Spectral Clustering

Problem formulation: given n input points, find k clusters
Spectral Clustering

Step 1: Build affinity matrix W

One way to do this:

$$W(i, j) = \begin{cases} 0, & \text{if } x_i \text{ and } x_j \text{ are known to be different} \\ e^{-\beta \|x_i - x_j\|}, & \text{otherwise} \end{cases}$$

In our example:

$$W = \begin{bmatrix} 1.0000 & 0.5582 & 0.3893 & 0 & 0 \\ 0.5582 & 1.0000 & 0.6065 & 0 & 0 \\ 0.3893 & 0.6065 & 1.0000 & 0.1700 & 0 \\ 0 & 0 & 0.1700 & 1.0000 & 0.5582 \\ 0 & 0 & 0 & 0.5582 & 1.0000 \end{bmatrix}$$
Spectral Clustering

Step 1: Build affinity matrix W

In our example:
Spectral Clustering

Step 2: Construct $A = D^{-1/2}WD^{-1/2}$, where D – a diagonal matrix with $D_{ii} = \text{sum along } i^{th} \text{ row in } W$

In our example:

$$
A =
\begin{pmatrix}
0.5135 & 0.2719 & 0.1896 & 0 & 0 \\
0.2719 & 0.4620 & 0.2801 & 0 & 0 \\
0.1896 & 0.2801 & 0.4617 & 0.0879 & 0 \\
0 & 0 & 0.0879 & 0.5787 & 0.3401 \\
0 & 0 & 0 & 0.3401 & 0.6418
\end{pmatrix}
$$
Spectral Clustering

Step 3: Get eigenvectors of A sorted by their corresponding eigenvalues

In our example:
L (diagonal is eigenvalues) =
\[
\begin{bmatrix}
1.0000 & 0 & 0 & 0 & 0 \\
0 & 0.9319 & 0 & 0 & 0 \\
0 & 0 & 0.3297 & 0 & 0 \\
0 & 0 & 0 & 0.2470 & 0 \\
0 & 0 & 0 & 0 & 0.1489 \\
\end{bmatrix}
\]

V =
\[
\begin{bmatrix}
0.4512 & -0.3652 & 0.5757 & -0.5238 & 0.2392 \\
0.4757 & -0.3730 & 0.0005 & 0.3418 & -0.7195 \\
0.4759 & -0.2714 & -0.5589 & 0.2460 & 0.5718 \\
0.4251 & 0.5248 & -0.4035 & -0.5610 & -0.2578 \\
0.4036 & 0.6152 & 0.4397 & 0.4834 & 0.1779 \\
\end{bmatrix}
\]
Spectral Clustering

Step 4: Check the signs of the elements in the second eigenvector to split into two clusters.
Elements with opposite signs belong to different clusters.

In our example:

\[V = \]

\[
\begin{array}{cccccc}
0.4512 & -0.3652 & 0.5757 & -0.5238 & 0.2392 \\
0.4757 & -0.3730 & 0.0005 & 0.3418 & -0.7195 \\
0.4759 & -0.2714 & -0.5589 & 0.2460 & 0.5718 \\
0.4251 & 0.5248 & -0.4035 & -0.5610 & -0.2578 \\
0.4036 & 0.6152 & 0.4397 & 0.4834 & 0.1779 \\
\end{array}
\]

First three points in cluster 1; second two in cluster 2.
Spectral Clustering
Spectral Clustering

Step 1: Build affinity matrix W

Step 2: Construct $A = D^{-1/2}WD^{-1/2}$,
where D – a diagonal matrix with D_{ii} = sum along ith row in W

Step 3: Get eigenvectors of A sorted by their corresponding eigenvalues

Step 4: Elements with opposite signs in the 2nd eigenvector belong to different clusters
Spectral Clustering

Step 1: Build affinity matrix W

Step 2: Construct $A = D^{-1/2}WD^{-1/2}$,
 where D – a diagonal matrix with D_{ii} = sum along ith row in W

Step 3: Get eigenvectors of A sorted by their corresponding eigenvalues

Step 4: Elements with opposite signs in the 2nd eigenvector
 belong to different clusters
Spectral Clustering

Step 1: Build affinity matrix W

Step 2: Construct $A = D^{-1/2}WD^{-1/2}$, where D – a diagonal matrix with $D_{ii} =$ sum along ith row in W

Step 3: Get eigenvectors of A sorted by their corresponding eigenvalues

Step 4: Elements with opposite signs in the 2nd eigenvector belong to different clusters
Consider $P = D^{-1}W$: $P_{ij} = w_{ij}/\sum_k w_{ik}$, which is "kind of" the probability of transitioning to point j from point i. (In other words, we normalize each row of P, so that it sums up to 1 and therefore is a valid probability transition matrix.)
Spectral Clustering

In our example:

\[P = \]

\[
\begin{array}{ccccc}
0.5135 & 0.2866 & 0.1999 & 0 & 0 \\
0.2579 & 0.4620 & 0.2802 & 0 & 0 \\
0.1797 & 0.2800 & 0.4617 & 0.0785 & 0 \\
0 & 0 & 0.0984 & 0.5787 & 0.3230 \\
0 & 0 & 0 & 0.3582 & 0.6418 \\
\end{array}
\]

\[P(\text{end}=2|\text{start}=1 \text{ after } 1 \text{ step}) = 0.2866; \]

\[P(\text{end}=i|\text{start}=1 \text{ after } 1 \text{ step}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} P = \]

\[
\begin{bmatrix}
0.5135 & 0.2866 & 0.1999 & 0 & 0 \\
\end{bmatrix};
\]

\[P(\text{end}=i|\text{start}=1 \text{ after } 2 \text{ steps}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} P^2 = \]

\[
\begin{bmatrix}
0.3278 & 0.3391 & 0.2973 & 0.0307 & 0.0051 \\
\end{bmatrix};
\]

\[\vdots \]

\[P(\text{end}=i|\text{start}=1 \text{ after } t \text{ steps}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} P^t; \]
Spectral Clustering

\[P^t = (D^{-1}W)^t = D^{-1/2}(D^{-1/2}WD^{-1/2})^tD^{1/2} = D^{-1/2}A^tD^{1/2} \]

\[P^t = D^{-1/2}(\lambda_1^t v_1 v_1^T + \lambda_2^t v_2 v_2^T + \ldots)D^{1/2} \]

Since \(\lambda_1 = 1 \) and \(|\lambda_i| < 1 \) for \(i > 1 \),

\[P^\infty = D^{-1/2}(\lambda_1 v_1 v_1^T)D^{1/2} \]

\[P^\infty_{ij} = P(\text{end}=j|\text{start}=i \text{ after infinitely many steps}) \]
Spectral Clustering

\[P^t = (D^{-1}W)^t = D^{-1/2}(D^{-1/2}WD^{-1/2})^tD^{1/2} = D^{-1/2}A^tD^{1/2} \]

\[P^t = D^{-1/2}(\lambda_1^t v_1 v_1^T + \lambda_2^t v_2 v_2^T + \ldots)D^{1/2} \]

Since \(\lambda_1 = 1 \) and \(|\lambda_i| < 1 \) for \(i > 1 \),

\[P^\infty = D^{-1/2}(\lambda_1 v_1 v_1^T)D^{1/2} \]

\[P^\infty_{ij} = P(\text{end}=j|\text{start}=i \text{ after infinitely many steps}) \]

How to correct for large number but not infinitely many steps:

\[P^t \approx P^\infty + D^{-1/2}(\lambda_2^t v_2 v_2^T)D^{1/2} \]

In \(v_2 \), \(v_2(i) \) has a different sign with \(v_2(j) \) if

\[P(\text{end}=j|\text{start}=i \text{ after a finite number of steps}) \text{ should decrease in comparison to } P(\text{end}=j|\text{start}=i \text{ after infinitely many steps}) \]