Recitation: Some Notes for Assignment 2

October 12, 2004

Some Notes about EM

Note1: Page 4 of Paper *, equation (3), we could write in a clearer way:

(*) You might need feel helpful for the paper: Jeff A. Bilmes, "A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models"

\[
Q(\theta, \theta_{old}) = E_{P(Y|X, \theta_{old})}[log(L(\theta|X,Y))] = E_{P(Y|X, \theta_{old})}[\sum_{i=1}^{N} \log(\alpha_{y_{i}}p_{y_{i}}(x_{i}|\theta_{y_{i}}))]
\]

Above *note: Y is a vector \((y_{1}, y_{2}, ..., y_{N})\); And \(y_{i}\) only depends on \(x_{i}\)

\[
\therefore Q(\theta, \theta_{old}) = \sum_{i=1}^{N} \{E_{P(y_{i}|x_{i}, \theta_{old})}[\log(\alpha_{y_{i}}p_{y_{i}}(x_{i}|\theta_{y_{i}}))]\}
\]

\[
= \sum_{i=1}^{N} \{\sum_{y_{i}=1}^{M} \log(\alpha_{y_{i}}p_{y_{i}}(x_{i}|\theta_{y_{i}})) \ast p(y_{i}|x_{i}, \theta_{old})\}\}
\]

\[
\therefore Then we could use \(l\) to substitute \(y_{i}\)
\]

\[
\therefore Q(\theta, \theta_{old}) = \sum_{i=1}^{N} \{\sum_{l=1}^{M} \log(\alpha_{l}p_{l}(x_{i}|\theta_{l})) \ast p(l|x_{i}, \theta_{old})\}\}
\]

Note2: Simple way to think EM:

a. Include "Hidden/Missing Variable" into your model

b. Derive the Expected Value of the "Hidden/Missing Variable" based on the inputs X and your old parameter \(\theta_{old}\)

c. Derive new \(\theta\) from results of "b"
Question 2. EM

For the following questions, please give clear step by step derivation.

2.1 Suppose that the p.d.f. of a random variable X has a 2-component mixture form:

\[p_{\alpha}(x) = \alpha * p_1(x) + (1 - \alpha) * p_2(x) \] \hspace{1cm} (1)

One component is the density model \(p_1(x) \) and the other component is the density model \(p_2(x) \). We know both \(p_1(x) \) and \(p_2(x) \). We do not know \(\alpha \). Given that \(\{ x_1, x_2, ..., x_n \} \) are iid samples from the distribution of X, please give an EM algorithm for estimating \(\alpha \). (Describe the E-step and M-step clearly in your answer).

Hint:

The same framework as the Reference paper and the first page of this note.
2.2 Suppose that $Y_1 \sim exp(1/\theta_1)$ and $Y_2 \sim exp(1/\theta_2)$, and $\theta_1 \neq \theta_2$. Y_1 and Y_2 are independent. Let $X = Y_1 + Y_2$ denote the sum of Y_1 and Y_2. Given that \{ $x_1, x_2, ..., x_n$ \} are iid samples from the distribution of X.

- Derive an expression for the density of X in terms of θ_1 and θ_2
 (Hint1: The density of Y_1 is $f_{\theta_1}(y) = \theta_1 e^{-\theta_1 y}$, similarly for Y_2)
 (Hint2: You could first derive CDF of X, $F(x) = P(Y_1 + Y_2 < x) = \int_0^x \int_0^{x-y_1} f_{\theta_1}(y_1)f_{\theta_2}(y_2)dy_2dy_1$)

Hint: This step’s result may be useful for the next question.

- Derive the E-step and M-step, and give explicit expressions for the parameter updates in the EM process for computing the MLE of θ_1 and θ_2.

Hint:
Y_1 is a hidden variable.

Way1: The same framework as the Reference paper and the first page of this note.
Way2: Use the simple thinking style of EM as in the first page of this note.

$p(y_{i,1} | x_i, \theta^{old}) = \frac{p(x_i, y_{i,1}) | \theta^{old}}{p(x_i | \theta^{old})}$
Question 4. Regression

Linear regression models a real-valued output Y given an input vector X as

$$Y|X \sim \text{Normal}(\mu(X), \sigma^2)$$

where the mean is a linear function of the input:

$$\mu(X) = \beta^T X = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

Logistic regression models a binary output Y by

$$Y|X \sim \text{Bernoulli}(\theta(X))$$

where the Bernoulli parameter is related to $\beta^T X$ by the logit transformation

$$\text{logit}(\theta(X)) \equiv \log \left(\frac{\theta(X)}{1-\theta(X)} \right) = \beta^T X$$

Given data $\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$, for each of the two regression models above, show that at the MLE $\hat{\beta}$

$$\sum_{i=1}^{n} x_i * y_i = \sum_{i=1}^{n} x_i * E[Y | X = x_i, \beta = \hat{\beta}]$$

Hint: Maximum Likelihood Estimation

One Extra Note: Actually the above equation shows that we achieve a good regression estimation for the data.