †2. Consider an arbitrary channel u′δ:T ∈ In(|Γ| ⊩ |K|) We consider different cases based on the session type T .
Case 1. u′δ:T [c′] = Ks = uα:T1[c1] = uα:&{ℓ:Aℓ}ℓ∈I [c1].
We need to apply the induction hypothesis on the index m′ < m, but first we need to show that the invariant of the
induction holds. Consider an arbitrary label k ∈ L.From D′1⇓ξ = D′2⇓ξ and c1 ⊑ ξ, we get

D′1msg(uc1α .k)⇓ξ = D′2msg(uc1α .k)⇓ξ.
By induction hypothesis

(|D′1|, |D′2|) ∈ EJ|Γ| ⊩ |uα+1:Ak[c1]|Km
′
.

By line (3) in the definition of V:

†2(|D′1msg(uc1α .k)|, |D′2msg(uc1α .k)|) ∈ VJ|Γ| ⊩ |uα:&{ℓ : Aℓ}ℓ∈I [c1]|Km
′+1

u′
δ;·

.

Case 2. u′δ:T [c′] = Ks = uα:T1[c1] = uα:A⊸ B[c1]. By assumption and c1 ⊑ ξ, we know that D′1 and D′2 are relevant.
Consider an arbitrary channel xβ , which is not a free name in Γ ⊩ Ks. We know c1 ⊑ ξ, and thus adding a negative
message sending xβ [c1] along uα[c1] does not change the relevancy of the rest of processes:

D′1msg(sendxc1β uc1α )⇓ξ = D′2msg(sendxc1β uc1α )⇓ξ
We can apply the induction hypothesis on m′ < m to get

(|D′1msg(sendxc1β uc1α )|, |D′2msg(sendxc1β uc1α )|) ∈ EJ|Γ, xβ :A[c1]| ⊩ |uα+1:B[c1]|Km
′
.

By line (5) in the definition of V:
†2(|D′1|, |D′2|) ∈ VJ|Γ| ⊩ |uα:A⊸ B[c1]|Km

′+1
u′
δ
;· .

Case 3. Γ = Γ′, xγ :1[c], and u′δ:T
′[c′] = xγ :1[c]

We first briefly explain why the invariant of induction holds after we bring the closing message inside D′i and remove the channel xcγ
from ∆, i.e.

msg(closexcγ)D′1⇓ξ = msg(closexcγ)D′2⇓ξ.

• If the parent of msg(closexcγ) in D′1 is relevant in D′1 before bringing the message inside then by the assumption of the theorem,
it is the same as the parent of msg(closexcγ) in D′2. If after adding the message D′1 the parent still remains relevant, it means that
it has at least one other relevant channel other than xcγ in D′1 which also exists in D′2 and will be relevant after adding the message
to D′2. If after adding the message, the message’s parent in D′1 becomes irrelevant, it means that it does not have a relevant path to
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any other channel in ∆′ and K. By the assumption of theorem the parent of the message in D′2 does not have such path either. The
same argument holds for any other node that becomes irrelevant because of adding the closing message to D′i. As a result the same
processes becomes irrelevant in both D′1 and D′2 after adding the message to them and the proof of this case is complete. The same
argument holds for the case in which the parent of msg(closexcγ) in D′2 before adding the message is relevant.

• Otherwise the parent of msg(closexcγ) is irrelevant in D′1 and D′2 before adding the message and remains irrelevant after that too.
The proof in this case is straightforward.

Now that the invariant holds, we can apply the induction hypothesis on the smaller index m′ < m:

(|msg(closexcγ)D′1|; |msg(closexcγ)D′2|) ∈ EJ|Γ′| ⊩ |Ks|Km
′
.

By line (6) in the definition of V ,
†2 (|D′1|; |D′2|) ∈ VJ|Γ′, xγ :1[c]| ⊩ |Ks|Km

′+1
u′
δ
;·

Case 4. Γ = Γ′, xγ :⊕ {ℓ : Aℓ}ℓ∈L[c], and u′δ:T
′[c′] = xγ :⊕ {ℓ : Aℓ}ℓ∈L[c].

Consider an arbitrary label k ∈ L. We have msg(xcγ .k)D′1⇓ξ = msg(xcγ .k)D′2⇓ξ, since xcγ+1 is relevant and the positive messages
msg(xcγ .k) in both configurations are relevant if and only if their parents are. Thus adding the message does not change relevancy of
any other process.
We can apply the induction hypothesis on the smaller index m′ < m to get

(|msg(xcγ .k)D′1|; |msg(xcγ .k)D′2|) ∈ EJ|Γ′, xγ+1 : Ak[c]| ⊩ |Ks|Km
′
.

By line (7) in the definition of V:

†2(|D′1|;D′2) ∈ VJ|Γ′, xγ :⊕ {ℓ : Aℓ}ℓ∈L[c]| ⊩ |Ks|Km
′+1

u′
δ
;· .

Case 5. Γ = Γ′, xγ :(A⊗B)[c], and u′:T ′[c′] = xγ :(A⊗B)[c].
Consider an arbitraray channel yη which is not a free name in Γ ⊩ Ks. We have

msg(sendycη x
c
γ)D′1⇓ξ =ξ msg(sendycη x

c
γ)D′2⇓ξ :

The quasi-running secrecy of msg(sendycη x
c
γ) is lower than or equal to the observer level if the quasi-running secrecy of its parent

is lower than or equal to the observer level. So the relevancy of the parent of the message and thus the rest of configurations do not
change by adding the message to the configuration.
We can apply the induction hypothesis on the smaller index m′ < m to get

(|msg(sendycη x
c
γ)D′1|; |msg(sendycη x

c
γ)|) ∈ EJ|Γ′, yη:A[c], xγ+1:B[c]| ⊩ |Ks|Km

′
.

By line (9) in the definition of V:

(|D′1|; |D′2|) ∈ VJ|Γ′, xγ :A⊗B[c]| ⊩ |Ks|Km
′+1

u′
δ
;· .
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IX. DIAMOND PROPERTY, CONFLUENCE, AND BACKWARD/FORWARD CLOSURES

This section introduces various supporting lemmas, asserting the diamond property and confluence, as well as forward and
backward closure. These lemmas are used in the proofs of Lem. 16 and Corollary 2 introduced in § IX, which are in turn
instrumental in proving transitivity (see § XI) and adequacy (see § XII).

A. Diamond property, confluence, and minimal sending configuration

Subsequent lemmas rely on the notions of active and produced processes and messages, which we define next.

Definition 20 (Produced processes and messages). For each dynamic step in Fig. 3, we say that a process or message is
produced in the step if it occurs in the post-step (right side of 7→ notation). For example, the transition step for Spawn,
produces two processes

proc(x0, ([x0,Λ/x,Λ
′]γ̂ P )) andproc(yα, ([x0/x]Q)),

and the transition step for ⊸snd produces a message and a process

msg(sendxβ uγ) andproc(yα, ([uγ+1/uγ ]P )).

⋄
Definition 21 (Active processes and messages). For each dynamic step in Fig. 3, we define the active configuration A as the
set of processes and messages occurring in the pre-step (the left side of 7→ notation). For example, in the transition step for
Spawn, the active configuration is the single process

proc(yα, (x← X ← Λ);Q),

and in the transition step for ⊸rcv, the active configuration is

proc(yα, (w ← recv yα;P ))msg(sendxβ yα).

We define the set of active configurations, i.e. active, for D1 7→∗Υ∆⊩K D′1 as the union of every step’s active configuration.
A process is called active in D1 7→∗Υ D′1, if it is in the set active.

⋄
Lemma 9 (Uniqueness of process productions). Consider ∆ ⊩ D :: K, and D 7→∗ D′ 7→ D1proc(x, P )D2, such that
proc(x, P ) is produced in the last step. Then process proc(x, P ) does not occur in any of the previous steps D 7→∗ D′.

The same result hold for the production of a message.

Proof. Observe the following invariant in the dynamics
1) In each configuration, there exists at most one process or message offering along a particular generation of x.
2) The offering channel of processes that are not active or produced in the step does not change.
3) The offering channel of a negative message is a fresh generation of a channel (and no process offers along it before the

message is received).
4) In the production of proc(xα, P ), either (a) xα is freshly generated (in the case of Spawn for the callee), or (b)

proc(xα, P ) replaces another process proc(xα, P
′) that offers along xα and has a larger process term, i.e. |P | < |P ′|

(in 1rcv,⊕rcv,⊗rcv,&snd,⊸snd, and spawn for the continuation of the caller), or (c) xα is a fresh generation of x (in
⊕snd,⊗snd,&rcv,⊸rcv)

Consider production of a process proc(xα, P ) and the cases described in 4. If 4.(a) or 4.(c) hold, then by freshness of xα,
such process has not been produced before. It is enough to consider case 4.(b). Assume that there is another occurrence of
process proc(xα, P ) before this production; By the observations 1, 2 and 4 we get to a contradiction: there must be a chain
of productions satisfying 4.(b) with decreasing sizes from the earlier proc(xα, P ) to the later one proc(xα, P ), which is
contradictory.

With a similar reasoning we can prove that if ∆ ⊩ D :: K, and D 7→∗ D′ 7→ D1msg(M)D2, such that msg(M) is produced
in the last step and u is the name of the message resources, then msg(M) does not occur in any of D 7→∗ D′ steps.

Lemma 10 (Diamond Property). If ∆ ⊩ D1 :: K and † D1 7→Υ
∆⊩K D′1 and †′ D1 7→Υ′

∆⊩K D′′1 , and D′1 ̸= D′′1 then there is
a configuration D such that ⋆ D′1 7→Υ′′

∆⊩K D, and ⋆′ D′′1 7→Υ′′

∆⊩K D, where Υ ∪ Υ′ = Υ′′. The messages produced along the
channels Υ ∩Υ′ are identical in D′1 and D′′1 and D.

Moreover, every process in D′1 that is not an active process of D1 7→Θ′;Υ′

∆⊩K D′′1 is in D. And every process in D′′1 that is not
an active process of D1 7→Θ;Υ

∆⊩K D′1 is in D.

Proof. The proof is straightforward by cases. The key is to build ⋆ (locally) identical to †′, and ⋆′ (locally) identical to †.
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Lemma 11 (Confluence). If ∆ ⊩ D1 :: K and †D1 7→m′
Υ

∆⊩K D′1 and †′D1 7→n′
Υ′

∆⊩K D′′1 , then there is a configuration D such
that ⋆D′1 7→

jΥ′′
∆⊩K D for some j ≤ n′, and ⋆′D′′1 7→

kΥ′′
∆⊩K D for some k ≤ m′, where Υ ∪ Υ′ = Υ′′. The messages produced

along the channels Υ ∩ Υ′ are identical in D′1 and D′′1 and D1. The steps in ⋆ are (locally) identical to the steps of †′ that
do not occur in †. And the steps in ⋆′ are (locally) identical to the steps of † that do not occur in †′.

Moreover, every process in D′1 that is not an active process of D1 7→∗Υ′
∆⊩K D′′1 is in D. And every process in D′′1 that is not

an active process of D1 7→∗Υ∆⊩K D′1 is in D.

Proof. It follows by standard inductions from the diamond property (Lem. 10). The induction is on the pair (n′,m′). If n′ = 0
and m′ = 0, the proof is straightforward. Similarly, if n′ = 1 and m′ = 0 or n′ = 0 and m′ = 1 the proof is straightforward.
For n′ = 1 and m′ = 1, we apply the diamond property (Lem. 10). Assume that n′ = n+ 1 and m′ = m+ 1. We form the
following diagram to sketch the structure of the proof.

By induction hypothesis, from D′′2 and D′2, we build D2 (with the blue steps) that satisfies the required properties. Then,
again by induction we build D3 (with the red steps) and D4 (with the violet steps). And finally, with a last induction, we build
D (with the brown steps). The diagram depicts how the required properties move along the steps. For each configuration, we
put the set of channels that it sends along them near the configuration. In particular, for D′1, we put Υ = Υ1,Υ2, x and for
D′′1 , we put Υ′ = Υ′1,Υ2, y. The set Υ2 is in both Υ and Υ′, and we have Υ1 ∩Υ′1 = ∅, i.e. we put all the common channels
(except possibly x and y) in Υ2. We assume that the step D′2 7→ D′1 produces a message along channel x. In the case that this
step does not produce any message we can simply ignore x. Similarly, we assume that the step D′′2 7→ D′′1 produces a message
along channel y. In the case that this step does not produce any message we can simply ignore y. At the end, we can build
D with at most m+ 1 steps from D′′1 and at most n+ 1 steps from D′1. The configuration D sends messages along the union
of Υ and Υ′, and by induction the messages along the intersection of Υ ∩ Υ′ are identical in D′1 and D′′1 and D. The proof
of the second part of the lemma is straightforward by stating the required property for each inductive step and passing them
down to D in the diagram.

As a straightforward corollary to the first part of the confluence lemma, we get that the messages produced along the channels
Υ ∩ Υ′ are identical in D′1 and D′′1 , i.e., identical messages will be produced along the same channels, independent of the
non-deterministic path that we take to produce them.

Corollary 1 (Active set independent of non-determinism). If D1 7→∗ D′1AD′′1 7→ D1
1proc(x, P )D2

1 and D1 7→∗ D′2A′D′′2 7→
D1

2proc(x, P )D2
2 , where A and A′ are the active parts that produce proc(x, P ), then A = A′.

Proof. This is another corollary to the second part of the confluence lemma (Lem. 11). First observe that A is not active in
D1 7→∗ D′2A′D′′2 : if it is active, we produce proc(x, P ) twice in D1 7→∗ D′2A′D′′2 7→ D1

2proc(x, P )D2
2 , which contradicts

with uniqueness of process productions (Lem. 9). Similarly, A′ is not active in D1 7→∗ D′1AD′′1 . With the second part of the
confluence lemma, for some D, we have D′1AD′′1 7→∗ D and D′2A′D′′2 7→∗ D such that both A and A′ occur in D. If A ≠ A′,
we can produce proc(x, P ) twice from D which by Lem. 9 is contradictory. Thus, know that A = A′.

Note: here we rely on the fact that the steps in Fig. 3 produce the post-steps uniquely from the pre-steps. In particular, in
the spawn rule we assume that the fresh channel name is uniquely determined based on the offering channel and the process
term of the caller.

Similarly, we can prove that if D1 7→∗ D′1AD′′1 7→ D1
1msg(M)D2

1 and D1 7→∗ D′2A′D′′2 7→ D1
2msg(M)D2

2 , where A and
A′ are the active parts that produce msg(M), then A = A′.
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In the proof of Corollary 1, we used the fact that the pre-step for each substitution is unique. This can be proved independently
by a straightforward observation that if D1 7→∗ D′1AD′′1 7→ D1

1[xβ/yα]D2
1 and D1 7→∗ D′2A′D′′2 7→ D1

2[xβ/yα]D2
2 , where A

and A′ are forwarding processes that step by renaming the resource yα to xβ ([xβ/yα]), then A = A′.
Lemma 12 (Building minimal sending configuration). Consider ∆ ⊩ D2 :: K, a set of channels Υ1 ⊆ ∆,K and D2 7→∗Υ2 D′2
for some Υ2 ⊇ Υ1. There exists a set Υ and a configuration D′′2 such that Υ1 ⊆ Υ ⊆ Υ2 and D2 7→∗Υ D′′2 and ∀D1

2,Υ3 ⊇
Υ1. if D2 7→∗Υ3 D1

2 thenD′′2 7→∗Υ3 D1
2 . We call D′′2 and Υ the minimal sending configuration and the minimal sending set with

respect to Υ1 and D2, respectively.

Proof. We first provide an algorithm to build D′′2 and Υ based on the transition steps in D2 7→∗Υ2 D′2 and the set Υ1 and we
show that D2 7→∗Υ D′′2 and D′2 7→∗Υ2 D′′2 and Υ1 ⊆ Υ ⊆ Υ2. Then, we prove that if we apply the algorithm on every D1

2 with
D2 7→∗Υ1 D1

2 and Υ1 ⊆ Υ3, we build the same D′′2 and Υ that satisfies D′′2 7→∗Υ3 D1
2 .

Algorithm 1 Building the minimal sending configuration

Require: A set Υ1 of channels, configuration D2, and a configuration D with D2 7→∗Υ2 D and Υ1 ⊆ Υ2.
Ensure: A set Υ, and a configuration D′′2 with D2 7→∗Υ D′′2 and D′′2 7→∗Υ2 D and Υ1 ⊆ Υ ⊆ Υ2.
S := the local transition steps in D2 7→∗Υ2 D
i := 0
X0 := ∅
M := the messages in D along Υ1

A := ∅
while (M ̸= ∅) do

for (s inS) do
if ( ∃p ∈ post(s). p ∈M ) then ▷ post(s) is the list on the right-hand side of s.

A := A ∪ {pre(s)} ▷ pre(s) is the set of processes on the left-hand side of s.
Xi := Xi ∪ {s}

end if
end for
i := i+ 1
Xi = ∅
M := A
A := ∅

end while

Cfg := D2

Tns := ·
i = i− 1
while (i >= 0) do

for (s in Xi) do
Cfgpost := the global post-state when the local step s applies to the configuration Cfg.
Tns.append(Cfg 7→ Cfgpost)
Cfg := Cfgpost

end for
i = i− 1

end while
D′′2 := Cfg
Υ := Send(D′′2 ) ▷ Υ is a set of channels along which D′′2 is ready to send.
return D′′2 ,Tns,Υ

For every given Υ1, D2, and D with D2 7→∗Υ2 D and Υ1 ⊆ Υ2, Algorithm 1 returns a configuration D′′ and set Υ and builds
the dynamic transition D2 7→∗Υ D′′2 in Tns. Observe that the steps of D2 7→∗Υ D′′2 are all local transitions of D2 7→∗Υ2 D.
Thus, by the confluence lemma (Lem. 11), we know that D′′2 7→∗Υ2 D.

It remains to be shown that the D′′2 that Algorithm 1 builds is independent of the choice of D and Υ2, and is uniquely
identified for each D2 and Υ1. By the confluence lemma, we know that for each D with D2 7→∗Υ2 D and Υ1 ⊆ Υ2, the
algorithm initialized set M with the same messages. In the first for loop, the algorithm collects the generators of the set M
in A and the local steps that produces the set M in Xi. By Corollary 1, the set of generators of a set M is the same for
each D with D2 7→∗Υ2 D. Similarly, the set of local steps that produces the set M from its generators is the same despite the

32



choice of the configuration D with D2 7→∗Υ2 D. As a result, we collect the same local transition steps in all Xis for every D
with D2 7→∗Υ2 D. The local transition steps in all Xis are those with which we construct D′′2 from D2 and from D′′2 we can
uniquely identify the set Υ, and the proof is complete.

B. Backward closure

Lemma 13 (Backward closure on the second run). The second run enjoys backward closure:
1) If (D1;D2) ∈ EJ∆ ⊩ KKk and for D′′2 ∈ Tree(∆ ⊩ K), we have D′′2 7→∗ D2 then (D1;D′′2 ) ∈ EJ∆ ⊩ KKk.
2) If (D1;D2) ∈ VJ∆ ⊩ KKk+1

·;yα and for D′′2 ∈ Tree(∆ ⊩ K), we have D′′2 7→∗ D2 with D′′2 sending along channel yα, then
(D1;D′′2 ) ∈ VJ∆ ⊩ KKk+1

·;yα .
3) If (D1;D2) ∈ VJ∆ ⊩ KKk+1

yα;· and for D′′2 ∈ Tree(∆ ⊩ K), we have D′′2 7→∗ D2, then (D1;D′′2 ) ∈ VJ∆ ⊩ KKk+1
yα;· .

Proof. We prove the first statement separately and then use it to prove the second and third statements.
1) If k = 0, the proof is trivial. Consider k = m + 1. By assumption, we have (D1;D2) ∈ EJ∆ ⊩ KKm+1. By line (12) of

the logical relation we know

(⋆) ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then∃Υ2,D′2 such that D2 7→∗Υ2 D′2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1

·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

Consider D′′2 , for which by the assumption we have D′′2 7→∗ D2. Our goal is to prove (D1;D′′2 ) ∈ EJ∆ ⊩ KKm+1. We need
to show that

(†) ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then ∃Υ2,D′2 such that D′′2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

With a ∀-Introduction, an if-Introduction on the goal followed by a ∀-Elimination and an if-Elimination on the assumption,
we get the assumption

(⋆′) ∃Υ2,D′2 such that D2 7→∗Υ2 D′2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1

·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

and the goal
(†′) ∃Υ2, D′2 such that D′′2 7→∗Υ2 D′2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1

·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

We apply an ∃-Elimination on the assumption to get Υ2 and D′2 that satisfies the conditions and use the same Υ2 and D′2
to instantiate the existential quantifier in the goal. Since D′′2 7→∗ D2, we get D′′2 7→∗Υ2 D′2, and the proof is complete.

2) The proof is by cases on the row of the logical relation that makes the assumption (D1;D2) ∈ VJ∆ ⊩ KKk+1
·;yα true. Here

we only consider an interesting cases, the proof of other cases is similar.
Row 4. By the conditions of this row, we know that ∆ = ∆′,∆′′, and K = yα:A⊗B. Moreover, we have

D1 = D′1T1msg(sendxcβ y
c
α) for T1 ∈ TreeΨ(∆

′′ ⊩ xβ :A),

D2 = D′2T2msg(send, xcβ y
c
α) for T2 ∈ TreeΨ(∆

′′ ⊩ xβ :A),

(†1) (T1; T2) ∈ EξΨJ∆′′ ⊩ xβ :A[c]Kk, and

(†2) (D′1;D′2) ∈ EξΨJ∆′ ⊩ yα+1:BKk

These are also the statements that we need to prove when replacing D2 with D′′2 . By the assumption that D′′2 is sesstion-
typed and sends along y, uniqueness of channels, and D′′2 7→∗ D2 we get

D′′2 = D1
2T 1

2 msg(send, xcβ y
c
α) for T 1

2 ∈ TreeΨ(∆
′′ ⊩ xβ :A[c])

Moreover, since T 1
2 and D1

2 are disjoint sub-trees with the common parent msg(send, xcβ y
c
α) and cannot communicate

with each other internally, we have T 1
2 7→∗ T2 and D1

2 7→∗ D′2.
Now we can apply the the result of part (1) of this lemma on (†1) and (†2) to get

(†′1) (T1; T 1
2 ) ∈ EξΨJ∆′′ ⊩ xβ :A[c]Kk, and
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(†′2) (D′1;D1
2) ∈ EξΨJ∆′ ⊩ yα+1:BKk

and the proof of this subcase is complete.
3) The proof is by considering the row of the logical relation that ensures the assumption (D1;D2) ∈ VJ∆ ⊩ KKk+1

yα;·. We
provide the detailed proof for an interesting case, the proof of other cases is similar.
Row 5. By the conditions of this row, we know that K = yα:A⊸ B. We have (D1;D2) ∈ TreeΨ(∆ ⊩ yα:A⊸ B) and

(†)∀xβ ̸∈ dom(∆,K). (D1msg(sendxcβ y
c
α);D2msg(sendxcβ y

c
α)) ∈ EξΨJ∆, xβ :A ⊩ yα+1:BKk

These are also the statements that we need to prove when replacing D2 with D′′2 . The first tree statement is straight-
forward by the assumption that D′′2 is session-typed. Using the local transition steps, we get D′′2msg(sendxcβ y

c
α) 7→∗

D2msg(sendxcβ y
c
α). We can apply the result of part (1) of this lemma on (†) to get

(†′)∀xβ ̸∈ dom(∆,K). (D1msg(sendxcβ y
c
α);D′′2msg(sendxcβ y

c
α)) ∈ EξΨJ∆, xβ :A ⊩ yα+1:BKk

which completes the proof of this case.
Row 9. By the conditions of this row, we know that ∆ = ∆′, yα:A⊗B. We have
∀xβ ̸∈ dom(∆; , yα:A⊗B,K). (D1;D2) ∈ TreeΨ(∆

′, yα:A⊗B ⊩ K) and

(†) (msg(sendxcβ y
c
α)D1;msg(sendxcβ y

c
α)D2) ∈ EξΨJ∆′, xβ :A, yα+1:B ⊩ KKk

These are also the statements that we need to prove when replacing D2 with D′′2 . The first tree statement is straight-
forward by the assumption that D′′2 is session-typed. Using the local dynamic steps we get msg(sendxcβ y

c
α)D′′2 7→∗

msg(sendxcβ y
c
α)D2. We apply the result of part (1) of this lemma on † to get

(†′)∀xβ ̸∈ dom(∆; , yα:A⊗B,K). (msg(sendxcβ y
c
α)D1;msg(sendxcβ y

c
α)D′′2 ) ∈ EξΨJ∆′, xβ :A, yα+1:B ⊩ KKk

C. Forward closure

Lemma 14 (Forward closure on the first run). Consider (D1;D2) ∈ EJ∆ ⊩ KKk and D1 7→∗ D′′1 . We have (D′′1 ;D2) ∈ EJ∆ ⊩
KKk.

Proof. If k = 0 the proof is trivial. Consider k = m+ 1. By assumption, we have (D1;D2) ∈ EJ∆ ⊩ KKm+1.
By line (12) of the logical relation we get

⋆ ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then ∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

Consider D′′1 , for which by the assumption we have D1 7→∗ D′′1 . Our goal is to prove (D′′1 ;D2) ∈ EJ∆ ⊩ KKm+1. We need
to show that

†, ∀Υ1,Θ1,D′1. if D′′1 7→∗Υ1;Θ1 D′1, then∃D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

With a ∀-Introduction and an if-Introduction on the goal, we assume D′′1 7→∗Υ1;Θ1 D′1. By assumption of D1 7→∗ D′′1 we get
D1 7→∗Υ1;Θ1 D′1. We use this to apply ∀-Elimination and if- Elimination on the assumption, and get

⋆′ ∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

Which exactly matches our goal and the proof is complete.

Lemma 15 (Forward closure on the second run with some specific conditions). Consider (D1;D2) ∈ EJ∆ ⊩ KKk and
D2 7→∗Υ D′′2 such that if D1 sends along the set Υ1, we have Υ1 ⊆ Υ and also D′′2 is the minimal configuration built by
Lem. 12 given the set Υ1 and configuration D2. We have (D1;D′′2 ) ∈ EJ∆ ⊩ KKk.

Proof. If k = 0 the proof is trivial. Consider k = m + 1. By assumption, we have (D1;D2) ∈ EJ∆ ⊩ KKm+1. By line (12)
of the logical relation we get
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⋆ ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then∃D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

Consider D′′2 , for which by the assumption we have D2 7→∗Υ D′′2 . Our goal is to prove (D1;D′′2 ) ∈ EJ∆ ⊩ KKm+1. We
need to show that

† ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then∃D′2 such that D′′2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

With an if-Introduction on the goal followed by an if- Elimination on the assumption, we get the assumption

⋆′ ∃Υ2,D′2 such that D2 7→∗Υ1;Θ1 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

and the goal
†′ ∃Υ2,D′2 such that D′′2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K). if xα ∈ Θ1. x(D′1;D′2) ∈ VξΨJ∆ ⊩ KKm+1
xα;· .

We apply an ∃-Elimination on the assumption to get D′2 that satisfies the conditions, i.e., D2 7→∗Υ2 D′2 and Υ1 ⊆ Υ2. We use
the same D′2 to instantiate the existential quantifier in the goal, we need to show that D′′2 7→∗Υ1 D′2. Since D′′2 is the minimal
configuration built for Υ1 and D2, and Υ1 ⊆ Υ2, by Lemma 12 we get D′′2 7→∗Υ2 D′2, and the proof is complete.
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X. MOVING EXISTENTIAL AND COMPOSITIONALITY

This section introduces two lemmas, Lem. 16 and Corollary 2, which are instrumental in proving transitivity (see § XI) and
adequacy (see § XII).

A. Moving existential over universal quantifier

Lemma 16 (Moving existential over universal quantifier). if we have

(†) ∀m.∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKm+1

·;xα and
∀xα ∈ In(∆ ⊩ K).if xα ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKm+1

xα;· .

then
∀Υ1,Θ1,D′1.if D1 7→∗Υ1;Θ1 D′1, then∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then ∀ k. (D′1;D′2) ∈ VJ∆ ⊩ KKk+1

·;xα and
∀xα ∈ In(∆ ⊩ K).if xα ∈ Θ1. then ∀k. (D′1;D′2) ∈ VJ∆ ⊩ KKk+1

xα;·.

Proof. First put m = 1 to apply ∀E. on the assumption (instantiating ∀m only). We get as an assumption

(†′) ∀Υ1,Θ1,D′1. if D1 7→∗Υ1;Θ1 D′1, then ∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KK0+1

·;xα and
∀xα ∈ In(∆ ⊩ K).if xα ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KK0+1

xα;·.

Next, apply a ∀I. and if I. on the goal followed by a corresponding ∀E. and if E. on the assumption (†′). Now apply an
∃E. on the assumption (†′) to get D′2 such that D2 7→∗Υ2 D′2 and Υ1 ⊆ Υ2. Given D′2, by Lem. 12, we can build the minimal
D′′2 such that D2 7→∗Υ D′′2 and Υ1 ⊆ Υ. Moreover, we know that for every D such that D2 7→∗Υ3 D and Υ1 ⊆ Υ3, we get
D′′2 7→∗Υ3 D.

We use this minimal D′′2 to instantiate the existential (∃ I.) in the goal, and use ∀ I. on the goal. In particular, we instantiate
k with an arbitrary natural number. The goals are:

(D′1;D′′2 ) ∈ VJ∆ ⊩ KKk+1
·;xα and (D′1;D′′2 ) ∈ VJ∆ ⊩ KKk+1

xα;·.

Next, we instantiate the ∀ quantifier in the original assumption (†) once again, this time with m = k followed by a ∀E, and
ifE instantiating the quantifiers with similar D′1, Υ1, and Θ1 as the first time. We get as an assumption:

(†′′) ∃Υ2,D′2 such that D2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk+1

·;xα and
∀xα ∈ In(∆ ⊩ K).if xα ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk+1

xα;·.

Next, apply ∃ I. to get a Υ′ and D′ that satisfies the conditions, i.e., D 7→∗Υ′ D′ and Υ1 ⊆ Υ′. Instantiate xα as those
chosen for the goal. We have as assumptions:

(†′′′) (D′1;D′2) ∈ VJ∆ ⊩ KKk+1
·;xα and (D′1;D′2) ∈ VJ∆ ⊩ KKk+1

xα;·.

Since D′′2 is the minimal configuration built for Υ1 and D2, we know that D′′2 7→∗Υ′ D′. We can apply the backward closure
results of Lem. 13 to get the goal from the assumptions (†′′′), and this completes the proof.

B. Compositionality

Corollary 2 (Compositionality). ∀m. (D1;D2) ∈ EJ∆, uα:T ⊩ KKm iff forall T2 and T2 s.t. †2 ∀m. (T1; T2) ∈ EJ∆′ ⊩ uα:T Km
we have † ∀k. (T1D1; T2D2) ∈ EJ∆′,∆ ⊩ KKk.

Proof. The left to right direction is a corollary of Lemma 17 in which we compose multiple configurations instead of just two.
For the right to left direction, we put Ti = ·, and ∆′ = uα:T , and the rest of the proof is straightforward.

Lemma 17 (Generalized compositionality). For i ∈ {1, 2}, and index set I consider session typed tree-shaped configurations
∆n ⊩ Bni :: Kn such that n ∈ I and their compositions form session typed tree-shaped configurations ∆ ⊩ Di :: K, i.e.,
Di = {Bni }n∈I . If for all n ∈ I , we have †n ∀m. (Bn1 ;Bn2 ) ∈ EJ∆n ⊩ KnKm then † ∀k. (D1;D2) ∈ EJ∆ ⊩ KKk.

Proof. Our goal is to prove the following:
For all index set I and all session-typed configurations ∆n ⊩ Bni :: Kn with n ∈ I such that †1 ∀m. (Bn1 ;Bn2 ) ∈
EJ∆n ⊩ KnKm we have † ∀k. ({Bn1 }n∈I ; {Bn2 }n∈I) ∈ EJ∆ ⊩ KKk.

This is equivalent to the following statement which we prove:
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For all natural numbers, k, and for all index set I , and for all session-typed configurations ∆n ⊩ Bni :: Kn such that
†n ∀m. (Bn1 ;Bn2 ) ∈ EJ∆n ⊩ KnKm we have †′ ({Bn1 }n∈I ; {Bn2 }n∈I) ∈ EJ∆ ⊩ KKk.

We proceed the proof by an induction on k.
Base case (k = 0). The proof is straightforward, since by the definition of the logical relation for session-typed configurations

∆n ⊩ Bni :: Kn with ∆ ⊩ {Bni }n∈I :: K, we have ({Bn1 }n∈I ; {Bn2 }n∈I) ∈ EJ∆ ⊩ KK0.
Inductive case (k = k′ + 1). Our goal is to prove the following:

For all index set I , and for all session-typed configurations ∆n ⊩ Bni :: Kn where n ∈ I such that †n ∀m. (Bn1 ;Bn2 ) ∈
EJ∆n ⊩ KnKm we have †′ ({Bn1 }n∈I ; {Bn2 }n∈I) ∈ EJ∆ ⊩ KKk

′+1

where †′ is defined in line (12) of the logical relation as

∀Υ1,Θ1,D′1.∀ j ∈ N. if {Bn1 }n∈I 7→jΥ1;Θ1 D′1 then∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

Again, we rewrite the above goal as an equivalent statement as follows:
For all natural numbers j, for all I , and for all session-typed configurations ∆n ⊩ Bni :: Kn with n ∈ I such that
†n ∀m. (Bn1 ;Bn2 ) ∈ EJ∆n ⊩ KnKm we have

∀Υ1,Θ1,D′1. if {Bn1 }n∈I 7→jΥ1;Θ1 D′1 then ∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K).if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

We proceed the proof by a nested induction on j.
Base case (j = 0). Consider an arbitrary index set I and an arbitrary session-typed configurations ∆n ⊩ Bni :: Kn that satisfy
the conditions †n. We need to show that

∀Υ1,Θ1, D′1. if {Bn1 }n∈I 7→0Υ1;Θ1 D′1 then ∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

Consider an arbitrary Υ1, Θ1, ans D′1, and apply If I. on the goal. By the assumption {Bn1 }n∈I 7→0Υ1;Θ1 D′1 we know that
D′1 = {Bn1 }n∈I , and {Bn1 }n∈I sends along Υ1 and receives along Θ1. Our goal is to show the following:

⋆ ∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then ({Bn1 }n∈I ;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K).if xγ ∈ Θ1. then ({Bn1 }n∈I ;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

By the definition of the logical relation, and from assumptions †n for n ∈ I we get

†′n ∀m.∀Υn,Θn,Bn
′

1 . if Bn1 7→∗Υn;Θn Bn′

1 then∃Υn2 ,Bn
′

2 such that Bn2 7→∗Υn2 Bn′

2 andΥn ⊆ Υn2 and

∀xγ ∈ Out(∆n ⊩ Kn). if xγ ∈ Υn. then (Bn′

1 ;Bn′

2 ) ∈ VJ∆n ⊩ KnKm+1
·;xγ and

∀xγ ∈ In(∆n ⊩ Kn). if xγ ∈ Θn. then (Bn′

1 ;Bn′

2 ) ∈ VJ∆n ⊩ KnKm+1
xγ ;· .

By Lem. 16, we get

†′′n ∀Υn,Θn,Bn
′

1 . if Bn1 7→∗Υn;Θn Bn′

1 then ∃Υn2
Bn′

2 such that Bn2 7→∗Υn2 Bn′

2 andΥn ⊆ Υn2
and

∀xγ ∈ Out(∆n ⊩ Kn). if xγ ∈ Υn. then ∀m. (Bn
′

1 ;Bn′

2 ) ∈ VJ∆n ⊩ KnKm+1
·;xγ and

∀xγ ∈ In(∆n ⊩ Kn). if xγ ∈ Θn. then∀m. (Bn
′

1 ;Bn′

2 ) ∈ VJ∆n ⊩ KnKm+1
xγ ;· .

We instantiate the forall quantifier in †′′n by Bn1 and the sets Υn and Θn along which Bn1 sends and receives. Note that by
definition we have Υ1 ⊆

⋃{Υn}n∈I and Θ1 ⊆
⋃{Θn}n∈I . We get:

∃Υn2 ,Bn
′

2 such that Bn2 7→∗Υn2 Bn′

2 and

∀xγ ∈ Out(∆n ⊩ Kn). if xγ ∈ Υn. then ∀m. (Bn1 ;Bn
′

2 ) ∈ VJ∆n ⊩ KnKm+1
·;xγ and

∀xγ ∈ In(∆n ⊩ Kn).if xγ ∈ Θn. then∀m. (Bn1 ;Bn
′

2 ) ∈ VJ∆n ⊩ KnKm+1
xγ ;· .

By existential elimination, for all n ∈ I , we get a Bn′

2 and Υn2 such that B2 7→∗Υn2 Bn′

2 , and Υn ⊆ Υn2 and

†′′′n ∀xγ ∈ Out(∆n ⊩ Kn). if xγ ∈ Υn. then ∀m. (Bn1 ;Bn
′

2 ) ∈ VJ∆n ⊩ KnKm+1
·;xγ and

∀xγ ∈ In(∆n ⊩ Kn).if xγ ∈ Θn. then∀m. (Bn1 ;Bn
′

2 ) ∈ VJ∆n ⊩ KnKm+1
xγ ;· .
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Note that by definition Out(∆ ⊩ K) ⊆ ⋃
n∈I Out(∆n ⊩ Kn) and In(∆ ⊩ K) ⊆ ⋃

n∈I In(∆
n ⊩ Kn).

We apply Lem. 12 to get the minimal sending configurations Bn′′

2 and set Υ′n for each given Υn and Bn2 . We get Bn′′

2 such
that Bn2 7→∗Υ′

n Bn′′

2 . Since these configurations are minimal, for all n ∈ I , we have Bn′′

2 7→∗Υn2 Bn′

2 .
Since Υn ⊆ Υ′n ⊆ Υn2

, we can apply the backward closure (Lem. 13) on †′′′n to get

†4n ∀xγ ∈ Out(∆n ⊩ Kn). if xγ ∈ Υn. then ∀m. (Bn1 ;Bn
′′

2 ) ∈ VJ∆n ⊩ KnKm+1
·;xγ and

∀xγ ∈ In(∆n ⊩ Kn). if xγ ∈ Θn.∀m. (Bn1 ;Bn
′′

2 ) ∈ VJ∆n ⊩ KnKm+1
xγ ;· .

Moreover, we apply forward closure on the second run Lem. 15 on assumptions †n to get for all n ∈ I:

◦n ∀m. (Bn1 ;Bn
′′

2 ) ∈ EJ∆n ⊩ KnKm

We can apply the forward closure on the second run since the conditions of Lem. 15 are satisfied, i.e. Υn ⊆ Υ′n and Bn′′

2 is
the minimal sending configuration with respect to Bn2 and Υn.
We build D′2 to be {Bn′′

2 }n∈I . We have {Bn2 }n∈I 7→∗Υ2 {Bn′′

2 }n∈I with Υ1 ⊆ Υ2, and {Bn′′

2 }n∈I 7→∗Υ3 {Bn′

2 }n∈I with
Υ2 ⊆ Υ3. We, then instantiate the existential quantifier in the goal (⋆) with Υ2 and D′2 that we built for which we know
{Bn2 }n∈I 7→∗Υ2 D′2. We need to show

⋆′ ∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then ({Bn1 }n∈I ; {Bn
′′

2 }n∈I) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then ({Bn1 }n∈I ; {Bn
′′

2 }n∈I) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

Part 1. Consider arbitrary xγ ∈ Out(∆ ⊩ K) and assume xγ ∈ Υ1. By the structure of the configurations, for some
n ∈ I , xγ ∈ ∆n,Kn and thus xγ ∈ Out(∆n ⊩ Kn) and xγ ∈ Υn. The goal is to prove

⋆1 ({Bn1 }n∈I ; {Bn
′′

2 }n∈I) ∈ VJ∆ ⊩ KKk
′+1
·;xγ

Part 2. Consider arbitrary xγ ∈ In(∆ ⊩ K) and assume xγ ∈ Θ1. By the structure of the configurations, for some n ∈ I ,
xγ ∈ ∆n,Kn and thus xγ ∈ In(∆n ⊩ Kn) and xγ ∈ Θn. The goal is to prove

⋆2 ({Bn1 }n∈I ; {Bn
′′

2 }n∈I) ∈ VJ∆ ⊩ KKk
′+1
xγ ;·

In both parts, we continue the proof by considering the type of xγ . The type of xγ determines whether we need to prove
Part 1. or Part 2. We provide the detailed proof for two interesting cases, the proof of the rest of cases is similar.
Subcase 1. xγ :A⊗B ∈ K. This case corresponds to Part 1. of the goal in which we have xγ ∈ Out(∆ ⊩ xγ :A⊗B) and
xγ ∈ Υ1. By the structure of the configuration, there exists a tree Bκ1 that provides the root channel K = Kκ = xγ :A⊗B.
We use assumption †4n for that specific channel (†4κ), we have

†5κ ∀m. (Bκ1 ;Bκ
′′

2 ) ∈ VJ∆κ ⊩ KκKm+1
·;xγ

First, instantiate the forall quantifier with m = 0. By Row 4. of the logical relation, we have ∆κ = ∆κ
1 ,∆

κ
2 and for some

yβ ∈ chnl, we have: Bκ1 = Bκ′

1 A1msg(send yβxγ) and Bκ′′

2 = Bκ′′′

2 A2msg(send yβxγ).
We want to prove

◦′ ∀m. (A1,A2) ∈ EJ∆κ
2 ⊩ yβ :AKm and ◦′′ ∀m. (Bκ′

1 ,Bκ
′′′

2 ) ∈ EJ∆κ
1 ⊩ xγ+1:BKm.

Consider an arbitrary m given by ∀I on the goals ◦′ and ◦′′. Once again, instantiate the quantifier in †5κ, this time with
the arbitrary m. Again, we get ∆κ = ∆κ

1 ,∆
κ
2 and for some yβ ∈ chnl, we have: Bκ1 = Bκ′

1 A1msg(send yβxγ) and
Bκ′′

2 = Bκ′′′

2 A2msg(send yβxγ). Moreover,

(A1,A2) ∈ EJ∆κ
2 ⊩ yβ :AKm and (Bκ′

1 ,Bκ
′′′

2 ) ∈ EJ∆κ
1 ⊩ xγ+1:BKm.

Since the namings in the configuration is unique, we get the above for the same yβ as we got in the case of m = 0 and
the proof of ◦′ and ◦′′ is complete.
From this we can prove

D1 = {Bn1 }n∈I = {Bn1 }n∈I&n ̸=κ Bκ
′

1 A1msg(send yβxγ) and

D′2 = {Bn′′

2 }n∈I = {Bn
′′

2 }n∈I&n ̸=κ Bκ
′′′

2 A2msg(send yβxγ)

First, observe that by the structure of the configuration, there is no tree Bn1 or Bn′′

2 using Kκ = xγ :A⊗B as its resource,
i.e., xγ is the root. We can break down the resources ∆κ

1 and ∆κ
2 as ∆κ

1 = ∆κ′

1 ,∆
κ′′

1 and ∆κ
2 = ∆κ′

2 ,∆
κ′′

2 , such that ∆κ′

1

and ∆κ′

2 are in the interface of D1 and D′2 and ∆κ′′

1 and ∆κ′′

2 are the resources provided by other trees. We can partition
I\{κ} into two disjoint sets I1 and I2 such that the configurations {Bn1 }n∈I1 and {Bn′′

2 }n∈I1 provide the resources in ∆κ′′

1
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and configurations {Bn1 }n∈I2 and {Bn′′

2 }n∈I2 provide the resources in ∆κ′′

2 . In other words, we have ∆ = ∆1,∆
κ′

1 ,∆2,∆
κ′

2

and K = xγ :A⊗B and

(i) ∆1 ⊩ {Bn1 }n∈I1 :: ∆κ′′

1 ∆κ′

1 ,∆
κ′′

1 ⊩ Bκ′

1 :: xγ+1:B ∆1,∆
κ′

1 ⊩ {Bn1 }n∈I1Bκ
′

1 :: xγ+1:B

∆1 ⊩ {Bn′′

2 }n∈I1 :: ∆κ′′

1 ∆κ′

1 ,∆
κ′′

1 ⊩ Bκ′′′

2 :: xγ+1:B ∆1,∆
κ′

1 ⊩ {Bn′′

2 }n∈I1Bκ
′′′

2 :: xγ+1:B

(ii) ∆2 ⊩ {Bn1 }n∈I2 :: ∆κ′′

2 ∆κ′

2 ,∆
κ′′

2 ⊩ A1 :: yβ :A ∆2,∆
κ′

2 ⊩ {Bn1 }n∈I2A1 :: yβ :A

∆2 ⊩ {Bn′′

2 }n∈I2 :: ∆κ′′

2 ∆κ′

2 ,∆
κ′′

2 ⊩ A2 :: yβ :A ∆2,∆
κ′

2 ⊩ {Bn′′

2 }n∈I2A2 :: yβ :A

We also have

◦′′′ D1 = {Bn1 }n∈I = {Bn1 }n∈I&n ̸=κ Bκ
′

1 A1msg(send yβxγ) = {Bn1 }n∈I1 {Bn1 }n∈I2 Bκ
′

1 A1msg(send yβxγ) and

D′2 = {Bn′′

2 }n∈I = {Bn
′′

2 }n∈I&n ̸=κ Bκ
′′′

2 A2msg(send yβxγ) = {Bn
′′

2 }n∈I1{Bn
′′

2 }n∈I2 Bκ
′′′

2 A2msg(send yβxγ)

Recall that earlier we proved

◦′ ∀m. (A1,A2) ∈ EJ∆κ
2 ⊩ yβ :AKm and ◦′′ ∀m. (Bκ′

1 ,Bκ
′′′

2 ) ∈ EJ∆κ
1 ⊩ xγ+1:BKm,

and we also have for all n ∈ I1 ∪ I2,
◦2 ∀m. (Bn1 ;Bn

′′

2 ) ∈ EJ∆n ⊩ KnKm

We can apply the induction hypothesis on the smaller index k′, (i), ◦′′, and ◦2 for those trees indexed in I1 to get

◦3 ({Bn1 }n∈I1 Bκ
′

1 ; {Bn′′

2 }n∈I1 Bκ
′′′

2 ) ∈ EJ∆1,∆
κ′

1 ⊩ xγ+1:BKk
′
.

Similarly, we can apply the induction hypothesis on the smaller index k′, (ii), ◦′, and ◦2 for those trees indexed in I2 to
get

◦3 ({Bn1 }n∈I2 A1; {B′′n2}n∈I2 A2) ∈ EJ∆1,∆
κ′

2 ⊩ yβ :AKk
′
.

By Row 4. of the logical relation, this is enough to establish the goal

⋆1 (D1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ

Subcase 2. xγ :A ⊗ B ∈ ∆, i.e., ∆ = ∆′, xγ :A ⊗ B. This case corresponds to Part 2. of the goal in which we have
xγ ∈ In(∆ ⊩ K) and xγ ∈ Θ1, and the goal is to prove ({Bn1 }n∈I ; {Bn

′′

2 }n∈I) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

By the structure of the configuration, for some index κ ∈ I , we have xγ :A⊗B ∈ ∆κ, i.e. ∆κ = ∆κ′
, xγ :A⊗B.

By assumption †4κ, we have
∀m. (Bκ1 ;Bκ

′′

2 ) ∈ VJ∆κ′
, xγ :A⊗B ⊩ KκKm+1

xγ ;·

By Row 9. of the logical relation, we get:

†5κ ∀yβ ̸∈ dom(∆κ′
, xγ :A⊗B,Kκ)∀m. (msg(send yβxγ)Bκ1 ;msg(send yβxγ)Bκ

′′
2 ) ∈ EJ∆κ′

, yβ :A, xγ+1:B ⊩ KκKm

Moreover, we have

∆, yβ :A, xγ :B ⊩ msg(send yβxγ){Bn1 }n∈I :: K ∆, yβ :A, xγ :B ⊩ msg(send yβxγ){Bn
′′

2 }n∈I :: K
Recall that for all n ∈ I\{κ} we also have

◦2 ∀m. (Bn1 ;Bn
′′

2 ) ∈ EJ∆n ⊩ KnKm

We can apply the induction hypothesis on the smaller index k′, ◦2, and †5κ to get

∀yβ ̸∈ dom(∆, xγ :A⊗B,K).(msg(send yβxγ){Bn1 }n∈I ;msg(send yβxγ){Bn
′′

1 }n∈I) ∈ EJ∆, yβ :A, xγ+1:B ⊩ KKk
′
.

By Row 9. of the logical relation, this is enough to establish the goal.
Inductive case (j = j′ + 1). Consider an arbitrary index set I and an arbitrary session-typed configurations ∆n ⊩ Bni :: Kn

that satisfy the conditions †n. We need to show that

∀Υ1,Θ1, D′1. if {Bn1 }n∈I 7→j′+1Υ1;Θ1 D′1 then∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K).if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

We apply a ∀I. and if I. on the goal: consider an arbitrary Υ1, Θ1, and D′1 and the first step of {Bn1 }n∈I 7→j′+1Υ1
;Θ1 D′1.

There are two cases to consider:
Case 1. the first step is an internal step but not a communication between the sub-trees.
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Without loss of generality, let’s assume that the communication is internal to Bκ1 for some κ ∈ I and all other trees Bn1 for
n ̸= κ remain intact, i.e. we have {Bn1 }n∈I = {Bn1 }n∈I1 Bκ1{Bn1 }n∈I2 and

{Bn1 }n∈I1 Bκ1 {Bn1 }n∈I2 7→ {Bn1 }n∈I1 ,Bκ
′

1 {Bn1 }n∈I2 7→j′Υ1;Θ1 D′1.
By forward closure (Lem. 14) on the assumption †κ (i.e.,†nfor n = κ), we get

†′κ ∀m. (Bκ
′

1 ;B2) ∈ EJ∆κ ⊩ KκKm.

Recall that by †n, we also have for n ̸= κ

∀m. (Bn1 ;Bn2 ) ∈ EJ∆n ⊩ KnKm.

We can apply the induction hypothesis on the number of steps j′ to get:

∀Υ1,Θ1, D′1.∀Υ1. if {Bn1 }n∈I1 Bκ
′

1 {Bn1 }n∈I2 7→j′Υ1;Θ1 D′1 then ∃Υ2D′2. {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

Since {Bn1 }n∈I1 Bκ1{Bn1 }n∈I2 7→ {Bn1 }n∈I1 ,Bκ
′

1 {Bn1 }n∈I2 7→j′Υ1;Θ1 D′1, we can prove the goal:

∃Υ2,D′2 such that {Bn2 }n∈I 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

which completes the proof of this case.
Case 2. the first step is a communication between two sub-configurations. Without loss of generality, we assume that the
communication is between trees indexed by κ, λ ∈ I , i.e., Bκ1 offers a resource uα:T and Bλ1 uses the resource, and there
is a message available along uα that is received in the first step. The proof proceeds by case analysis on type of ucα:T . We
provide the detailed proof for one case. The proof of the rest of the cases is similar.
Subcase 1. T = A⊗B, i.e., we have

(i) ∆κ ⊩ Bκ1 :: Kκ where Kκ = uα:A⊗B
∆κ ⊩ Bκ2 :: Kκ

(ii) ∆λ ⊩ Bλ1 :: Kλ where ∆λ = ∆λ′
, uα:A⊗B

∆λ ⊩ Bλ2 :: Kλ

By the assumptions of this case, we know that there is a message sent along ucα:A⊗B in Bκ1 that is received by a process
in Bλ1 , i.e., Bκ1 = Bκ′

1 A1msg(sendyβ uα) and

{Bn1 }n∈I = {Bn1 }n∈I1 ,Bκ1Bλ1 {Bn1 }n∈I2 = {Bn1 }n∈I1 ,Bκ
′

1 A1 msg(sendyβ uα)Bλ1 {Bn1 }n∈I2 and

{Bn1 }n∈I1 ,Bκ
′

1 A1 msg(sendyβ uα)Bλ1 {Bn1 }n∈I2 7→ {Bn1 }n∈I1 ,Bκ
′

1 A1Bλ
′

1 {Bn1 }n∈I2 7→j′Υ1;Θ1 D′1.
By †κ, Lem. 16, and Bκ′

1 A1msg(sendyβ uα) 7→0Υ′
κ;Θ′

κ Bκ′

1 A1msg(sendyβ uα), we get

∃Υκ2Bκ
′

2 such that Bκ2 7→
∗Υκ2 Bκ

′
2 andΥ′κ ⊆ Υκ2

∀xγ ∈ Out(∆κ ⊩ uα:A⊗B). if xγ ∈ Υ′κ. then ∀m. (Bκ
′

1 A1msg(sendyβ uα);Bκ
′

2 ) ∈ VJ∆κ ⊩ uα:A⊗BKm+1
·;xγ and

∀xγ ∈ In(∆κ ⊩ uα:A⊗B). if xγ ∈ Θ′κ. then∀m. (Bκ
′

1 A1msg(sendyβ uα);Bκ
′

2 ) ∈ VJ∆κ ⊩ uα:A⊗BKm+1
xγ ;·

In particular, we know that uα:A⊗B ∈ Out(∆κ ⊩ uα:A⊗B) and uα ∈ Υ′κ, which gives us:

∀m. (Bκ′

1 A1msg(sendyβ uα);Bκ
′

2 ) ∈ VJ∆κ ⊩ uα:A⊗BKm+1
·;uα

By Row 4. of the logical relation, we have ∆κ = ∆κ
1 ,∆

κ
2 and

Bκ′

2 = Bκ′′

2 A2msg(sendyβ uα), and

◦′ ∀m. (A1;A2) ∈ EJ∆κ
2 ⊩ yβ :AKm and ◦′′ ∀m. (Bκ′

1 ;Bκ′′

2 ) ∈ EJ∆κ
1 ⊩ uα+1:BKm.

Next, we consider Bλ1 . By †λ, Lem. 16, and Bλ1 7→
0Υ′
λ Bλ1 , we get

∃Υλ2
Bλ′

2 such that Bλ2 7→
∗Υλ2 Bλ′

2 and

∀xγ ∈ Out(∆λ′
, uα:A⊗B ⊩ Kλ). if xγ ∈ Υ′λ. then ∀m. (Bλ1 ;Bλ

′

2 ) ∈ VJ∆λ′
, uα:A⊗B ⊩ KλKm+1

·;xγ and

∀xγ ∈ In(∆λ′
, uα:A⊗B ⊩ Kλ). if xγ ∈ Θ′λ.∀m. (Bλ1 ;Bλ

′

2 ) ∈ VJ∆λ, uα:A⊗B ⊩ KλKm+1
xγ ;·
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In particular, we know that uα:A⊗B ∈ In(∆λ′
, uα:A⊗B ⊩ Kλ) and also uα ∈ Θ′λ, which gives us:

∀m. (Bλ1 ;Bλ
′

2 ) ∈ VJ∆λ′
, uα:A⊗B ⊩ KλKm+1

uα;·

By Row 9. of the logical relation for the specific channel yβ (for which by the tree structure, we know yβ ̸∈ ∆λ, uα:A⊗
B,Kλ) we have

∀m. (msg(sendyβ uα)Bλ1 ;msg(sendyβ uα)Bλ
′

2 ) ∈ EJ∆λ, yβ :A, uα+1:B ⊩ KλKm.

By forward closure (Lem. 14) and msg(sendyβ uα)Bλ1 7→ Bλ
′

1 we have:

◦′′′ ∀m. (Bλ′

1 ;msg(sendyβ uα)Bλ
′

2 ) ∈ EJ∆, yβ :A, uα+1:B ⊩ KKm

Put I ′ = I, ℓ, where ℓ does not occur in I and define Bℓ1 = A1 and Bℓ2 = A2. By induction on the number of steps, ◦′, ◦′′,
◦′′′ and †n for n ̸= κ, λ we get

∀Υ1,Θ1, D′1. if {Bn1 }n∈I1Bκ
′

1 A1Bλ
′

1 {Bn1 }n∈I2 7→j′Υ1;Θ1 D′1
then∃Υ2,D′2 such that {Bn2 }n∈I1Bκ

′′

2 A2msg(sendyβ uα)Bλ
′

2 {Bn2 }n∈I2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

By a ∀E. and {Bn1 }n∈I1Bκ
′

1 A1Bλ
′

1 {Bn1 }n∈I2 7→j′Υ1 D′1 we get:

∃Υ2,D′2 such that {Bn2 }n∈I1Bκ
′′

2 A2msg(sendyβ uα)Bλ
′

2 {Bn2 }n∈I2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .

We also know that {Bn2 }n∈I = {Bn2 }n∈I1Bκ2Bλ2 {Bn2 }n∈I2 7→∗ {Bn2 }n∈I1Bκ
′′

2 A2msg(sendyβ uα)Bλ
′

2 {Bn2 }n∈I2 . We get
the following for the same Υ2 and D′2:

∃Υ2,D′2 such that {Bn2 }n∈I1Bκ
′′

2 A2msg(sendyβ uα)Bλ
′

2 {Bn2 }n∈I2 7→∗Υ2 D′2 andΥ1 ⊆ Υ2 and

∀xγ ∈ Out(∆ ⊩ K). if xγ ∈ Υ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
·;xγ and

∀xγ ∈ In(∆ ⊩ K). if xγ ∈ Θ1. then (D′1;D′2) ∈ VJ∆ ⊩ KKk
′+1
xγ ;· .
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XI. LOGICAL EQUIVALENCE

A. Equivalence

Lemma 18 (Reflexivity). For all security levels ξ and configurations ∆ ⊩ D :: xα:T , we have

(∆ ⊩ D :: xα:T ) ≡ (∆ ⊩ D :: xα:T ).

Proof. The proof is straightforward by applying the reflexivity Lemma (Lem. 21) proved in the next section on a trivial lattice
that has only one element ⊥. We annotate all channels and processes with max secrecies and running secrecies equal to ⊥ and
annotate process definitions in the signature all with one secrecy variable ψ. The spawn terms in a process use a substitution
that maps ψ to ⊥. With this translation, all session-typed configurations are also IFC-typed under the trivial lattice.

Lemma 19 (Symmetry). For all configurations D1 and D2, we have (∆ ⊩ D1 :: xα:T ) ≡ (∆ ⊩ D2 :: xα:T ), iff (∆ ⊩ D2 ::

xα:T ) ≡ (∆ ⊩ D1 :: xα:T ),

Proof. The proof is straightforward by the definition of triple equality.

Lemma 20 (Transitivity). For all configurations D1, D2, and D3, we have

if (∆ ⊩ D1 :: xα:T ) ≡ (∆ ⊩ D2 :: xα:T ), and (∆ ⊩ D2 :: xα:T ) ≡ (∆ ⊩ D3 :: xα:T )
then (∆ ⊩ D1 :: xα:T ) ≡ (∆ ⊩ D3 :: xα:T ).

Proof. The proof follows from Corollary 3 when we instantiate Ψ0 with the trivial lattice only containing the element ⊥ and
ξ to be ⊥.

B. Noninterference

Lemma 21 (Reflexivity – only for IFC-typed processes). For all security levels ξ and configurations Ψ0; Γ ⊩ D :: xα:T [c],
we have

(Γ ⊩ |D| :: xα:T [c]) ≡Ψ0

ξ (Γ ⊩ |D| :: xα:T [c]).
Proof. Corollary of the fundamental theorem (Thm. 5).

Lemma 22 (Symmetry). For all security levels ξ and configurations D1 and D2, we have (Γ1 ⊩ D1 :: xα:T1[c1]) ≡Ψ0
ξ (Γ2 ⊩

D2 :: yβ :T2[c2]), iff (Γ2 ⊩ D2 :: yβ :T2[c2]) ≡Ψ0
ξ (Γ1 ⊩ D1 :: xα:T1[c1]).

Proof. The proof is straightforward by Def. 17

Corollary 3 (Transitivity). For all security levels ξ, and configurations D1, D2, and D3, we have

if (Γ1 ⊩ D1 :: xα:T1[c1]) ≡Ψ0
ξ (Γ2 ⊩ D2 :: yβ :T2[c2]), and (Γ2 ⊩ D2 :: yβ :T2[c2]) ≡Ψ0

ξ (Γ3 ⊩ D3 :: zη:T3[c3])

then (Γ1 ⊩ D1 :: xα:T1[c1]) ≡Ψ0
ξ (Γ3 ⊩ D3 :: zη:T3[c3]).

Proof. Consider arbitrary C1, F1 and C3, and F3 we need to show

∀m. (C1D1F1; C3D3F3) ∈ EJ∆ ⊩ KKm and ∀m. (C1D1F1; C3D3F3) ∈ EJ∆ ⊩ KKm

By the assumptions, we get (C1D1F1; C2D2F2) ∈ EJ∆ ⊩ KKm and (C2D2F2; C3D3F3) ∈ EJ∆ ⊩ KKm. The result follows
by Lem. 23.

Lemma 23 (Transitivity of the term relation). If †1 ∀m. (D1;D2) ∈ EJ∆ ⊩ KKm and †2 ∀m. (D2;D3) ∈ EJ∆ ⊩ KKm then
⋆ ∀k. (D1;D3) ∈ EJ∆ ⊩ KKk.

Proof. Our goal is to prove for all D1, D2, and D3 with ∀m. (D1;D2) ∈ EJ∆ ⊩ KKm and ∀m. (D2;D3) ∈ EJ∆ ⊩ KKm
then ∀k. (D1;D3) ∈ EJ∆ ⊩ KKk. We prove an equivalent statement that says for all k, D1, D2, and D3 with ∀m. (D1;D2) ∈
EJ∆ ⊩ KKm and ∀m. (D2;D3) ∈ EJ∆ ⊩ KKm then (D1;D3) ∈ EJ∆ ⊩ KKk. We proceed by induction on k.

Base case. (k = 0) Consider arbitrary configurations D1, D2, and D3. By the assumptions, we know that (D1;D2) ∈
Tree(∆ ⊩ K) and (D2;D3) ∈ Tree(∆ ⊩ K), which gives us (D1;D3) ∈ Tree(∆ ⊩ K). It is enough to complete the proof in
this case.

Inductive case. (k = k′ + 1) Consider arbitrary configurations D1, D2, and D3. Our goal is to show

∀D′1.∀Υ1. if D1 7→∗Υ1 D′1, then∃D′3 such that D3 7→∗Υ1 D′3 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′3) ∈ VJ∆ ⊩ KKk

′+1
·;xα and

∀xα ∈ In(∆ ⊩ K). (D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
xα;· .

Consider an arbitrary D′1 and Υ1, and assume D1 7→∗Υ1 D′1. Our goal is to prove
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∃D′3 such that D3 7→∗Υ1 D′3 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′3) ∈ VJ∆ ⊩ KKk

′+1
·;xα and

∀xα ∈ In(∆ ⊩ K). (D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
xα;· .

By assumption †1 and Lem. 16, we have

†′1 ∀D′1.∀Υ1. if D1 7→∗Υ1 D′1, then∃D′2 such that D2 7→∗Υ1 D′2 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then ∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1

·;xα and
∀xα ∈ In(∆ ⊩ K).∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1

xα;· .

And by assumption †2 and Lem. 16, we have

†′2 ∀D′2.∀Υ1. if D2 7→∗Υ1 D′2, then ∃D′3 such that D3 7→∗Υ1 D′3 and
∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then ∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

·;xα and
∀xα ∈ In(∆ ⊩ K).∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

xα;· .

We apply ∀E. on †′1 by instantiating the existential quantifiers with D′1 and Υ1. We can apply ifE. since we know D1 7→∗Υ1

D′1. We get a D′2 with D2 7→∗Υ1 D′2. Next, we apply ∀E. on †2 by instantiating the existential quantifiers with D′2 and Υ1.
We apply ifE. as we know D2 7→∗Υ1 D′2. As a result, we get a D′3 with D3 7→∗Υ1 D′3 as required by the goal. We need to
prove:

∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then (D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
·;xα and

∀xα ∈ In(∆ ⊩ K). (D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
xα;· .

By †′1, and †′2, we have as assumptions

†′′1 ∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then ∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1
·;xα and

∀xα ∈ In(∆ ⊩ K).∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1
xα;· .

and
†′′2 ∀xα ∈ Out(∆ ⊩ K). if xα ∈ Υ1. then ∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

·;xα and
∀xα ∈ In(∆ ⊩ K).∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

xα;· .

There are two parts to prove:
Part 1. Consider an arbitrary xα ∈ Out(∆ ⊩ K) and assume xα ∈ Υ1. Our goal is to show

(D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
·;xα

And by †′′1 , and †′′2 , we have as assumptions

†′′′1 ∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1
·;xα and †′′′2 ∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

·;xα .

We consider cases based on the type of xα. We provide the detailed proof for a few interesting cases. The proof of other
cases is similar.
Case 1. (K = xα:A⊗B). By †′′′1 and †′′′2 we get

∆ = ∆1,∆2 and D′1 = D′′1A1msg(sendyβ xα) and D′2 = D′′2A2msg(sendyβ xα)
and D′2 = D′′2A1msg(sendyβ xα) and D′3 = D′′3A2msg(sendyβ xα)

Moreover,
∀m.(D′′1 ;D′′2 ) ∈ EJ∆1 ⊩ xα+1:BKm ∀m.(A1;A2) ∈ EJ∆2 ⊩ yβ :AKm
∀m.(D′′2 ;D′′3 ) ∈ EJ∆1 ⊩ xα+1:BKm ∀m.(A2;A3) ∈ EJ∆2 ⊩ yβ :AKm

We apply the induction hypothesis on a smaller observation index k′ to get

(D′′1 ;D′′3 ) ∈ EJ∆1 ⊩ xα+1:BKk
′

(A1;A3) ∈ EJ∆2 ⊩ yβ :AKk
′

Which by Row 4 of the logical relation is wnough to prove the goal of this subcase, i.e.,

(D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
·;xα

Case 2. (∆ = xα:A⊸ B,∆′)
Part 2. Consider an arbitrary xα ∈ In(∆ ⊩ K) and assume xα ∈ Θ1x. Our goal is to show

(D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
xα;· .
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By †′′1 , and †′′2 , we have as assumptions

†′′′1 ∀m.(D′1;D′2) ∈ VJ∆ ⊩ KKm+1
xα;· and †′′′2 ∀m. (D′2;D′3) ∈ VJ∆ ⊩ KKm+1

xα;· .

We consider cases based on the type of xα. We provide the detailed proof for a few interesting cases. The proof of other
cases is similar.
Case 1. (∆ = ∆′, xα:A⊗B) By †′′′1 and †′′′2 we get for all yβ ̸∈ dom(∆, xα : A⊗B,K).

∀m.(msg(sendyβ uα)D′1;msg(sendyβ xα)D′2) ∈ EJ∆, yβ : A, xα+1 : B ⊩ KKm
∀m.(msg(sendyβ uα)D′2;msg(sendyβ xα)D′3) ∈ EJ∆, yβ : A, xα+1 : B ⊩ KKm

We apply the induction hypothesis on a smaller observation index k′ to get

∀yβ ̸∈ dom(∆, xα : A⊗B,K). (msg(sendyβ uα)D′1;msg(sendyβ xα)D′3) ∈ EJ∆, yβ : A, xα+1 : B ⊩ KKk
′

Which by Row 9 of the logical relation is wnough to prove the goal of this subcase, i.e.,

(D′1;D′3) ∈ VJ∆ ⊩ KKk
′+1
xα;·

Case 2. (K = xα:A⊸ B)
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Internal transition τ−→ defined as:

D1
τ−→ D′1 iff D1 7→ D′1

Actions
yα q−−→,

L yα q−−−−→ and
R yα q−−−−→ defined as below when y ∈ fn(D1):

(1)D1msg(close yα)D2
yα close−−−−−→ D1D2

(2)D1 msg(yα.k)D2
yα k−−−→ D1D2

(3)D1 msg(sendxβ yα)D2
yα xβ−−−→ D1D2

(4)D1proc(zδ,wait yα;P )D2
L yα close−−−−−−→ msg(close yα)D1proc(zδ,wait yα;P )D2

(5)D1proc(zδ, case yα (ℓ⇒ Pℓ)ℓ∈I)D2
L yα k−−−−→ msg(yα.k)D1proc(zδ, case yα (ℓ⇒ Pℓ)ℓ∈I)D2

(6)D1 proc(zδ, w ← recv yα)D2
L yα xβ−−−−−→ msg(sendxβ yα)D1 proc(zδ, w ← recv yα)D2

(7)D1 proc(yα, case yα (ℓ⇒ Pℓ)ℓ∈I)D2
R yα k−−−−→ D1 proc(yα, case yα (ℓ⇒ Pℓ)ℓ∈I)D2msg(yα.k)

(8)D1proc(yα, w ← recv yα)D2
R yα xβ−−−−−→ D1proc(yα, w ← recv yα)D2 msg(sendxβ yα)

Fig. 7: The transition rules. An overline indicates that an outgoing message, an otherwise the message is incoming.

XII. ADEQUACY

Definition 22 (Free names of a configuration). for ∆ ⊩ D :: ∆′, we define fn(D) as dom(∆,∆′).

Definition 23 (Weak transition relations).

(1) =⇒ is the reflexive and transitive closure of τ−→.

(2) α
=⇒ is =⇒ α−→.

Definition 24 (Asynchronous bisimilarity). Asynchronous bisimilarity is the largest symmetric relation such that whenever
D1 ≈a D2, we have
1) (τ − step) if D1

τ−→ D′1 then ∃D′2.D2
τ
=⇒ D′2 and D′1 ≈a D′2,

2) (output) if D1
xα q−−−→ D′1 then ∃D′2.D2

xα q
===⇒ D′2 and D′1 ≈a D′2.

3) (left input) for all q ̸∈ fn(D1)., if D1
L xα q−−−−→ D′1 then ∃D′2.D2

τ
=⇒ D′2 and D′1 ≈a msg(xα.q)D′2,

4) (right input) for all q ̸∈ fn(D1)., if D1
R xα q−−−−→ D′1 then ∃D′2.D2

τ
=⇒ D′2 and D′1 ≈a D′2msg(xα.q).

where msg(xα.q) is defined as msg(closexα) if q = close, msg(xα.k) if q = k, and msg(send zδ xα) if q = zδ . ⋄
Definition 25 (High provider and High client). We repeat the definition of high provider and high client configurations (§VIII-A)
here.

· ∈ H-Providerξ(·)
B ∈ H-Providerξ(Γ, xα:A[c]) iff c ̸⊑ ξ andB = B′T and B′ ∈ H-Providerξ(Γ) and T ∈ Tree(· ⊩ xα:A),or

c ⊑ ξ andB ∈ H-Providerξ(Γ)

T ∈ H-Clientξ(xα:A[c]) iff c ̸⊑ ξ and T ∈ Tree(xα:A ⊩ : 1),or
c ⊑ ξ andB = ·

⋄
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Definition 26. For D1 ∈ Tree(|Γ1| ⊩ xα:A1), D2 ∈ Tree(|Γ2| ⊩ yβ :A2) we define

Γ1 ⊩ D1 :: xα:A1[c1] ≈ξa Γ2 ⊩ D2 :: yβ :A2[c2] as

Γ1 ⇓ ξ = Γ2,⇓ ξ and yβ :A2[c2] ⇓ ξ = xα:A1[c1] ⇓ ξ and

∀B1 ∈ H-Providerξ(Γ1),B2 ∈ H-Providerξ(Γ2), T1 ∈ H-CLientξ(xα:A1[c1]), T2 ∈ H-Clientξ(yβ :A2[c2]).
B1D1T1 ≈a B2D2T2.

Corollary 4. For all D1 ∈ Tree(|Γ1| ⊩ xα:A1) and D2 ∈ Tree(|Γ2| ⊩ yβ :A2), we have (Γ1 ⊩ D1 :: xα:A1[c1]) ≡Ψ0

ξ (Γ2 ⊩
D2 :: yβ :A2[c2]) iff (Γ1 ⊩ D1 :: xα:A1[c1]) ≈ξa (Γ2 ⊩ D2 :: yβ :A2[c2]).

Proof. The proof is straightforward by considering Def. 17, Def. 26, and the following corollary (Corollary 5).

Corollary 5. for all (D1,D2) ∈ Tree(∆ ⊩ K), we have ∀m.(D1,D2) ∈ EJ∆ ⊩ KKm and ∀m.(D2,D1) ∈ EJ∆ ⊩ KKm iff
D1 ≈a D2.

Proof. It is a corollary of the following lemma (Lem. 24)

Lemma 24. Consider a pair of session-typed forests (C1, C2) ∈ Forest(∆ ⊩ ∆′) consisting of multiple session-typed trees
indexed in the set I , i.e., Ci = {Cji }j∈I for i ∈ {1, 2}, and (Cj1, Cj2) ∈ Tree(∆j ⊩ Kj) with ∆ = {∆j}j∈I and ∆′ = {Kj}j∈I .
We have:

∀j ∈ I.∀m. (Cj1, Cj2) ∈ EJ∆j ⊩ KjKm and (Cj2, Cj1) ∈ EJ∆j ⊩ KjKm iff C1 ≈a C2.
Proof. The proof consists of two parts.
(1) Soundness. We want to prove for any arbitrary pair of forests C1 = {Cj1}j∈I and C2 = {Cj2}j∈I such that ∀j ∈ I. (Cj1, Cj2) ∈
Tree(∆j ⊩ Kj), if ∀j ∈ I.∀m.(Cj1, Cj2) ∈ EJ∆j ⊩ KjKm and ∀j ∈ I.∀m.(Cj2, Cj1) ∈ EJ∆j ⊩ KjKm then {Cj1}j∈I ≈a
{Cj2}j∈I .
We proceed the proof by coninduction on the generating function of the bisimilarity. Consider an arbitrary C1 = {Cj1}j∈I and
C2 = {Cj2}j∈I such that ∀j ∈ I. (Cj1, Cj2) ∈ Tree(∆j ⊩ Kj), and assume ∀j ∈ I.∀m.(Cj1, Cj2) ∈ EJ∆j ⊩ KjKm. Our goal is
to show {Cj1}j∈I ≈a {Cj2}j∈I . We prove it by showing the items (1)-(4) Def. 24 by assuming ∀j ∈ I.∀m.(Cj1, Cj2) ∈ EJ∆j ⊩
KjKm only. The symmetric relation can be established with the other assumption ∀j ∈ I.∀m.(Cj2, Cj1) ∈ EJ∆j ⊩ KjKm We
continue by establishing items (1)-(4) in Def. 24:
1) Assume C1 τ−→ C′1, then by the definition of τ−transition, we have C1 7→ C′1. In other words we have {Cj1}j∈I 7→ {Cj

′

1 }j∈I
for C′1 = {Cj

′

1 }j∈I . To establish item (1) in the definition, it is enough to prove that {Cj
′

1 }j∈I ≈a {Cj2}j∈I . Since we
unfolded the conindcutive definition of the bisimilarity’s generating function once, we can apply the coinductive case if
the assumptions are satisified, i.e., we need to prove that each tree in the post-step forest is session-typed and the pairs
are related by the logical relation.
By assumption ∀j ∈ I.∀m.(Cj1, Cj2) ∈ EJ∆j ⊩ KjKm and by the forward closure lemma (Lem. 14), we get ∀j ∈
I.∀m.(Cj

′

1 , Cj2) ∈ EJ∆j ⊩ KjKm. This along with type-preservation of session-typed programs, is enough to get
{Cj

′

1 }j∈I ≈a {Cj2}j∈I by coinduction.
2) Assume C1 xα q−−−→ C′1, then by Fig. 7 we have C1 = C11msg(xα.q) C21 , with C′1 = C11 , C21 .

This means that for some κ ∈ I , we have either Cκ1 = Cκ′

1 msg(xα.q) or Cκ1 = msg(xα.q)Cκ
′

1 , and C′1 = {Cj1}j∈I−{κ}Cκ
′

1 .
In particular, we know that ∀m.(Cκ1 , Cκ2 ) ∈ EJ∆κ ⊩ KκKm, and Cκ1 7→0Υκ1 ;Θκ1 Cκ1 , such that xα ∈ Υκ1 . By the definition
of the term interpretation and Lem. 16, we get

∀Υκ1 ,Θκ1 , Cκ
′

1 .if Cκ1 7→∗Υ
κ
1 ;Θκ1 Cκ′

1 , then ∃Υκ2 , Cκ
′

2 such that Cκ2 7→∗Υ
κ
2 Cκ′

2 andΥκ1 ⊆ Υκ2 and

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then ∀ k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then ∀k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
xα;·.

We can instantiate the ∀ quantifiers and apply an if−Elimination rule to get Cκ2 7→∗Υ
κ
2 Cκ′

2 for some Υκ2 ⊇ Υκ1 and some
Cκ′

2 . Since xα ∈ Υκ1 , we get by the definition of the logical relation ∀m.(Cκ1 , Cκ
′

2 ) ∈ VξΨ0
J∆κ ⊩ KκKm+1

·;xα . This (depending
on the type of the channel xα) gives us Cκ′

2 = Cκ′′
2
msg(xα.q) or Cκ′

2 = msg(xα.q)Cκ′′
2

. Note that if q is a channel name,
Cκ′′

2 is a forest, rather than a tree, and if q is the label close, the configuration Cκ′′

2 is empty.
Put C′2 = {Cj2}j∈I−{κ}, Cκ

′′

2 . To establish item (2) in the definition, it is enough to prove that C′1 ≈a C′2. Since we
unfolded the conindcutive definition of the bisimilarity’s generating function once, we can apply the coinductive case if
the assumptions are satisified, i.e., we need to prove that each tree in the post-step forest is session-typed and the pairs
are related by the logical relation.
The proof proceeds by cases on the type of xα. Here we only provide one interesting case, the proof of other cases is
similar.
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Subcase 1. Kκ = xα:A⊗B ∈ ∆′. We have ∆κ = ∆κ
1 ,∆

κ
2 and Cκ1 = Cκ′

1 msg(send yδ xα) with Cκ′

1 = Cκ′′

1 A1.
Moreover, we have Cκ′

2 = Cκ′′

2 msg(send yδ xα) with Cκ′′

2 = Cκ′′′

2 A2. And ∀m.(Cκ′′

1 ; Cκ′′′

2 ) ∈ EJ∆κ
1 ⊩ xα+1:BKm

and ∀m.(A1;A2) ∈ EJ∆κ
2 ⊩ yδ:AKm.

Recall that all other trees in the forest are still related, i.e. ∀j ∈ I−{κ}, we have ∀m.(Cj1; Cj2) ∈ EJ∆j ⊩ KjKm This is
enough to apply the coinductive argument and get C′1 ≈a C′2 where C′1 = {Cj1}j∈I−{κ}, Cκ

′

1 and C′2 = {Cj2}j∈I−{κ}, Cκ
′′

2 .

3) Assume for an arbitrary q, we have C1 L xα q−−−−→ C′1. By Fig. 7, there is a process proc(zβ , Pxα) ∈ C1 which is waiting to
receive a message along xα. In particular, for some tree Cκ1 for κ ∈ I , we have proc(zβ , Pxα) ∈ Cκ1 .
We know that ∀m.(Cκ1 , Cκ2 ) ∈ EJ∆κ ⊩ KκKm, and Cκ1 7→0Υκ1 ;Θκ1 Cκ1 , such that xα ∈ Θκ1 . By the definition of the term
interpretation and Lem. 16, we get

∀Υκ1 ,Θκ1 , Cκ
′

1 .if Cκ1 7→∗Υ
κ
1 ;Θκ1 Cκ′

1 , then ∃Υκ2 , Cκ
′

2 such that Cκ2 7→∗Υ
κ
2 Cκ′

2 andΥκ1 ⊆ Υκ2 and

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then ∀ k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then ∀k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
xα;·.

We can instantiate the ∀ quantifiers and apply an if−Elimination rule to get Cκ2 7→∗Υ
κ
2 Cκ′

2 for some Υκ2 ⊇ Υκ1 and
some Cκ′

2 . Since xα ∈ Θκ1 , we get by the definition of the logical relation ∀m.(Cκ1 , Cκ
′

2 ) ∈ VξΨ0
J∆κ ⊩ KκKm+1

xα;· . We put
C′2 = {Cj2}j∈I−{κ}, Cκ

′

2 .
The proof proceeds by cases on the type of xα. Here we only provide one interesting case, the proof of other cases is
similar.
Subcase 1. xα:A⊗B ∈ ∆κ ⊆ ∆ (i.e., ∆κ = ∆κ′

, xα:A⊗B) In this case, we know that Cκ1 = Cκ1
1 proc(zδ, w ←

recv xα) Cκ2
1 and q is a channel yδ which is fresh in both Cκ1 and Cκ′

2 . Moreover, we have Cκ′

1 = msg(send yδ xα)Cκ1 ,
and thus C′1 = msg(send yδ xα)C1.
By the logical relation, we get ∀m.(msg(send yδ xα)Cκ1 ;msg(send yδ xα)Cκ

′

2 ) ∈ EJ∆κ′
, yδ:A, xα+1:B ⊩ KκKm.

Recall that all other trees in the forest are still related, i.e. ∀j ∈ I − {κ}, we have ∀m.(Cj1; Cj2) ∈ EJ∆j ⊩ KjKm This
is enough to apply the coinductive argument and get C′1 ≈a msg(send yδ xα)C′2 as required.

4) Assume for an arbitrary q, we have C1 R xα q−−−−→ C′1. The proof is similar to the previous case:
By Fig. 7, there is a process proc(xα, Pxα) ∈ C1 which is waiting to receive a message along xα. In particular, for some
tree Cκ1 for κ ∈ I , we have proc(xα, P ) ∈ Cκ1 .
We know that ∀m.(Cκ1 , Cκ2 ) ∈ EJ∆κ ⊩ KκKm, and Cκ1 7→0Υκ1 ;Θκ1 Cκ1 , such that xα ∈ Θκ1 . By the definition of the term
interpretation and Lem. 16, we get

∀Υκ1 ,Θκ1 , Cκ
′

1 .if Cκ1 7→∗Υ
κ
1 ;Θκ1 Cκ′

1 , then ∃Υκ2 , Cκ
′

2 such that Cκ2 7→∗Υ
κ
2 Cκ′

2 andΥκ1 ⊆ Υκ2 and

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then ∀ k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then ∀k. (Cκ
′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKk+1
xα;·.

We can instantiate the ∀ quantifiers and apply an if−Elimination rule to get Cκ2 7→∗Υ
κ
2 Cκ′

2 for some Υκ2 ⊇ Υκ1 and
some Cκ′

2 . Since xα ∈ Θκ1 , we get by the definition of the logical relation ∀m.(Cκ1 , Cκ
′

2 ) ∈ VξΨ0
J∆κ ⊩ KκKm+1

xα;· . We put
C′2 = {Cj2}j∈I−{κ}, Cκ

′

2 .
The proof proceeds by cases on the type of xα. Here we only provide one interesting case, the proof of other cases is
similar.
Subcase 1. Kκ = xα:A⊸ B ∈ ∆′. In this case, we know that Cκ1 = Cκ1

1 proc(xα, w ← recv xα) Cκ2
1 and q is a channel

yδ which is not free in Cκ1 (and by the typing not in Cκ′

2 either). Moreover, we have Cκ′

1 = Cκ1msg(send yδ xα), and
thus C′1 = C1msg(send yδ xα).
By the logical relation, we get ∀m.(Cκ1msg(send yδ xα); Cκ

′

2 msg(send yδ xα)) ∈ EJ∆κ, yδ:A ⊩ xα+1:BKm.
Recall that all other trees in the forest are still related, i.e. ∀j ∈ I − {κ}, we have ∀m.(Cj1; Cj2) ∈ EJ∆j ⊩ KjKm This
is enough to apply the coinductive argument and get C′1 ≈a C′2msg(send yδ xα) as required.

(2) Completeness. We want to prove for any arbitrary pair of forests C1 = {Cj1}j∈I and C2 = {Cj2}j∈I such that ∀j ∈
I. (Cj1, Cj2) ∈ Tree(∆j ⊩ Kj), if {Cj1}j∈I ≈a {Cj2}j∈I then ∀j ∈ I.∀m.(Cj1, Cj2) ∈ EJ∆j ⊩ KjKm.
We instead prove an equivalent statement that says

For any natural number m and any arbitrary pair of forests C1 = {Cj1}j∈I and C2 = {Cj2}j∈I such that ∀j ∈ I. (Cj1, Cj2) ∈
Tree(∆j ⊩ Kj), if {Cj1}j∈I ≈a {Cj2}j∈I then ∀j ∈ I.(Cj1, Cj2) ∈ EJ∆j ⊩ KjKm.

We proceed by induction on m.
Base case. (m = 0) The proof is straightforward by the definition of logical relation and the fact that the configurations
are session-typed.

Inductive case. (m = m′ + 1) Consider an arbitrary κ ∈ I . By the definition of the term interpretation, we need to prove
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∀Υκ1 ,Θκ1 , Cκ1 .if Cκ
′

1 7→∗Υ
κ
1 ;Θκ1 Cκ′

1 , then ∃Υκ2 , Cκ
′

2 such that Cκ2 7→∗Υ
κ
2 Cκ′

2 andΥκ1 ⊆ Υκ2 and

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then (Cκ′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then (Cκ′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1

xα;· .

Consider an arbitrary Υκ1 , Θκ1 , and Cκ′

1 , and assume Cκ′

1 7→∗Υ
κ
1 ;Θκ1 Cκ′

1 , we need to prove

∃Υκ2 , Cκ
′

2 such that Cκ2 7→∗Υ
κ
2 Cκ′

2 andΥκ1 ⊆ Υκ2 and

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then (Cκ′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then (Cκ′

1 ; Cκ′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1

xα;· .

By local transition steps, we know that C1 7→∗ C′1, where C′1 = {Cκ1 }j∈I−{κ}Cκ
′

1 . By C1 ≈a C2, we can apply the clause
for τ -transitions in Def. 24 for zero or multiple times, to get C2 7→∗ C′2 such that C′1 ≈a C′2. Consider the channels in the
sets Υκ1 and Θk1 . There are three cases:
A. By item (2) of Def. 24 and C′1 ≈a C′2, we know that for all xα ∈ Out(∆ ⊩ K) such that xα ∈ Υκ1 , we have C′2 7→∗ Cxs2

such that Cxs2 sends along the channel xα and C′1 = C11msg(xα.q)C21 and Cxs2 = Cx
′
s

2 msg(xα.q)Cx
′′
s

2 and we have
C11C21 ≈a C

x′
s

2 C
x′′
s

2 .
B. By item (3) of Def. 24 and C′1 ≈a C′2, we know that for all xα ∈ In(∆ ⊩ ·) such that xα ∈ Θκ1 , we have C′2 7→∗ Cxr2

such that msg(xα.q)C′1 ≈a msg(xα.q)Cxr2 .
C. By item (4) of Def. 24 and C′1 ≈a C′2, we know that for all xα ∈ In(· ⊩ K) such that xα ∈ Θκ1 , we have C′2 7→∗ Cxr2

such that C′1msg(xα.q) ≈a Cxr2 msg(xα.q).
Apply the confluence lemma (Lem. 11) on (i) C′2 7→∗ Cxs2 for all xα ∈ Out(∆ ⊩ K) such that xα ∈ Υκ1 and (ii) C′2 7→∗ Cxr2
for all xα ∈ In(∆ ⊩ K) such that xα ∈ Θκ1 to build C′′2 . In particular, by the confluence lemma, we get C′2 7→∗Υ2 C′′2 where
Υκ1 ⊆ Υ2, and (i’) Cxs2 7→∗ C′′2 for all xα ∈ Out(∆ ⊩ K) such that xα ∈ Υκ1 and (ii) Cxr2 7→∗ C′′2 for all xα ∈ In(∆ ⊩ K)
such that xα ∈ Θκ1 .
More precisely, by the forest structure, we have C′′2 = {Cκ′′

2 }j∈I−{κ}Cκ
′′

2 , with Cκ2 7→∗Υ
κ
2 Cκ′′

2 with Υκ1 ⊆ Υκ2 . We use Υκ2
and Cκ′′

2 to instantiate the existential quantifier in the goal. We need to prove that

∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then (Cκ′

1 ; Cκ′′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1
·;xα and

∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then (Cκ′

1 ; Cκ′′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1

xα;· .

By the forward closure lemma for the bisimulation (Lem. 25), we get
A’. By item [A.] we get, for all xα ∈ Out(∆ ⊩ K) such that xα ∈ Υκ1 , we have C′2 7→∗ C′′2 such that C′′2 sends along the

channel xα and we have C′1 = C11msg(xα.q)C21 and C′′2 = Cx′
smsg(xα.q)Cx

′′
s and C11C21 ≈a Cx

′
sCx′′

s .
B’. By item B., the confluence lemma, and the forward closure lemma for the bisimulation (Lem. 25), we get: for all

xα ∈ In(∆ ⊩ ·) such that xα ∈ Θκ1 , we have C′2 7→∗ C′′2 such that msg(xα.q)C′1 ≈a msg(xα.q)C′′2 .
C’. By item C., the confluence lemma, and the forward closure lemma for the bisimulation (Lem. 25), we get: for all

xα ∈ In(· ⊩ K) such that xα ∈ Θκ1 , we have C′2 7→∗ C′′2 such that C′1msg(xα.q) ≈a C′′2msg(xα.q).
There are two parts we need to prove:

Part 1. ∀xα ∈ Out(∆κ ⊩ Kκ). if xα ∈ Υκ1 . then (Cκ′

1 ; Cκ′′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1
·;xα

Assume an arbitrary xα ∈ Out(∆κ ⊩ Kκ) with xα ∈ Υ1. we consider cases based on the type of xα. Here we provide
the detailed proof for one case, the proof of other cases is similar.

Subcase 1. Kκ = xα:A ⊗ B. We need to prove (Cκ′

1 , Cκ
′′

2 ) ∈ VJ∆κ ⊩ xα:A ⊗ BKm
′+1
·;xα . We first establish Cκ′

1 =

Cκ′′

1 A1msg(sendyβ xα) and Cκ′′

2 = Cκ′′′

2 A2msg(sendyβ xα), using item [A’] above and well-typedness of programs.
Next, we apply the inductive hypothesis to show (A1;A2) ∈ EJ∆κ

1 ⊩ yβ :AKm
′

and also (Cκ′′

1 ; Cκ′′′

2 ) ∈ EJ∆κ
2 ⊩

xα+1:BKm
′

with ∆κ = ∆κ
1 ,∆

κ
2 . We get this by configuration typing, C11C21 ≈a Cx

′
sCx′′

s given in item [A′] above and
the fact that both A1, A2, Cκ′′

1 and Cκ′′′

2 are separate trees in the forests C11C21 and Cx′
sCx′′

s .
Part 2. ∀xα ∈ In(∆κ ⊩ Kκ).if xα ∈ Θκ1 . then (Cκ′

1 ; Cκ′′

2 ) ∈ VJ∆κ ⊩ KκKm
′+1

xα;· . Assume an arbitrary xα ∈ In(∆κ ⊩
Kκ) with xα ∈ Θ1. we consider cases based on the type of xα. Here we provide the detailed proof for one case, the
proof of other cases is similar.

Subcase 1. ∆κ = ∆κ
1xα:A ⊗ B. We need to prove (Cκ′

1 , Cκ
′′

2 ) ∈ VJ∆κ
1 , xα:A ⊗ B ⊩ KκKm

′+1
xα;· . We apply the

inductive hypothesis on msg(send yβ xα)C′1 ≈a msg(sendyβ xα)C′′2 which is given by item [B’] above to get
(msg(sendyβ xα)Cκ

′

1 ,msg(sendyβ xα)Cκ
′′

2 ) ∈ EJ∆κ
1 , yβ :A, xα+1:B ⊩ KκKm

′
which completes the proof of this

case.

Lemma 25 (Forward closure). For all D1,D2 if D1 ≈a D2 and D2 ⇒ D′2, then D1 ≈a D′2.

48



Proof. The proof is by coinduction on the generative function of the bisimulation (D1 ≈a D′2). We consider four cases required
to establish D1 ≈a D′2.
1) (τ − step) if D1

τ−→ D′1 then by the assumption D2
τ
=⇒ D′′2 and D′1 ≈a D′′2 . This gives us D2 7→∗ D′′2 . We also know by

assumption that D2 7→∗ D′2. By the confluence lemma(Lem. 11), we can build a D such that D′′2 7→∗ D and D′2 7→∗ D. By
coinduction on D′1 ≈a D′′2 having the assumption D′′2 7→∗ D, we get D′1 ≈a D, which along with D′2

τ
=⇒ D is enough to

get the result.
2) (output) if D1

xα q−−−→ D′1 then by the assumption D2
xα q
===⇒ D4

2 and D′1 ≈a D4
2 . This gives us D2 7→∗ D′′2 , and D′′2

xα q−−−→ D′′′2 ,

and D′′′2 7→∗ D4
2 . We also know by assumption that D2 7→∗ D′2. By the confluence lemma(Lem. 11), we can build a D

such that D′′2 7→∗ D and D′2 7→∗ D. Moreover, for some D′ we have D xα q−−−→ D′, such that D′′′2 7→∗ D′. Recall that we also
have D′′′2 7→∗ D4

2 . Again, we apply the confluence lemma(Lem. 11) to get a D′′ such that D4
2 7→∗ D′′ and D′ 7→∗ D′′. By

coinduction on D′1 ≈a D4
2 having the assumption D4

2 7→∗ D′′, we get D′1 ≈a D′′. Moreover, we have D′2
xα q
===⇒ D′′, i.e.,

D′2 7→∗ D, and D xα q−−−→ D′, and D′ 7→∗ D′′. This is enough to get the result.
3) (left input) Consider an arbitrary q which is not free in D1, and assume D1

L xα q−−−−→ D′1, then ∃D′′2 .D2
τ
=⇒ D′′2 and D′1 ≈a

msg(xα.q)D′′2 ,. This gives us D2 7→∗ D′′2 . We also know by assumption that D2 7→∗ D′2. By the confluence lemma(Lem. 11),
we can build a D such that D′′2 7→∗ D and D′2 7→∗ D. This also gives us msg(xα.q)D′′2 7→∗ msg(xα.q)D. By coinduction
on D′1 ≈a msg(xα.q)D′′2 having the assumption msg(xα.q)D′′2 7→∗ msg(xα.q)D, we get D′1 ≈a msg(xα.q)D. Moreover,
we have D′2 =⇒ D, i.e., D′2 7→∗ D. This is enough to complete the proof of this case.

4) (right input) for all q ̸∈ fn(D1), if D1
R xα q−−−−→ D′1 then ∃D′2.D2

τ
=⇒ D′2 and D′1 ≈a D′2msg(xα.q). The proof is similar to

the previous case.
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XIII. BIORTHOGONALITY

A. Equivalence

Definition 27 (Session-typed environment). A session-typed environment with the interface ∆ ⊩ K, is of the form C[ ]F , such
that for some ∆′ and K ′, we have ∆′ ⊩ C :: ∆ and K ⊩ F :: K ′.

Definition 28 (Program- and environment- relations). A session program-relation is a binary relation between session-typed
programs, i.e., open configurations of the form ∆ ⊩ D :: K. Given the interface ∆ ⊩ K, we write PRel(∆ ⊩ K) for the set
of all program relations that relate programs ∆ ⊩ D :: K.

A session environment-relation is a binary relation between session-typed environments. Given the interface ∆ ⊩ K, we
write ERel(∆ ⊩ K) for the set of all environment relations that relate environments C[ ]F with the interface ∆ ⊩ K.

Definition 29 (The ( )⊤ operation on relations). Given any interface ∆ ⊩ K and r ∈ PRel(∆ ⊩ K), we define r⊤ ∈
ERel(∆ ⊩ K) by

(C1[ ]F1, C2[ ]F2) ∈ r⊤ iff ∀(D1,D2) ∈ r.(C1D1F1 ≈a C2D2F2);

and given any s ∈ ERel(∆ ⊩ K), we define s⊤ ∈ PRel(∆ ⊩ K) by

(D1,D2) ∈ s⊤ iff ∀(C1[ ]F1, C2[ ]F2) ∈ s.(C1D1F1 ≈a C2D2F2);

As explained in [1], just by virtue of how these definitions are defined, we get that the operation is a Galois connection,
which is inflationary, and idempotent.

Definition 30.
• Define the relation ∆ ⊩ D1 :: K ≡ ∆ ⊩ D2 :: K as (D1,D2) ∈ Tree(∆ ⊩ K) and ∀m. (D1,D2) ∈ EJ∆ ⊩ KK and
∀m.(D2,D1) ∈ EJ∆ ⊩ KK.

• Define the relation ∆ ⊣ C1[ ]F1 ⊣ K ≡ ∆ ⊣ C2[ ]F2 ⊣ K as (i) ∃K ′ such that K ⊩ F1 :: K ′ ≡ K ⊩ F2 :: K ′ and
(ii) ∃∆′ such that (C1, C2) ∈ Forest(∆′ ⊩ ∆) and ∀T1 ∈ C1, and∀T2 ∈ C2 with (T1, T2) ∈ Tree(∆′1 ⊩ K ′′), we have
∆′1 ⊩ T1 :: K ′′ ≡ ∆′1 ⊩ T2 :: K ′′.

Theorem 6 (⊤⊤-closure). Consider (D1,D2) ∈ Tree(∆ ⊩ K), we have

(∆ ⊩ D1 :: K) ≡ (∆ ⊩ D2 :: K)

iff

∀C1, C2,F1,F2. s.t. (∆ ⊣ C1[ ]F1 ⊣ K) ≡ (∆ ⊣ C2[ ]F2 ⊣ K) we have
∀m. C1D1F1 ≈a C2D2F2

Proof. There are two directions to consider:
Left to Right: The result is straightforward by the compositionality result(Corollary 2) and the soundness result (Lem. 24)
and the definition of equivalence ≡ for programs and environments (Def. 30).

Right to Left: Consider C1 = C2 = F1 = F2 = ·. By Lem. 21 and Def. 30, we know that (∆ ⊣ · [ ] · ⊣ K) ≡ (∆ ⊣ ·[ ] · ⊣ K).
From this we get ∀m.D1 ≈a D2, and by the completeness lemma (Lem. 24) we get ∀m. (D1,D2) ∈ EJ∆ ⊩ KKm and
∀m. (D2,D1) ∈ EJ∆ ⊩ KKm. By Def. 30, we have ∆ ⊩ D1 :: K ≡ ∆ ⊩ D2 :: K, which completes the proof.

This result is enough to prove that our equivalence relation is ⊤⊤-closed, i.e., following the results presented in the results
presented in [1], it shows r = s⊤, when r and s defined as our logical equivalence.

B. Noninterference

Definition 31 (Session-typed environment). A session-typed environment with the interface ∆ ⊩ K, is of the form C[ ]F , such
that for some ∆′ and K ′, we have ∆′ ⊩ C :: ∆ and K ⊩ F :: K ′.

Definition 32 (Program- and environment- relations). A security session program-relation is a binary relation between session-
typed programs, i.e., open configurations of the form ∆ ⊩ D :: K. Given a security level ξ ∈ Ψ0, and two interfaces
Γ1 ⊩ xα:A1[c1] and Γ2 ⊩ yβ :A2[c2] we write PRelξ(Γ1 ⊩ xα:A1[c1],Γ2 ⊩ yβ :A2[c2]) for the set of all security program
relations that relate programs |Γ1| ⊩ D1 :: xα:A1 and |Γ2| ⊩ D2 :: yβ :A2.

A low-security session environment-relation is a binary relation between low security session-typed environments. Given
two interfaces Γ1 ⊩ xα:A1[c1] and Γ2 ⊩ yβ :A2[c2], we write ERelξ(Γ1 ⊩ xα:A1[c1],Γ2 ⊩ yβ :A2[c2]) for the set of all
environment relations that relate low security session-typed environments C1[ ]F1 with the interface |Γ1 ⇓ ξ| ⊩ |xα:A1[c1] ⇓ ξ|
and C2[ ]F2 with the interface |Γ2 ⇓ ξ| ⊩ |yβ :A2[c2] ⇓ ξ|.
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Definition 33 (The ( )⊤ operation on relations). Given two interfaces Γ1 ⊩ xα:A1[c1] and Γ2 ⊩ yβ :A2[c2] and the observer
security level ξ ∈ Ψ0 and r ∈ PRelξ(Γ1 ⊩ xα:A1[c1],Γ2 ⊩ yβ :A2[c2]), we define r⊤ ∈ ERelξ(Γ1 ⊩ xα:A1[c1],Γ2 ⊩
yβ :A2[c2]) by

(C1[ ]F1, C2[ ]F2) ∈ r⊤ iff ∀(D1,D2) ∈ r.
∀B1 ∈ H-Providerξ(Γ1),B2 ∈ H-Providerξ(Γ2), T1 ∈ H-CLientξ(xα:A1[c1]), T2 ∈ H-Clientξ(yβ :A2[c2]).

B1C1D1F1T1 ≈a B2C2D2F2T2
and given any s ∈ ERel(∆ ⊩ K), we define s⊤ ∈ PRel(∆ ⊩ K) by

(D1,D2) ∈ s⊤ iff ∀(C1[ ]F1, C2[ ]F2) ∈ s.
∀B1 ∈ H-Providerξ(Γ1),B2 ∈ H-Providerξ(Γ2), T1 ∈ H-CLientξ(xα:A1[c1]), T2 ∈ H-Clientξ(yβ :A2[c2]).

B1C1D1F1T1 ≈a B2C2D2F2T2
As explained in [1], just by virtue of how these definitions are defined, we get that the operation is a Galois connection,

which is inflationary, and idempotent.

Definition 34 (Equivalence of forests by the logical relation upto the observer level). We write Γ′1 ⊩ C1 :: Γ1 ≡ξΨ0
Γ′2 ⊩ C2 :: Γ2

iff
(i) (Both forests are well-typed.) C1 ∈ Forest(|Γ′1| ⊩ |Γ1|) and C2 ∈ Forest(|Γ′2| ⊩ |Γ2|)

(ii) (Their observable interface is the same.) Γ′1 ⇓ ξ = Γ′2 ⇓ ξ and Γ1 ⇓ ξ = Γ2 ⇓ ξ, and
(iii) (Each tree in the 1st forest with an observable interface has a counterpart in the 2nd forest which is equivalent to it.)

for every T1 ∈ C1 such that T1 ∈ Tree(|Γ′′1 | ⊩ |xα:A1[c1]|), and Γ′′1 ⊆ Γ′1 and xα:A1[c1] ∈ Γ1 and (Γ′′1 , xα:A1[c1]) ⇓ ξ ̸= ·
there exists a T2 ∈ C2 such that T2 ∈ Tree(|Γ′′2 | ⊩ |yβ :A2[c2]|), and Γ′′2 ⊆ Γ′2 and yβ :A2[c2] ∈ Γ2 for Γ′′1 ⇓ ξ = Γ′′2 ⇓ ξ and
yβ :A2[c2] ⇓ ξ = xα:A1[c1] ⇓ ξ, and

(iv) (Each tree in the 2nd forest with an observable interface has a counterpart in the 1st forest which is equivalent to
it.) vice versa.

Definition 35. Define the relation

Γ1 ⊣ C1[ ]F1 ⊣ xα:A1[c1] ≡ξΨ0
Γ2 ⊣ C2[ ]F2 ⊣ yβ :A2[c2] as

(i) (The observable interface of the environments are the same.) We have Γ = Γ1 ⇓ ξ = Γ2 ⇓ ξ and Ks = xα:A1[c1] ⇓
ξ = yβ :A2[c2] ⇓ ξ, and

(ii) (The configurations C1 and C2 offer channels annotated as observable and use the same channels and are equivalent for
any observable (low-confidentiality) annotation of their resource channel.) for some ∆, we have (C1, C2) ∈ Forest(∆ ⊩
|Γ|). In particular, if Γ = ·, we have C1 = C2 = ·.
Moreover, for every Γ′1 and Γ′2 such that |Γ′1| = |Γ′2| = ∆, and ∀wη:A[c] ∈ Γ′1. c ⊑ ξ and ∀wη:A[c] ∈ Γ′2. c ⊑ ξ we have
Γ′1 ⊩ C1 :: Γ ≡ξΨ0

Γ′2 ⊩ C2 :: Γ.
(iii) (The configurations F1 and F2 use channels annotated as observable, offer the same channels, and are equivalent

for any observable (low-confidentiality) annotation of their offering channels.) If Ks = :1[⊤], then F1 = F2 = ·.
Otherwise, for some wη:A, we have (F1,F2) ∈ Tree(Ks ⊩ wη:A). Moreover, ∀c, c′ ⊑ ξ, we have Ks ⊩ F1 :: wη:A[c] ≡ξΨ0

Ks ⊩ F2 :: wη:A[c
′] and.

⋄
Lemma 26 (Compositionality of ≡ξΨ0

). If

(i) (Γ′1 ⊩ C1 :: Γ) ≡ξΨ0
(Γ′2 ⊩ C2 :: Γ) with Γ = Γ1 ⇓ξ= Γ2 ⇓ξ and

(ii) (Γ1 ⊩ D1 :: xα:A1[c1]) ≡ξΨ0
(Γ2 ⊩ D2 :: yβ :A2[c2]) and

(iii) (Ks ⊩ F1 :: Ks
1) ≡ξΨ0

(Ks ⊩ F2 :: Ks
2) withK

s = xα:A1[c1] ⇓ ξ = yβ :A2[c2] ⇓ ξ then
(Γ′1,Γ

h
1 ⊩ C1D1F1 :: Ks

1) ≡ξΨ0
(Γ′2,Γ

h
2 ⊩ C2D2F2 :: Ks

2),

where Γh1 is the set of all channels wη:C[d] ∈ Γ1 with d ̸⊑ ξ and Γh2 is the set of all channels wη:C[d] ∈ Γ2 with d ̸⊑ ξ.

Proof. By the configuration typing and definition of equivalence (Def. 17) and (i), (ii), (iii), we know that C1D1F1 ∈ Tree(|Γ′1| ⊩
|Ks

1 |) and C2D2F2 ∈ Tree(|Γ′2| ⊩ |Ks
2 |). Moreover, by definition of equivalence (Def. 17) and (i), (iii) we get Γ′ = (Γ′1,Γ

h
1 ) ⇓

ξ = (Γ′2,Γ
h
1 ) ⇓ ξ and Ks′ = Ks

1 ⇓ ξ = Ks
2 ⇓ ξ.

Assume arbitrary configurations B1 ∈ H-Providerξ(Γ′1), Bh1 ∈ H-Providerξ(Γh1 ), B2 ∈ H-Providerξ(Γ′2), Bh2 ∈
H-Providerξ(Γh2 ), T1 ∈ H-Clientξ(Ks

1), and T2 ∈ H-Clientξ(Ks
2). Our goal is to prove

∀m. (B1Bh1C1D1F1T1,B2Bh2C2D2F2T2) ∈ EJ|Γ′| ⊩ |Ks′ |Km, and
∀m. (B2Bh2C2D2F2T2,B1Bh1C1D1F1T1) ∈ EJ|Γ′| ⊩ |Ks′ |Km.
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By assumptions (i)-(iii) we have:
(i’) Note that for any trees A′′1 ∈ C1 and A′′2 ∈ C2 they have an observable offering channel occuring in Γ. Assume that C1 as

a forest includes n separate trees. By the previous observation, we know that C2 also consists of n separate trees. For any
j ≤ n consider the tree Aj1 ∈ C1 consider the corresponding tree Aj2 ∈ C2 that exists by Def. 34 and for which we have
(†j) Γj

′

1 ⊩ Aj1 :: wjη:A
j [cj ] ≡ξΨ0

Γj
′

2 ⊩ Aj2 :: wjη:A
j [cj ].

From †j , we get Γj
′
= Γj

′

1 = Γj
′

2 and for arbitrary configurations T j1 ∈ H-Clientξ(Γj
′

1 ), and T j2 ∈ H-Clientξ(Γj
′

2 ), we
have

∀m. (Bj1C1,Bj2C2) ∈ EJ|Γj
′ ⇓ ξ| ⊩ wjη:A

jKm, and
∀m. (Bj2C2,Bj1C1) ∈ EJ|Γj

′ ⇓ ξ| ⊩ wjη:A
jKm.

Observe that Γ′1 = {Γj
′

1 }j≤n and Γ′2 = {Γj
′

2 }j≤n, and Γ = {wjη:Aj [cj ]}j≤n.
(ii’) By Def. 17, we know that for arbitrary configurations Bh1 ∈ H-Providerξ(Γ1), and Bd2 ∈ H-Providerξ(Γ2), and T d1 ∈

H-Clientξ(xα:A1[c1]), and T d2 ∈ H-Clientξ(yβ :A2[c2]).

∀m. (Bd1D1T d1 ,Bd2D2T d2 ) ∈ EJ|Γ| ⊩ |Ks|Km, and
∀m. (Bd2D2T d2 ,Bd1D1T d1 ) ∈ EJ|Γ| ⊩ |Ks|Km.

(iii’) By Def. 17, if c1 ⊑ ξ and c2 ⊑ ξ, we have for any T1 ∈ H-Clientξ(Ks
1), and T2 ∈ H-Clientξ(Ks

2)

∀m. (F1T h1 ,F2T h2 ) ∈ EJ|Ks| ⊩ |Ks′ |Km, and
∀m. (F2T h2 ,F1T h1 ) ∈ EJ|Ks| ⊩ |Ks′ |Km,

It is straightforward to show that given (i’-iii’), and several applications of the compositionality lemma Corollary 2 we get
the goal.

Theorem 7 (⊤⊤-closure). Consider D1 ∈ Tree(|Γ1| ⊩ |xα:A1[c1]|) and D2 ∈ Tree(|Γ2| ⊩ |yβ :A2[c2]|) and a given observer
level ξ ∈ Ψ0. We have

(Γ1 ⊩ D1 :: xα:A1[c1]) ≡ξΨ0
(Γ2 ⊩ D2 :: yβ :A2[c2])

iff

∀C1, C2,F1,F2. s.t. (Γ1 ⊣ C1[ ]F1 ⊣ xα:A1[c1]) ≡ξΨ0
(Γ2 ⊣ C2[ ]F2 ⊣ yβ :A2[c2]) we have

∀B1 ∈ H-Providerξ(Γ1),B2 ∈ H-Providerξ(Γ2), T1 ∈ H-CLientξ(xα:A1[c1]), T2 ∈ H-Clientξ(yβ :A2[c2]).
B1C1D1F1T1 ≈a B2C2D2F2T2

Proof. There are two directions to consider:
Left to Right: Consider (Γ1 ⊩ D1 :: xα:A1[c1]) ≡ξΨ0

(Γ2 ⊩ D2 :: yβ :A2[c2]) and arbitrary C1, C2,F1,F2 such that we have

(Γ1 ⊣ C1[ ]F1 ⊣ xα:A1[c1]) ≡ξΨ0
(Γ2 ⊣ C2[ ]F2 ⊣ yβ :A2[c2]).

By Def. 35, we get that Γ = Γ1 ⇓ ξ = Γ2 ⇓ ξ and Ks = xα:A1[c1] ⇓ ξ = yβ :A2[c2] ⇓ ξ. Moreover for some ∆, we have
(C1, C2) ∈ Forest(∆ ⊩ |Γ|) and for any low secrecy annotations of ∆ as Γ′1 and Γ′2 we get Γ′1 ⊩ C1 :: Γ ≡ξΨ0

Γ′2 ⊩ C2 :: Γ.
Also if Ks = :1[⊤], we have F1 = F2 = ·, and otherwise (F1,F2) ∈ Tree(Ks ⊩ wη:A) for some wη:A, for any low secrecy
annotations (with c3, c4 ⊑ ξ) of wη:A as wη:A[c3] and wη:A[c4] we get Ks ⊩ C1 :: wη:A[c3] ≡ξΨ0

Ks ⊩ C2 :: wη:A[c4].
Our goal is to prove:

∀B1 ∈ H-Providerξ(Γ1),B2 ∈ H-Providerξ(Γ2), T1 ∈ H-CLientξ(xα:A1[c1]), T2 ∈ H-Clientξ(yβ :A2[c2]).
C1D1F1 ≈a C2D2F2.

By compositionality of equivalence upto relation (Lem. 26), we get Γ′1,Γ
h
1 ⊩ C1D1F1 :: xα:A1[c1] ≡ξΨ0

Γ′2,Γ
h
2 ⊩ C2D2F2 ::

yβ :A2[c2] in the case where Ks := :1[⊤], i.e., c1, c2 ̸⊑ ξ, and otherwise we get Γ′1,Γ
h
1 ⊩ C1D1F1 :: wη:A[c3] ≡ξΨ0

Γ′2,Γ
h
2 ⊩ C2D2F2 :: wη:A[c4] where Γh1 is the set of all channels zγ :C[d] ∈ Γ1 with d ̸⊑ ξ and Γh2 is the set of all channels

zγ :C[d] ∈ Γ2 with d ̸⊑ ξ.
By the soundness theorem for equivalence relation (Corollary 4), we get Γ′1,Γ

h
1 ⊩ C1D1F1 :: xα:A1[c1] ≈ξa Γ′1,Γ

h
1 ⊩

C2D2F2 :: yβ :A2[c2] in the first case where Ks = :1[⊤] and otherwise Γ′1,Γ
h
1 ⊩ C1D1F1 :: wη:A[c3] ≈ξa Γ′1,Γ

h
1 ⊩

C2D2F2 :: wη:A[c4]. In the first case, the proof is complete by Def. 26 and the observation that all channels in Γ′1 and Γ′2
are annotated with channels of secrecy d′ ⊑ ξ. In the second case, the proof is complete by Def. 26 and observing that all
channels in Γ′1 and Γ′2 are annotated with channels of secrecy d′ ⊑ ξ and that c1, c2 ⊑ ξ and c3, c4 ⊑ ξ.
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Right to Left: Assume C1 = C2 = F1 = F2 = ·. By Lem. 21 and Def. 30, we know that (Γ1 ⊣ · [ ] · ⊣ xα:A1[c1]) ≡ (Γ2 ⊣
·[ ] · ⊣ yβ :A1[c2]). From this we get Γ1 ⊩ D1 :: xα:A1[c1] ≈ξa Γ2 ⊩ D2 :: yβ :A2[c2]. Now, we can apply the completeness
lemma (Corollary 4) to get (Γ1 ⊩ D1 :: xα:A1[c1]) ≡ξΨ0

(Γ2 ⊩ D2 :: yβ :A2[c2]).
This result is enough to prove that our equivalence relation is ⊤⊤-closed, i.e., following the results presented in the results

presented in [1], it shows r = s⊤, when r and s defined as our logical equivalence.
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