Bayesian Networks:
Independencies and Inference
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What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a
probability distribution, the following must be true by
definition:

Each variable is conditionally independent of all its non-
descendants in the graph given the value of all its parents.

 This implies
P(X,...X,) =] [ P(X;| parents(X;))
i=1

* But what else does it imply?




What Independencies does a Bayes Net Model?
| — |

* Example:

Given Y, does learning the value of Z tell us
nothing new about X?

Le., 1s P(X]Y, Z) equal to P(X | Y)?

Yes. Since we know the value of all of X’s
parents (namely, Y), and Z is not a
descendant of X, X is conditionally

independent of Z.

Also, since independence is symmetric,
P(Z|Y, X) = P(Z]Y).

Quick proof that independence 1s symmetric
BN oaaaaaa—"

- Assume: P(X|Y, Z) = P(X|Y)

¢ Then:
P(Z|X,Y)= P(XI’D&Z\?;’(Z) (Bayes’s Rule)
PY |Z)P(X|Y,Z2)P(Z )
= ] PzX(|Y;P(Y)) (2) (Chain Rule)
P [ Z)P(X1Y)P(Z) .
- P(X |Y)P(Y) (By Assumption)

P(Y |Z)P(2)
= # =P(Z]Y) (Bayes’s Rule)




What Independencies does a Bayes Net Model?
| — |

* Let I<X,Y,Z> represent X and Z being conditionally
independent given Y.

« I<X,)Y,Z>?7 Yes, just as in previous example: All X’s
parents given, and Z is not a descendant.

What Independencies does a Bayes Net Model?

« I<X,{U},Z>? No.

o I<X,{U,V},Z>? Yes.

* Maybe I<X, S, Z> iff S acts a cutset between X and Z
in an undirected version of the graph...?




Things get a little more confusing
|

* X has no parents, so we’re know all its parents’
values trivially

* Zis not a descendant of X

* So, I<X,{},Z>, even though there’s a undirected path
from X to Z through an unknown variable Y.

* What if we do know the value of Y, though? Or one
of its descendants?

The “Burglar Alarm” example
L

Garthquake>
Alarm

* Your house has a twitchy burglar alarm that is also
sometimes triggered by earthquakes.

 Earth arguably doesn’t care whether your house is
currently being burgled

* While you are on vacation, one of your neighbors
calls and tells you your home’s burglar alarm is
ringing. Uh oh!




Things get a lot more confusing
| — |

Phone Call

* But now suppose you learn that there was a medium-sized
earthquake in your neighborhood. Oh, whew! Probably not a
burglar after all.

» Earthquake “explains away” the hypothetical burglar.
 But then it must not be the case that
I<Burglar, {Phone Call}, Earthquake>, even though
I<Burglar, {}, Earthquake>!

d-separation to the rescue
EE— ooeaaaaa."

 Fortunately, there is a relatively simple algorithm for
determining whether two variables in a Bayesian
network are conditionally independent: d-separation.

¢ Definition: X and Z are d-separated by a set of
evidence variables E iff every undirected path from X
to Z is “blocked”, where a path is “blocked” iff one
or more of the following conditions is true: ...




A path 1s “blocked” when...

» There exists a variable V on the path such that
¢ it is in the evidence set E
* the arcs putting V in the path are “tail-to-tail”

OOOO‘_®_’0.0Q

* Or, there exists a variable V on the path such that
e itisin the evidence set E

* the arcs putting V in the path are “tail-to-head”

OOOW.OQ

* Or, ...

A path is “blocked” when... (the funky case)
L
¢ ... Or, there exists a variable V on the path such that

¢ it is NOT in the evidence set E

« neither are any of its descendants
* the arcs putting V on the path are “head-to-head”

OOOW.OQ




d-separation to the rescue, cont’d
L |

* Theorem [Verma & Pearl, 1998]:

* If a set of evidence variables E d-separates X and
Z in a Bayesian network’s graph, then I<X, E, Z>.

* d-separation can be computed in linear time using a
depth-first-search-like algorithm.

* Great! We now have a fast algorithm for
automatically inferring whether learning the value of
one variable might give us any additional hints about

some other variable, given what we already know.

* “Might”: Variables may actually be independent when they’re not d-
separated, depending on the actual probabilities involved

d-separation example

[ <] 1<, {}, D>?

I<C, {A}, D>?

I<C, {A, B}, D>?
I<C, {A, B, ]}, D>?
I<C, {A, B, E, ]}, D>?




Bayesian Network Inference

* Inference: calculating P(X|Y) for some variables or
sets of variables X and Y.

* Inference in Bayesian networks is #P-hard!
Inputs: prior pjrokbabilities of .5

Reduces to

—>

P(O) must be
How many satisfying assignments? (#sat. assign.)*(.5"#inputs)

Bayesian Network Inference
[
» But...inference is still tractable in some cases.

* Let’s look a special class of networks: trees / forests
in which each node has at most one parent.




Decomposing the probabilities
| — |

* Suppose we want P(X; | E) where E is some set of
evidence variables.

* Let’s split E into two parts:

* E; is the part consisting of assignments to variables in the
subtree rooted at X;

+ E;"is the rest of it

Decomposing the probabilities, cont’d

P(Xi | E)= P(Xi | Ei_s Ei+)

O x el )P (enfe)

()(GCJEC*>
= @P(e 0 e
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Decomposing the probabilities, cont’d
BN e

P(Xi | E) = P(Xi | Ei_a Ei+)
~ P(E7 | X,E")P(X|E])
B P(E |E/)

Decomposing the probabilities, cont’d
|

P(Xi[E)=P(X;|Ef, Ei+)
_P(E[X,EN)P(XTET)
P(E | E)
_ P(ET [ X)P(X|E)
P(E | E")
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Decomposing the probabilities, cont’d
BN e

P(Xi | E)= P(Xi | EiiaEiJr)
_P(E[ | X.ENP(X |E)

P(E; | Ei+)
_P(E [ X)P(X | E)
) P(E‘_ | E-+) Tlhege A< amc\« VLLR/N\S.
i i SLLQ brf VZLWT#VAMS 4X1
= (m(Xi)X(Xi) Whefe:
* o is a constant independent of X;

n(Xp) = P(X; [E")
AX)= P(Ey| X))

Using the decomposition for inference
L
* We can use this decomposition to do inference as
follows. First, compute A(X,) = P(E;] X;) for all X;
recursively, using the leaves of the tree as the base
case.

« If X;is a leaf:
« If X 1s in E: A(X,) = 1 if X; matches E, 0 otherwise
 If X; 1s not in E: E; is the null set, so
P(E;| X;) = 1 (constant)

12



Quick aside: “Virtual evidence”

* For theoretical simplicity, but without loss of
generality, let’s assume that all variables in E (the
evidence set) are leaves in the tree.

* Why can we do this WLOG:

@ Equivalent to @

———

Observe X; @ Observe X’

Where P(Xl,l XI) =1if XI,:XI’ 0 otherwise

Calculating A(X,) for non-leaves

 Suppose X; has one child, X.. @

* Then:
X(Xi) = P(Eii | Xi) =

13



Calculating A(X,) for non-leaves

* Suppose X; has one child, X.. @

AX) = P(Eiilxi)zz P(E;, X = j|xi)

e Then:

Calculating A(X,) for non-leaves

 Suppose X; has one child, X.. @

}\’(Xi): P(Ei7|xi):Z P(E;, X = j|xi)

e Then:

:Z P(Xc = j|Xi)P(Ei_’Xi’XC =])
j
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Calculating A(X,) for non-leaves

* Suppose X; has one child, X.. @

}\'(Xi): P(Ei_|xi):Z P(Ei_’XC = j|xi)
j

e Then:

=2 P(Xc = JIX)P(E [ X, Xe = )
]

=3 P(X,

=3 P(X,
j

j|xi)P(Ei7|xC =J)

JIXOMX e = 1)

Calculating A(X,) for non-leaves
L
* Now, suppose X; has a set of children, C.

* Since X; d-separates each of its subtrees, the
contribution of each subtree to A(X;) 1s independent:

MX)=P(E | X)) = H}“j(xi)

XjeC

= H{ZP(X,- | ximxj)}

where A;(X;) is the contribution to P(Ej| X)) of the part of
the evidence lying in the subtree rooted at one of X;’s
children X;.

15



We are now A-happy
EEE 000000000 e

* So now we have a way to recursively compute all the
M(Xi)’s, starting from the root and using the leaves as
the base case.

» If we want, we can think of each node in the network
as an autonomous processor that passes a little “A
message” to its parent.

The other half of the problem
[ |
* Remember, P(X,|E) = an(X;)A(X;). Now that we have
all the A(X;)’s, what about the n(X;)’s?
n(X;) = P(X; [E;").
* What about the root of the tree, X,? In that case, E*

is the null set, so m(X,) = P(X,). No sweat. Since we
also know A(X,), we can compute the final P(X,).

* So for an arbitrary X; with parent X, let’s inductively
assume we know (X)) and/or P(X,|E). How do we
get m(X;)?

16



Computing nt(X;)
L

n(X;)=P(X;| Ei+):

Computing nt(X;)
BN oaaaaaa—"

n(X;)=P(X;| Ei+):ZP(xi’xp =JjlE")
j

17



Computing nt(X;)
L

n(X;)=P(X;| Ei+):ZP(Xi’Xp =J|E")

=D P(Xi X, = LEOP(X, = j|E")
j

Computing nt(X;)
BN oaaaaaa—"

n(X;)=P(X;| Ei+)=zp(xi9xp =J|E")
:ZP(Xi ‘ Xp = j9Ei+)P(Xp = J ‘ Ei+)

=D P(X; [ X, = DP(X, = |E)

18



Computing nt(X;)
L

n(X;)=P(X;| Ei+):ZP(xi’xp =JjIE)
j
:ZP(Xi | X, =LEDP(X, =J[E)
i
:ZP(Xi | X, =DP(X, =JIE")
i

P(X,=]lE)

=» P(X;|X_ =]
LPOIX =D o )

Computing nt(X;)
[ |
n(X;)=P(X;| Ei+):ZP(Xi’Xp =JlE)
j
ZZP(Xi | X, =LEDPX, = JIE)
j
:ZP(Xi [ X, =DP(X, =]|E)
i
P(X, =]lE)
}\’i(xp = J)
:ZP(X| | Xp = j)ni(xp = J)
j

=Y POX X, =)
J

: P(X,|E)
Where (X)) is defined as  —————

A(Xp)

19



We’re done. Yay!
B T
* Thus we can compute all the n(X;)’s, and, in turn, all
the P(X||E)’s.
* Can think of nodes as autonomous processors passing
A and T messages to their neighbors

Conjunctive queries
|

* What if we want, e.g., P(A, B | C) instead of just
marginal distributions P(A | C) and P(B | C)?
* Just use chain rule:
* P(A,B|C)=P(A|C)P(B|A,C)
» Each of the latter probabilities can be computed
using the technique just discussed.

20



Polytrees
|

+ Technique can be generalized to polytrees:
undirected versions of the graphs are still trees, but
nodes can have more than one parent

Dealing with cycles

 Can deal with undirected cycles in graph by

¢ clustering variables together

21



Join trees

* Arbitrary Bayesian network can be transformed via
some evil graph-theoretic magic into a join tree in
which a similar method can be employed.

In the worst case the join tree nodes must take on exponentially
many combinations of values, but often works well in practice

22



