Computational Learning Theory

Read Chapter 7 of Machine Learning
[Suggested exercises: 7.1, 7.2, 7.5, 7.7]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension
Function Approximation

Given:
• Instance space X:
 - e.g. X is set of boolean vectors of length n; $x = <0,1,1,0,1,0>$

• Hypothesis space H: set of functions $h: X \rightarrow Y$
 - e.g., H is the set of boolean functions ($Y=\{0,1\}$) defined by conjunction of constraints on the features of x.

• Training Examples D: sequence of positive and negative examples of an unknown target function $c: X \rightarrow \{0,1\}$
 - $<x_1, c(x_1)>, \ldots <x_m, c(x_m)>$

Determine:
• A hypothesis h in H such that $h(x) = c(x)$ for all x in X
Function Approximation

Given:
- Instance space X:
 - e.g. X is set of boolean vectors of length n; $x = <0,1,1,0,0,1>$
- Hypothesis space H: set of functions $h: X \rightarrow Y$
 - e.g., H is the set of boolean functions ($Y=\{0,1\}$) defined by conjunctions of constraints on the features of x.
- Training Examples D: sequence of positive and negative examples of an unknown target function $c: X \rightarrow \{0,1\}$
 - $<x_1, c(x_1)>, \ldots <x_m, c(x_m)>$

Determine:
- A hypothesis h in H such that $h(x)=c(x)$ for all x in X
- A hypothesis h in H such that $h(x)=c(x)$ for all x in D

What we want

What we can observe
Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target function is approximated
- Manner in which training examples presented
Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher
 - Learner proposes instance x, teacher provides $c(x)$

2. If teacher (who knows c) provides training examples
 - Teacher provides sequence of examples of form $\langle x, c(x) \rangle$

3. If some random process (e.g., nature) proposes instances
 - Instance x generated randomly, teacher provides $c(x)$
Instances, Hypotheses, and More-General-Than

\[x_1 = \langle \text{Sunny, Warm, High, Strong, Cool, Same} \rangle \]
\[x_2 = \langle \text{Sunny, Warm, High, Light, Warm, Same} \rangle \]
\[h_1 = \langle \text{Sunny, ?, ?, Strong, ?, ?} \rangle \]
\[h_2 = \langle \text{Sunny, ?, ?, ?, ?, ?} \rangle \]
\[h_3 = \langle \text{Sunny, ?, ?, Cool, ?} \rangle \]
Sample Complexity: 1

Learner proposes instance x, teacher provides $c(x)$ (assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

- pick instance x such that half of hypotheses in VS classify x positive, half classify x negative
- When this is possible, need $\lceil \log_2 |H| \rceil$ queries to learn c
- when not possible, need even more
Sample Complexity: 2

Teacher (who knows c) provides training examples (assume c is in learner’s hypothesis space H)

Optimal teaching strategy: depends on H used by learner

Consider the case $H =$ conjunctions of up to n boolean literals and their negations

\[(\text{AirTemp} = \text{Warm}) \land (\text{Wind} = \text{Strong}), \]

where AirTemp, Wind, . . . each have 2 possible values.
Sample Complexity: 2

Teacher (who knows \(c \)) provides training examples (assume \(c \) is in learner’s hypothesis space \(H \))

Optimal teaching strategy: depends on \(H \) used by learner

Consider the case \(H = \) conjunctions of up to \(n \) boolean literals and their negations

\[(Air\text{Temp} = \text{Warm}) \land (Wind = \text{Strong}), \]

where \(Air\text{Temp}, Wind, \ldots \) each have 2 possible values.

- if \(n \) possible boolean attributes in \(H \), \(n + 1 \) examples suffice
- why?
Sample Complexity: 3

Given:

- set of instances X
- set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value $c(x)$ for each

Learner must output a hypothesis h estimating c

- h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications
True Error of a Hypothesis

Definition: The **true error** (denoted $\text{error}_\mathcal{D}(h)$) of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$\text{error}_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}} [c(x) \neq h(x)]$$
Two Notions of Error

Training error of hypothesis \(h \) with respect to target concept \(c \)

- How often \(h(x) \neq c(x) \) over training instances \(\mathcal{D} \)

\[
\text{error}_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)] = \frac{\sum_{x \in \mathcal{D}} \delta(c(x) \neq h(x))}{|\mathcal{D}|}
\]

True error of hypothesis \(h \) with respect to \(c \)

- How often \(h(x) \neq c(x) \) over future instances drawn at random from \(\mathcal{D} \)

\[
\text{error}_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]
\]
Two Notions of Error

Training error of hypothesis h with respect to target concept c

- How often $h(x) \neq c(x)$ over training instances D

$$\text{error}_D(h) \equiv \Pr_{x \in D} [c(x) \neq h(x)] \equiv \frac{\sum_{x \in D} \delta(c(x) \neq h(x))}{|D|}$$

True error of hypothesis h with respect to c

- How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$\text{error}_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}} [c(x) \neq h(x)]$$

Can we bound $\text{error}_\mathcal{D}(h)$ in terms of $\text{error}_D(h)$??

Set of training examples

Probability distribution $P(x)$
Version Spaces

A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if $h(x) = c(x)$ for each training example $\langle x, c(x) \rangle$ in D.

$\text{Consistent}(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \; h(x) = c(x)$

The **version space**, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$VS_{H,D} \equiv \{ h \in H | \text{Consistent}(h, D) \}$
Exhausting the Version Space

\[(r = \text{training error}, \ error = \text{true error}) \]

Definition: The version space \(V S_{H,D} \) is said to be \(\epsilon \)-exhausted with respect to \(c \) and \(\mathcal{D} \), if every hypothesis \(h \) in \(V S_{H,D} \) has true error less than \(\epsilon \) with respect to \(c \) and \(\mathcal{D} \).

\[(\forall h \in V S_{H,D}) \ error_{\mathcal{D}}(h) < \epsilon \]
How many examples will \(\epsilon \)-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space \(H \) is finite, and \(D \) is a sequence of \(m \geq 1 \) independent random examples of some target concept \(c \), then for any \(0 \leq \epsilon \leq 1 \), the probability that the version space with respect to \(H \) and \(D \) is not \(\epsilon \)-exhausted (with respect to \(c \)) is less than

\[
|H|e^{-\epsilon m}
\]

Interesting! This bounds the probability that any consistent learner will output a hypothesis \(h \) with \(\text{error}(h) \geq \epsilon \).

If we want to this probability to be below \(\delta \)

\[
|H|e^{-\epsilon m} \leq \delta
\]

then

\[
m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln(1/\delta) \right)
\]
What it means

[Haussler, 1988]: probability that the version space is not \(\varepsilon\)-exhausted after \(m\) training examples is at most \(|H|e^{-\varepsilon m}\)

\[
\Pr[(\exists h \in H) s.t. (error_{train}(h) = 0) \land (error_{true}(h) > \varepsilon)] \leq |H|e^{-\varepsilon m}
\]

Suppose we want this probability to be at most \(\delta\)

1. How many training examples suffice?
\[
m \geq \frac{1}{\varepsilon}(\ln |H| + \ln(1/\delta))
\]

2. If \(error_{train}(h) = 0\) then with probability at least \((1-\delta)\):
\[
error_{true}(h) \leq \frac{1}{m}(\ln |H| + \ln(1/\delta))
\]
Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least \((1 - \delta) \) that

\[
every \ h \ in \ VS_{H,D} \ satisfies \ error_{D}(h) \leq \epsilon
\]

Use our theorem:

\[
m \geq \frac{1}{\epsilon} \left(\ln |H| + \ln(1/\delta) \right)
\]

Suppose \(H \) contains conjunctions of constraints on up to \(n \) boolean attributes (i.e., \(n \) boolean literals). Then \(|H| = 3^n \), and

\[
m \geq \frac{1}{\epsilon} \left(\ln 3^n + \ln(1/\delta) \right)
\]

or

\[
m \geq \frac{1}{\epsilon} \left(n \ln 3 + \ln(1/\delta) \right)
\]
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is PAC-learnable by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_D(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $size(c)$.
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ε such that $0 < \varepsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \varepsilon$, in time that is polynomial in $1/\varepsilon$, $1/\delta$, n and $size(c)$.

Sufficient condition: Holds if L requires only a polynomial number of training examples, and processing per example is polynomial.
Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don’t assume $c \in H$

• What do we want then?
 – The hypothesis h that makes fewest errors on training data

• What is sample complexity in this case?

$$m \geq \frac{1}{2\epsilon^2}(\ln |H| + \ln(1/\delta))$$

derived from Hoeffding bounds:

$$Pr[error_D(h) > error_D(h) + \epsilon] \leq e^{-2m\epsilon^2}$$

true error training error degree of overfitting
Additive Hoeffding Bounds – Agnostic Learning

• Given \(m \) independent coin flips of coin with \(\Pr(\text{heads}) = \theta \) bound the error in the estimate \(\hat{\theta} \)

\[
\Pr[\theta > \hat{\theta} + \epsilon] \leq e^{-2m\epsilon^2}
\]

• Relevance to agnostic learning: for any single hypothesis \(h \)

\[
\Pr[error_{true}(h) > error_{train}(h) + \epsilon] \leq e^{-2m\epsilon^2}
\]

• But we must consider all hypotheses in \(H \)

\[
\Pr[(\exists h \in H)error_{true}(h) > error_{train}(h) + \epsilon] \leq |H|e^{-2m\epsilon^2}
\]

• So, with probability at least \((1-\delta)\) every \(h \) satisfies

\[
error_{true}(h) \leq error_{train}(h) + \sqrt{\ln |H| + \ln \frac{1}{\delta}}
\]

\[
2m
\]

\[
\]
General Hoeffding Bounds

• When estimating parameter $\theta \in [a,b]$ from m examples

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}$$

• When estimating a probability $\theta \in [0,1]$, so

$$P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-2m\epsilon^2}$$

• And if we’re interested in only one-sided error, then

$$P((E[\hat{\theta}] - \theta) > \epsilon) \leq e^{-2m\epsilon^2}$$