
10-701/15-781 Machine Learning: Assignment 4

Released: Nov 29. Revised: Dec 6

• The assignment is due December 8, 2005 at the beginning of class.

• Write your name in the top right-hand corner of each page submitted. No paperclips, folders, etc.

• If you have any questions, email questions-10701@autonlab.org.

• This assignment consists of five questions totalling 100 points.

• Each student must hand in an writeup. See the web page for the collaboration policy.

Q1 Independence [15 pts]

1. Which of the following statements are true with respect to the following graphical model, regardless
of the conditional probability distributions ?

A

B D H

G

ELC I

F J KM

(a) P (A,G|F ) = P (A|F )P (G|F )

(b) P (B,F |E) = P (B|E)P (F |E)

(c) P (B,M |C,L) = P (B|C,L)P (M |C,L)

(d) P (G, K|F, I) = P (G|I)P (K|I)

(e) P (D, I|G) = P (D|G)P (I|G)

(f) P (D, I|G, F ) = P (D|G, F )P (I|G, F )

(g) P (B,D,H|A,E) = P (B,D|A,E)P (H|A,E)

Q2 Inference [15 pts]

Compute the distribution P (B|D = T ) on the following Bayes network. Show your work.
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0.21

T
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0.05FF 0.95
T 0.33F 0.67

C
T
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0.5 0.5T

0.85T

FB

0.80.2
T F

Q3 Structure Learning [5 pts]

Explain why structure scoring metrics are typically decomposable, i.e.

Score(S) =
n∑

i=1

NodeScore(Xi|Parents(Xi))

Your explanation should not be more than 4-5 sentences long.

Q4 Parameter Estimation with Missing Values [65 pts]

Consider a Bayesian network with the following structure:

X1 X2

X3

X4 X5

θ212θ211

FT

θ112θ111

FT

F θ341 θ342F

θ332F T θ331

F

θ312

θ322

θ311T T

X2

FT θ321

TX1

θ422θ421F

θ411T θ412

T F

θ522θ521F

θ511T θ512

T F

In class we covered how to learn the parameters of the network from complete data, where the values of
all the attributes are specified for each record. Here, we want to learn the parameters of the network from
incomplete data, where some of the records have missing values. Unlike learning with latent variables, the
value of a variable may be known for some records but not for others.
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A Bayesian network on discrete variables represents a multinomial distribution on X1, . . . , Xn. pa(Xi)
represents the variables that are parents of Xi in the directed acyclic graph. Xi takes on ri values and
pa(Xi) takes on qi values. The parameters of the network p(Xi = k|pa(Xi) = j) are denoted θijk. The entire
set of network parameters are denoted θ.
A data set containing R iid records is denoted x = {x1,x2, . . . ,xR}. xm

i denotes the value of Xi in the
mth record. Nijk is a count of how many records have Xi = k and pa(Xi) = j. If we use δ(·) to represent
the indicator function

Nijk =
R∑

m=1

δ(xm
i = k,xm

pa(Xi)
= j)

Nij ≡
∑

k

Nijk

If the records are complete then the log-likelihood of the data (ignoring the normalization constant) is

`(θ) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log θijk where
ri∑

k=1

θijk = 1

If the records are not complete then let xm
obs and xm

hid denote the observed and unobserved (hidden) part of
the mth record.

1. Why is Nijk a latent variable when we deal with incomplete data ? Your explanation must not exceed
2 sentences.

2. Prove that E[Nijk|x, θ] =
∑R

m=1 P (xm
i = k,xm

pa(Xi)
= j|xm

obs, θ).

3. (E-Step) Prove that the expected complete log-likelihood

Q(θ|θ(t)) =
n∑

i=1

qi∑
j=1

ri∑
k=1

E[Nijk|x, θ(t)] log θijk

4. (M-Step) Prove that the expected complete log-likelihood is maximized when

θ
(t+1)
ijk =

E[Nijk|x, θ(t)]∑
k E[Nijk|x, θ(t)]

5. If xm has no missing values, write down pseudocode for an algorithm that returns P (xm
i = k,xm

pa(Xi)
=

j|xm
obs, θ) in time polynomial in n and the number of parameters |θ|.

6. For the 5-node Bayesian network given above, write down the formulae for P (xm
i = k,xm

pa(Xi)
=

j|xm
obs, θ) when exactly one value is missing from xm.

7. The data set missing.csv contains data on X1, . . . , X5 where each record has at most one missing
value. Implement the EM algorithm for estimating θ. Use a uniform starting configuration for θ,
i.e., θ

(0)
ijk = 1/ri. Run until maxijk |θ(t+1)

ijk − θ
(t)
ijk| < 10−4. Plot the marginal log-likelihood `(θ) =∑R

m=1 log p(xm
obs|θ) vs. the number of iterations. What is the final estimate for θ ?

Note: missing.csv contains 1000 records where ’0’ corresponds to false, ’1’ corresponds to true, and
’NA’ corresponds to a missing value.
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