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Predicting Delayed Rewards wa

0.4 DISCOUNTED MARKOV SYSTEM

Prob(next state = S;|this state = S,) = 0.8 etc...
What is expected sum of future rewards (discounted) ?

>rRED) | slo]-s

Just Solve It! We use standard Markov System Theory
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Learning Delayed Rewards...
S, = g? S, IH E? S, IH E?
84? 85? SG?

All you can see is a series of states and rewards:
S,(R=0)—>S,(R=0) =S;(R=4)—>S,(R=0)—>S,(R=0)—> S;(R=0)
Task: Based on this sequence, estimate J*(S,),J*(S,)'J*(Sg)
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were in state S, and
reward of 0+y0+y24+y30+y#0...= 1

Att=2 in state S, Itdr=2 Att=5in state S, Itdr=0
Att=3 in state S; Itdr=4 At t=6 in state S; Itdr=0
Att=4 in state S, Itdr=0 <
ts 2 ‘DM“}\A M(C(f\kQ
P .
tate Observations  Mean LTDR
of LTDR
S, 1 1 =Jes(S,)
S, viksth0 (2,0 1 1% =Jes(S,)
S, 4 4% =J(S,)
S, 0 0 =Jes(S,)
S 0 0 =JesY(S;)
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Supervised Learning ALG

« Watch a trajectory
S[0] r[O] S[1] r{1] -+ S[TIr[T]

» Fort=0,1, T, compute J[t]= y'r[t+i]
i=0

among all transitions beginning
in state S; on the trajectory

« Compute mean value of J[t]
J* (Si):

Let MATCHES(S, ) ={tS[t]= S}, then define

> Jlt]

JES‘( i )_ teMATCHES(S; )

* You're done! ~ [MATCHES(S,)
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Supervised Learning ALG
for the timid

If you have an anxious

@ @ personality you may be worried
- about edge effects for some of

m the final transitions. With large

trajectories these are negligible.
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Online Supervised Learning

Initialize: Count[S;] =0 VS,
SumJ[S] =0 VS,
Eligibility[S] =0 VS,
Observe:
When we experience S; with reward r
do this:
vj Elig[S]<—VYElig[S]
Elig[S;]<—Elig[S;] + 1
Vj SumJ[S}— SumJ[S|]+rxElig[S ]
Count[S;]«— Count[S] + 1

Then at any time,
Jest(S;)= SumJ[S))/Count[S]]
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Online Supervised Learning
Economics

Given N states S, - Sy, OSL needs O(N) memory.

Each update needs O(N) work since we must update all
Elig[ ] array elements

) Q)

D

Idea: Be sparse and only update/process Elig[ ]
elements with values >¢ for tiny ¢

There are only |09( %&j / '09( %j

such elements

/

Easy to prove:

AsT - 0,]¥(S,) > J*(S;) VS,
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Online Supervised Legiing

Let’s grab OSL off the street, bundle it into a
black van, take it to a bunker and interrogate it
under 600 Watt lights.

S4(r=0)—>S,(r=0) = S5(r=4) =S,(r=0)—>S,(r=0)—>S;(r=0)

State | Observations of ‘JA(Si)
LTDR
S, 1 1
S, 2,0 1
S, 4 4
S, 0 0
S 0 0

There’s something a little suspicious about this (efficiency-wise)
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Certainty-Equivalent (CE) Learning

Idea: Use your data to estimate the underlying
Markov system, instead of trying to estimate J

directly.
S4(r=0)—>S,(r=0) = S;4(r=4) =8,(r=0) —=>S,(r=0)—>S4(r=0) —
. — — — —  Youdraw in the
Estimated Markov System: ( transitions +

probs

é —J‘L/.(b =9,

“f- 2l 4)

- 3 \, 7

:]: -r}‘#’('j
BLf'llr}j- 2= YTy

7, mA L ,
/xb"?)}:tk -3 What're the estimated J values?

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 10




C.E. Method for Markov Systems

Initialize:
Count[S]] =0 Vs #Times visited S,
SumR[S]=0 ' Sum of rewards from S,

Trans[S;,;S] =0 VS| #Times transitioned from S—S,

When we are in state S;, and we receive reward r, and we
move to S, ...

Count[S;] <-Count[S] + 1

SUMR[S] «~SumR[S] + r
Trans[S;,S)] <~ Trans[S;,S]] + 1

Then at any time
resi(S;) = SumR[S] / Count[S]
Pest, = Estimated Prob(next = S, | this = S;)
= Trans[S;,S;] / Count[S]
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C.E. for Markov Systems
(continued) ...

So at any time we have
resi(S;) and Pest (next=S; | this=S; )
VSS; = Pest,
So at any time we can solve the set of linear equations

3¥(S, ) =r*(S; )+ 782_ P (Sj S )]eSt (Sj )

[In vector notation,
Jest = pest + YpestJ
=> Jest= (|_Ypest)-1rest
where Jest rest gre vectors of length N
Pest is an NxN matrix
N = # states ]
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C.E. Online Economics
Memory: O(N?)
Time to update counters: O(1) QS] | A \T\(le
Time to re-e.valuat %*/5:3
« O(N3) if use matrix inversion

* O(N%kcg7) if use value iteration and we need
kcriT iterations to converge

* O(NKcgr) if use value iteration, and kqg 7 to
converge, and M.S. is Sparse (i.e. mean #

successors is constant) \\) " ¢ M(ﬂ

o(n
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Certainty Equivalent Lggining

Memory use could be O(N2?)!

And time per update could be O(Nkggir) up to
O(N3) !

Too expensive for some people.

Prioritized sweeping will help, (see later), but first
let’s review a very inexpensive approach
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Why this obsession with
onlineiness?

| really care about supplying up-to-date Jest
estimates all the time.

Can you guess why?

If not, all will be revealed in good time...
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Less Time: More Data
Limited Backups

= Do previous C.E. algorithm.

= At each time timestep we observe S(r)>S; and update
Count[S], SumR[S]], Trans[S;,S}]

= And thus also update estimates

r” and P” V; eoutcomes(s;)

But instead of re-solving for Jest, do much less work.
Just do one “backup” of J& [S ]

Jest [S| ] <« riest i 7/2 Pi;zstJest [SJ ]
J
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\! ” .
One Backup C.E.” Economics
NO imp
Space : O(N2) THERRE?VEMENT
Time to update statistics : O(1)
Time to update Jest : O(1) [lC)
Naw/
“» Good News: Much cheaper per transition

“ Good News: Contraction Mapping proof (modified)
promises convergence to optimal

«» Bad News: Wastes data
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Prioritized Sweeping

[Moore + Atkeson, '93]

Tries to be almost as data-efficient as full CE but not
much more expensive than “One Backup” CE.

On every transition, some number () of states may
have a backup applied. Which ones?

* The most “deserving”

* We keep a priority queue of which states have
the biggest potential for changing their Jes{(Sj)
value
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Where Are We?

Trying to do online Jest prediction from streams
of transitions

Space Jest Update Cost
Supervised O(N,) 0( 5t ) )
Learning —
Full C.E. O(Ng,) O(Ng,N,) oo
Learning O(NgoKerrr) \/
One Backup C.E. | O(Ng,) 0(1) )
Learning N
Prioritized O(Ng,) 0(1) oo
Sweeping ~
N,,= # state-outcomes (number of arrows on the M.S. diagram)
N = # states What Next ?
Sample Backups !!!
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fecd Vs Barg
Temporal
Difference [Sutton 1988]
Learning

Only maintain a Jest array...
nothing else

So you’ve got
Jest (81) Jest (82) L Jest (SN)
and you observe

i A transition from i that receives

an immediate reward of r and
what should you do? jumps to

Can You Guess ?
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TD Learning

Si 8§ 0.05

J t
We update = Je (Si)
We nudge it to be closerto expected future rewards

o rewards ]

o is called a “learning rate” parameter. (See
“n” in the neural lecture)

SUM

est
J (Si ) “—

WEIGHTED
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Simplified TD Analysis

TERMINATE

@ TERMINATE

TERMINATE

* Suppose you always begin in S,
* You then transition at random to one of M places. You don’t know the
transition probs. You then get a place-dependent reward (unknown in
advance).
» Then the trial terminates.
Define J*(S;)= Expected reward
Let’s estimate it with TD

Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 22

11



’3{::’1‘D~as\~‘k of v\ A &
Teg = & + (-7,

rk) = reward of k’th terminal
state

p® = prob of K'th terminal
state

We'll do a series of trials. Reward on t'th

trail is r, Defie Q=20 & W b C
JC\"\«-\ E[S(] '—j*
=E[r,]= > p¥r ote E[r, fis independent of t]
k=1 Q -

H\"\*/(e"c

H * —_ |* = /“
Define J*(Sy) = J* = E[r{] <)
EISHS: EIA rk'('(\'”})ja = oﬁs*+(\~"<> GZS;B
Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 23

Let’s run TD-Learning, where
J; = Estimate Jes{(S,) before the t'th trial.

From definition of TD-Learning:

Jirg = (1-0)J; + ar

Useful quantity: Define
) .+ \2
o’ =Variance of reward:E[(rt ~J ) ]

_ N pfpk) _ 1+ P
_kzzlP"(r" J)
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Remember J* = E[r], 02 = E[(r-J*)4]
Jieg = ar+ (1-0)J;

EP,, -3 |=

—Elar, +(1-a ), -]
:
I
=

= (1-a)E[), - 7]

Thus...

_ Is this
limE[J, |=J* impressive??
t—w
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Remember |J* = EJr}],
w1 = arg+ (1-a)J;

Write S; = Expected squared error between
J; and J* before the t'th iteration

Sty = E[(Ji-3*)
[
= E[(arg+(1-a)J;- J*)]
= E[(a[r-J*+(1-a)[J; - J1)%]
= E[0#(reJ")?+a(1-a)(reJ")(dg - I7)+(1-a)2(d; - Y]
= CPE[(re-J")*+a(1-)E[(reJ*)(J; - J)+(1-aPE[(J- J*Y]
= a202+(1-a)?S, J
L

13



And it is thus easy to show that ....

lims, = limE|(J, —J*)ZIZL‘Z

oo oo

A= 0.05

(N>

,_D o
o
« What do you think 0 learning?

* How would you improve it?
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Decaying Learning Rate

[Dayan 1991ish] showed that for General TD
learning of a Markow System (not just our simple
model) that if you use update rule

Jest (Si ) «—aq, [ri + 1 (Sj )]-l— (1—0(t )JeSt (Si )
then, as number oftobserva*tions _
goes to infinity J(S;) = J°(S, Vi
PROVIDED

. . his means
« All states visited «ly often ]
2 VkAT. Y a, >k
. Zat =0 =i
=1 This means —
. Zatz <0 Hk.VT.io@
t=1

— =1
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Decaying Learning Rate

This Works: a, =1/t
This Doesn’t: a; =
This Works: a, = B/(B+t) [e.g. B=1000]
This Doesn’t: o, = Ba,.4 (B<1)
IN OUR EXAMPLE....USE a, = 1/t |
Remember J" =E[r] o2 :E[(rt—J*)Z]

Jo=at +(1-a, ), :%rt +(1—}t/)1t

Write C, =(t—1)J, and you'll see that

Ci=r+C s0 Jy :E[Zt: I +‘]o}
thi-t And...
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Decaying Learning Rate con't...
el or+(0,-3f
go,-orf]- oY
so, ultimately IimE(Jt-J*)Z]:O

>
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A Fancier TD...

S[t] = state at time t
a=1/4 y=1/2
Assume JesY(S,5)=0 Jest(S,;)=0 Jest(S,,)=16
Assume t=405 and S[t] =S,

Observe 823“/_0)\817 with reward 0

Now t=406, S[t]=S,; S[t-1]=Sy
Jest (823)= , Jest (817)= , Jest (S44)=
Observe S,7 S,

Now t=407, S[t]= S44
Jost (S,5)= , J&SH(Sy7)= , J&SH(Syy)=
INSIGHT:  Jest (S,) might think

| gotta get me some of that !!!
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TD(A) Comments

TD(A=0) is the original TD

TD(A=1) is almost the same as supervised learning (except it
uses a learning rate instead of explicit counts)

TD(A=0.7) is often empirically the best performer

+ Dayan’s proof holds for all 0sA<1

» Updates can be made more computationally efficient with
“eligibility” traces (similar to O.S.L.)

* Question:

+Can you invent a problem that would make TD(0) look
bad and TD(1) look good?

“*How about TD(0) look good & TD(1) bad??
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Learning M.S. Summary

Space |J Update
Cost
Supervised Learning | O(Ny) 1 PRPY
0 Iog%
[a)]
5 Full C.E. Learning 0(Ng,) O(Ng,N,) o
ﬂ O(NsokCRIT) \/
'éJ One Backup C.E. O(Ns,) 0(1) oo
= | Learning VRS
Prioritized Sweeping | O(N,,) 0(1) ° o
~—
i TD(0) 0Ny [o(1) oo
L /N
-
L
Ia) 1
8| MR e R R
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Learning Policies
for MDPs

See previous lecture
slides for definition of and
computation with MDPs.

The Heart
of

reINFORCEMent

Learning
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The task:
World: You are in state

Your immediate reward is 3. You have 3 actions.

Robot: I'll take action(2) I
World: You are in state 77.

Your immediate reward is -7. You have 2 actions.
Robot: I'll take action 1.

World: You’re in stateagain).

Your immediate reward is 3. You have 3 actions.
The Markov property means once you've selected an
action the P.D.F. of your next state is the same as the
last time you tried the action in this state.
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The “Credit Assignment” Problem

I'min state 43, reward =0, action =2

“39, =0, “ =4
22, =0, * =1
21, Y =0, “ =1
21, =0, =1
S 13, Y =0, “ =2
“s4, Y =0, “ =2
N 26, =100,

Yippee! | got to a state with a big reward! But which of my
actions along the way actually helped me get there??

This is the Credit Assignment problem.

It makes Supervised Learning approaches (e.g. Boxes
[Michie & Chambers]) very, very slow.

Using the MDP assumption helps avoid this problem.
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MDP Policy Learning

Space Update Cost
Full C.E. O(Nsao) O(Ngaokcri) o0
Learning g
One Backup | O(Ngs,) 0(Nao) o0
C.E. Learning N\
Prioritized 0(Ngp0) O(BNao) )
Sweeping —

«  We'll think about Model-Free in a moment...

+ The C.E. methods are very similar to the MS case, except now do
value-iteration-for-MDP backups

Jest(S) max reSt+7/ Zpest(s ‘Sl’a)Jest( )

S;eSuUCCs(s;)
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CXPLOVL ATWN Vs eXP\la 1 TAT Lo

Choosmg Actlons

‘IID

We’re in state S, +0A 0

We can estimate  rest *
« “« “ PeSt(neXt IS = Si , aCtIOn a)

[13 [13 [13 Jest neXt —
So what action should we choose ?

IDEA 1: a=argmax ri+7/ZPESt(Sj\Si,a')Je“(Sj)

IDEA 2: a=random——= Ar e pide e Slaohef
» Any problems with these ideas? wéfc&

* Any other suggestions? 5_ O«y((dvd:‘;'\
+ Could we be optimal? Plo=s  closye nando~

“ Vw ( _ L c e
Copyright © 2002, Andrew W. Moore Reinforcement Learning: Slide 38
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Model-Free R.L.

Why not use T.D. ?
Observe ]
OO
update
J(S;) a(ri TR eSt(Sj))"'(l_a) (S

What's wrong with this?
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Q-Learning: Model-Free R.L.

[Watkins, 1988]
Define

Q*(S;,a)= Expected sum of discounted future
rewards if | start in state S, if | then take action a,
and if I'm subsequently optimal

Questions:
Define Q*(S;,a) in terms of J*

Qs = Y 20 )T40)

. . J
Define J*(S)) in terms of Q*
~ 4[,. _ gr ( R
J ( 313 S ?( Q gL )4
Copyright © 2002, Andrew W. Moore ‘\ jRJinforcement Learning: Slide 40
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Q-Learning Update
Note that
Q(Sa)=r+y > PS5, a)maxQ’(s,, )
$,eSUCCS(S;) a

In Q-learning we maintain a table of Q¢st values instead
of Jest values...

When you see S;— = > S; do...
Q®'(S,,a)« o{ri +y maxQ™(s,, al)} +(1-a)Q% (S, a)

This is even cleverer than it looks: the Q¢st values are
not biased by any particular exploration policy. It
avoids the Credit Assignment problem.
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Q-Learning: Choosing Actions

Same issues as for CE choosing actions
- Don't always be greedy, so don’t always choose: &9Max Q

+ Don’t always be random (otherwise it will take a long time
to reach somewhere exciting)

s,,a)

* Boltzmann exploration [Watkins]
QeSt(S,a)]

Prob(choose action a) o exp(—
t

* Optimism in the face of uncertainty [Sutton 90, Kaelbling
'90]
Initialize Q-values optimistically high to encourage exploration
Or take into account how often each s,a pair has been tried
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Q-Learning Comments

[Watkins] proved that Q-learning will eventually
converge to an optimal policy.

Empirically it is cute

Empirically it is very slow
Why not do Q(A) ?

» Would not make much sense [reintroduce the credit
assignment problem]

» Some people (e.g. Peng & Williams) have tried to work
their way around this.
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If we had time...

» Value function approximation
» Use a Neural Net to represent Jest [e.g. Tesauro]
» Use a Neural Net to represent Q¢st [e.g. Crites]
» Use a decision tree
...with Q-learning [Chapman + Kaelbling '91]
...with C.E. learning [Moore ’91]
...How to split up space?

Significance test on Q values [Chapman +
Kaelbling]

Execution accuracy monitoring [Moore '91]
Game Theory [Moore + Atkeson '95]
New influence/variance criteria [Munos '99]
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If we had time...
* R.L. Theory

» Counterexamples [Boyan + Moore], [Baird]

» Value Funcili ' auc%r with Averaging will
converge to something [Gordon]

» Neural Nets can fail [Baird]

» Neural Nets with Residual Gradient updates will
converge to something

» Linear approximators for TD learning will converge
to something useful [Tsitsiklis + Van Roy]
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What You Should Know

« Supervised learning for predicting delayed rewards

 Certainty equivalent learning for predicting delayed
rewards

* Model free learning (TD) for predicting delayed
rewards

» Reinforcement Learning with MDPs: What's the
task?

« Why is it hard to choose actions?

» Q-learning (including being able to work through
small simulated examples of RL)
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