Computational Learning Theory
VC dimension, Sample Complexity, Mistake bounds

Required reading:
• Mitchell chapter 7

Optional advanced reading:
• Kearns & Vazirani, ‘Introduction to Computational Learning Theory’
Last time: PAC Learning

1. Finite H, assume target function $c \in H$

\[\Pr[(\exists h \in H) \text{s.t.} (error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \leq |H|e^{-\epsilon m} \]

Suppose we want this to be at most δ. Then m examples suffice:

\[m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta)) \]

2. Finite H, agnostic learning: perhaps c not in H

with probability at least $(1-\delta)$ every h in H satisfies

\[error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}} \]
What if H is not finite?

• Can’t use our result for finite H

• Need some other measure of complexity for H
 – Vapnik-Chervonenkis (VC) dimension!
Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

![Instance space X](image)

$VC(H) = 3$
Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε-exhaust $V_{S_{H,D}}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ε) correct

$$m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon) \right)$$

Compare to our earlier results based on $|H|:

$$m \geq \frac{1}{\varepsilon} \left(\ln(1/\delta) + \ln |H| \right)$$
VC dimension: examples

Consider $X = \mathbb{R}$, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

• Open intervals:

 H1: if $x > a$ then $y = 1$ else $y = 0$

 H2: if $x > a$ then $y = 1$ else $y = 0$

 or, if $x > a$ then $y = 0$ else $y = 1$

• Closed intervals:

 H3: if $a < x < b$ then $y = 1$ else $y = 0$

 H4: if $a < x < b$ then $y = 1$ else $y = 0$

 or, if $a < x < b$ then $y = 0$ else $y = 1$
VC dimension: examples

Consider $X = \mathbb{R}$, want to learn $c: X \rightarrow \{0, 1\}$

What is VC dimension of

- Open intervals:

 H_1: if $x > a$ then $y = 1$ else $y = 0$ \quad VC(H1)=1

 H_2: if $x > a$ then $y = 1$ else $y = 0$
 or, if $x > a$ then $y = 0$ else $y = 1$ \quad VC(H2)=2

- Closed intervals:

 H_3: if $a < x < b$ then $y = 1$ else $y = 0$ \quad VC(H3)=2

 H_4: if $a < x < b$ then $y = 1$ else $y = 0$
 or, if $a < x < b$ then $y = 0$ else $y = 1$ \quad VC(H4)=3
VC dimension: examples

Consider $X = \mathbb{R}^2$, want to learn $c:X \rightarrow \{0,1\}$

What is VC dimension of lines in a plane?

- $H = \{ ((w \cdot x + b) > 0 \rightarrow y = 1) \mid w \in \mathbb{R}^2, b \in \mathbb{R} \}$
Consider $X = \mathbb{R}^2$, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

- $H = \{ ((w \cdot x + b) > 0 \rightarrow y = 1) \mid w \in \mathbb{R}^2, b \in \mathbb{R} \}$
 - $VC(H_1) = 3$
 - For linear separating hyperplanes in n dimensions, $VC(H) = n + 1$
For any finite hypothesis space H, give an upper bound on $\text{VC}(H)$ in terms of $|H|$.
More VC Dimension Examples

• Decision trees defined over \(n \) boolean features
 \[F: <X_1, \ldots, X_n> \rightarrow Y \]

• Decision trees defined over \(n \) continuous features
 Where each internal tree node involves a threshold test \((X_i > c) \)

• Decision trees of depth 2 defined over \(n \) features

• Logistic regression over \(n \) continuous features? Over \(n \) boolean features?

• How about 1-nearest neighbor?
Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ϵ) correct?

$$m \geq \frac{1}{\epsilon}(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that $VC(C) \geq 2$, any learner L, any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution \mathcal{D} and target concept in C, such that if L observes fewer examples than

$$\max \left[\frac{1}{\epsilon} \log(1/\delta), \frac{VC(C') - 1}{32\epsilon} \right]$$

Then with probability at least δ, L outputs a hypothesis with $\text{error}_\mathcal{D}(h) > \epsilon$
Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least \((1 - \delta)\) every \(h \in H\) satisfies

\[
error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(\mathcal{H})(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}
\]
Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

- Bias / variance tradeoff

\[\text{error}_{true}(h) < \text{error}_{train}(h) + \sqrt{\frac{VC(II)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}} \]

* unfortunately a somewhat loose bound...
Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution D
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find-S

Consider Find-S when $H = \text{conjunction of boolean literals}$

\[
\text{FIND-S:}
\]
\begin{itemize}
 \item Initialize h to the most specific hypothesis \\
 $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots l_n \land \neg l_n$
 \item For each positive training instance x
 \begin{itemize}
 \item Remove from h any literal that is not satisfied by x
 \end{itemize}
 \item Output hypothesis h.
\end{itemize}

How many mistakes before converging to correct h?
Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space
 CANDIDATE-ELIMINATION algorithm
- Classify new instances by majority vote of
 version space members

How many mistakes before converging to correct h?

- ... in worst case?
- ... in best case?

1. Initialize VS $\leftarrow H$
2. For each training example,
 - remove from VS every hypothesis that misclassifies this example
Optimal Mistake Bounds

Let $M_A(C')$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C') \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The **optimal mistake bound** for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C)$.

$$Opt(C) \equiv \min_{A \in \text{learning algorithms}} M_A(C')$$

$$VC(C) \leq Opt(C) \leq M_{Halving}(C) \leq \log_2(|C|).$$
Weighted Majority Algorithm

a_i denotes the i^{th} prediction algorithm in the pool A of algorithms. w_i denotes the weight associated with a_i.

- For all i initialize $w_i \leftarrow 1$
- For each training example $\langle x, c(x) \rangle$
 * Initialize q_0 and q_1 to 0
 * For each prediction algorithm a_i
 - If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$
 - If $a_i(x) = 1$ then $q_1 \leftarrow q_1 + w_i$
 * If $q_1 > q_0$ then predict $c(x) = 1$
 * If $q_0 > q_1$ then predict $c(x) = 0$
 * If $q_1 = q_0$ then predict 0 or 1 at random for $c(x)$
 * For each prediction algorithm a_i in A do
 - If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$

when $\beta=0$, equivalent to the Halving algorithm...
Weighted Majority

[Relative mistake bound for WEIGHTED-MAJORITY] Let D be any sequence of training examples, let A be any set of n prediction algorithms, and let k be the minimum number of mistakes made by any algorithm in A for the training sequence D. Then the number of mistakes over D made by the WEIGHTED-MAJORITY algorithm using $\beta = \frac{1}{2}$ is at most

$$2.4(k + \log_2 n)$$
What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples provided at random

- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where $c \in H$)
 - For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

- VC dimension as measure of complexity of H

- Quantitative bounds characterizing bias/variance in choice of H
 - but the bounds are quite loose...

- Mistake bounds in learning

General Hoeffding Bounds

- When estimating parameter $\theta \in [a, b]$ from m examples
 \[P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{\frac{-2m\epsilon^2}{(b-a)^2}} \]

- When estimating a probability $\theta \in [0, 1]$, so
 \[P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-2m\epsilon^2} \]

- And if we’re interested in only one-sided error
 \[P((E[\hat{\theta}] - \hat{\theta}) > \epsilon) \leq e^{-2m\epsilon^2} \]