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Abstract
Articulatory position data is information about the location

of various articulators in the vocal tract. One form of it has been
made freely available in the MOCHA database [1]. This data is
interesting in that it provides direct information on the produc-
tion of speech, but there is the question of whether it actually
provides information beyond what can be derived from the au-
dio signal, which is much easier to collect. Although there has
been some success in improving small-scale speech recognition
and in demonstrating mappings between articulatory positions
and spectral features of the audio signal, there are many prob-
lems to which this data has not been applied. This work in-
vestigates the possibility of using articulatory position data to
improve voice transformation, which is the process of making
speech from one person sound as if it had been spoken by an-
other. After further investigation, it appears to be difficult to use
articulatory position data to improve voice transformation us-
ing state-of-the-art voice transformation techniques as we only
had a few positive results across a range of experiments. To
achieve these results, it was necessary to modify our baseline
voice transformation approach and/or consider features derived
from the articulatory positions.

1. Introduction
Articulatory position data is information on the location of artic-
ulators during speech. The particular set investigated here is the
freely available MOCHA database [1], which includes record-
ings of the 460-sentence British TIMIT corpus along with coor-
dinates in the mid-sagittal plane for the upper and lower lip, the
lower incisor, three points on the tongue, and the velum of each
speaker. As this data provides direct information on the physi-
cal production of speech, there is hope that it can be used to im-
prove models for speech. In many cases, current speech models
are based on features derived from the audio signal through sig-
nal processing techniques such as LPC, cepstra, or mel-cepstral
coefficients. Such features are arguably either more related to
the perception of speech than the production of speech or repre-
sent an attempt to indirectly reconstruct information about pro-
duction. Articulatory position data is exciting in that it gives
direct information about production, but it is not without its lim-
itations. One difficulty is that it may not fully represent the im-
portant parts of production. Seven points in a plane may not be
sufficient to represent lateral effects, constrictions in the vocal
tract, or the shape of the tongue. Information about pitch and
power will not be directly represented. However, there may still
be usable information even though the information is not com-
plete, and there is evidence, at least for speech recognition, that
it can help [2].

Another difficulty is that articulatory position data is hard
to collect and this makes it fairly sparse. In most cases, it will
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probably not be collected during audio recordings. Thus, there
is the additional question of whether this data can be useful in
cases when it is available for a different speaker than the one
who was recorded. There has been some work in this area as
well [3]. In this context, it is natural to ask whether using artic-
ulatory position data can provide useful modeling information
beyond what is available from the audio signal and for what
tasks is it helpful.

This paper attempts to extend the use of articulatory posi-
tion data to voice transformation. Voice transformation is the
process of making speech from one speaker sound as if it came
from another. It is an important topic in speech synthesis, be-
cause successful voice transformation could greatly reduce the
difficulty in producing synthetic voices with new identities and
styles. Creating a concatenative speech synthesizer typically re-
quires recording more than a thousand sentences for reasonable
coverage of phonetic events. Coverage of different styles may
require even more recordings. These recordings must be cre-
ated for each speaker. Voice transformation has a much smaller
incremental cost. After the first speaker is recorded, it is typi-
cal to record only an additional 20-30 sentences to create a new
synthetic voice.

Researchers have investigated voice transformation for over
20 years and have explored many different techniques. The ex-
periments in this paper are based on Gaussian Mixture Model
(GMM) mapping techniques. These models were used at least
as early as the mid-1990s [4], have been refined since then [5]
[6] [7] [8], and are still considered state-of-the-art. Further-
more, scripts for implementing this type of voice transforma-
tion, based on the work of Tomoki Toda, are freely available
from the FestVox website [9]. We modified these scripts to al-
low the use of additional features in the GMM mappings.

A high-level view of the approach taken in this paper can be
seen in Figure 1. The general idea is that, in addition to mapping
features derived from the speech signal data from one speaker
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to another, we can also map features derived from articulatory
data from one speaker to another. In this paper we focus on
comparing joint mappings of the speech signal and articulatory
features from one speaker to another and how they compare to
mappings that use only speech signal features.

2. MOCHA Database
For each of its speakers, the MOCHA database supplies au-
dio files, Electro-Magneto Articulograph (EMA) files, laryngo-
graph files, and electroglottograph files for the 460 sentences in
the British TIMIT corpus [1]. There are two speakers for whom
full data has been released. They are labeled msak0 and fsew0.
The msak0 speaker is male and has a northern English accent.
The fsew0 speaker is female and has a southern English accent.

The following experiments are based on features derived
from the audio files and the EMA files. The audio files con-
tain 16 bit samples at a rate of 16kHz. The EMA files contain
samples at a rate of 500Hz of the x and y coordinates in the
mid-sagittal plane of the positions of 7 different articulators, for
a total of 14 values per sample. These 7 articulators include
the upper and lower lip, the lower incisor, three points on the
tongue, and the velum. The EMA files also contain additional
coordinates for the bridge of the nose and the upper incisor,
but they are only used for calibrating the positions of the other
articulators and are not used as features in the following exper-
iments.

3. Voice Transformation with GMM
mapping

The basic idea behind GMM mapping techniques is that the
probability of a joint feature vector, x, composed of features
from both a source and target speaker, can be modeled by a
GMM, which has the following probability density function:

p(x) =
M

X

i=1

αiN (x;µi, Σi)

where M is the number of Gaussian components, N is a
Gaussian distribution, µi and Σi are the mean and covariance
of the ith Gaussian distribution, and the αis are weights that are
non-negative and sum to 1. In the following experiments, the
default settings of the voice transformation scripts in FestVox
are used to specify the form of the covariance matrix, which is
diagonal in each quarter.

3.1. Training

The voice transformation training process is illustrated in Fig-
ure 2. It is based on recordings of the source and target speak-
ers reading the same text. Fundamental frequency estimates are
made for both speakers every 5ms, and mean and standard devi-
ation statistics for their log values are calculated and recorded.

There is a separate part of the process that involves train-
ing a GMM based on filter features. The filter features used
in the baseline system are the defaults used by the scripts
from FestVox. 24 frequency-warped cepstral coefficients, called
MCEPs, are extracted every 5ms from the recordings of the
source and target speakers reading the same sentences. MCEPs
approximate mel-cepstral coefficients and can be used with
pitch estimates as inputs to the Mel Log Spectral Approxima-
tion (MLSA) filter [10], which is used to synthesize the trans-
formed utterances. Dynamic features are also produced for the
MCEP vectors using a weighted window centered on the current

Figure 2: Voice Transformation Training
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MCEP vector with values [−0.5, 1, 0.5]. At this point, there
are now twice as many features for each speaker per frame.
Frames below a certain power threshold are removed to reduce
the chance of including background noise in the data. Because
the durations of the parallel utterances will probably differ, dy-
namic time warping is used to align MCEP vectors between the
two speakers to produce joint vectors with lengths of 4 times
the original feature vectors (the original source speaker features
plus the source speaker dynamic features plus the original target
speaker features plus the target speaker dynamic features). The
joint vectors are the ones that are modeled by the GMM, which
is trained using EM. A couple iterations are performed where
the trained GMM parameters are used to produce predictions
from the source speech, which are then used to refine the DTW.

3.2. Transformation

Transformation is performed by the following process, which is
illustrated in Figure 3:

1. Extract power, F0, filter features (MCEP and possibly
additional EMA values), and dynamic features from the
utterance to be transformed.

2. Use a z-score mapping in the log domain to transform
the source speaker’s F0 estimates to the target speaker’s
F0 predictions.

3. Use the GMM to map the source speaker’s features to the
target speaker’s by fixing the source speaker values and
producing maximum likelihood estimates for the target
speaker’s features.

4. Use Maximum Likelihood Parameter Generation
(MLPG) with global variance to predict final values
based on filter features and dynamic features [11].

5. Use the power from the source speaker’s utterance along
with the F0 and MCEP predictions as inputs to the
MLSA filter to synthesize the transformed utterance.
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Figure 3: Voice Transformation
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3.3. Error Measure

Mel-Cepstral Distortion (MCD) is an objective error measure
that is used in the following experiments to compare trans-
formed utterances to reference utterances recorded by the target
speaker. MCD has some correlation with results from subjective
listening evaluations and has been used to measure the quality
of voice transformation results in other work [7]. MCD is es-
sentially a weighted Euclidean distance, that is defined by

MCD =
10

ln 10

v

u

u

t2
24

X

d=1

(m(t)
d

− m
(r)
d

)2

where m
(t)
d

is the dth MCEP of a frame of transformed speech,
and m

(r)
d

is the dth MCEP of the corresponding frame in the ref-
erence utterance recorded by the target speaker. Again, because
the utterances will probably differ in length, Dynamic Time
Warping is used to align them before computing the MCDs.

MCD is more related to filter characteristics of the vocal
tract. Although characteristics such as power and fundamental
frequency are also important to the quality of voice transfor-
mation output, the use of MCD for these experiments seems
appropriate as the articulatory positions are expected to be most
closely related to the filter characteristics of the vocal tract.

For the following results, no power thresholding was per-
formed on frames before calculating MCDs, and the trans-
formed MCEPs were used, as opposed to MCEPs rederived af-
ter synthesizing waveforms.

4. Adding Articulatory Position Data
Numerous experiments were conducted which added articula-
tory position data to the baseline MCEP features within the
same general framework. The scripts were modified to allow
the use of articulatory position features instead of or in addition
to MCEP features. The rest of the processing continued in the
same basic manner, with the exception that the error measure
for the combination of articulatory position data and MCEPs
was based solely on the MCEP subset. In the following de-
scriptions, EMA will be used to refer to the articulatory position
data, because it is the abbreviation for Electro-Magneto Articu-
lograph, which is the specific type of articulatory position data
that we used. Similarly, EMAMCEP will be used to refer to the
combined use of EMA and MCEP data.

The EMA data from the MOCHA data had to be processed
before combination with the MCEPs because it was sampled
every 2ms instead of every 5ms, and the durations of the EMA
files did not always match the durations of the audio files. Re-
sampling was performed with the ch track program from the

Table 1: MCEP vs. EMAMCEP MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M MCEP EMAMCEP MCEP EMAMCEP
1 6.33(1.62) 6.88(1.61) 5.59(1.59) 5.95(1.68)
2 5.84(1.95) 6.34(1.97) 5.51(1.59) 5.79(1.71)
4 5.67(1.94) 6.25(2.06) 5.57(1.42) 5.81(1.64)
8 5.74(1.78) 6.60(1.65) 5.31(1.55) 5.95(1.62)

16 5.58(1.79) 6.09(1.89) 5.20(1.58) 5.46(1.62)
32 5.74(1.79) N/A 5.06(1.62) 5.66(1.50)
64 5.74(1.70) N/A 5.01(1.63) N/A
128 N/A N/A N/A N/A

Edinburgh Speech Tools [9], and EMA or MCEP features were
truncated when the lengths didn’t match.

Recordings from two speakers, msak0 and fsew0, were
available from the MOCHA database. The experiments include
transformations from each speaker to the other. The data was
split into a training set of 414 utterances and a test set of 46
utterances. Most of the experiments were trained on a subset
of 50 utterances due to the amount of time necessary to train
the entire training set and the similarity of the results in some
preliminary experiments.

Finally, there were some additional considerations that al-
lowed the training of the GMM to work. The original EMA
values were measured in thousandths of centimeters, and in
some cases exceeded 5,000. Using these original values led to
overflow errors with the training program, so we z-scored the
EMA values to put them in a manageable range. Also, the num-
ber of Gaussian components in the GMM could affect whether
training succeeded. In some cases the training program was un-
able to estimate parameters for the GMM and returned an error
message suggesting that fewer Gaussian components should be
used. In the following tables, the results for these trials will be
marked as N/A (Not Applicable).

We tried to use multiple values to determine a range of suc-
cess and also to track where increasing the number of compo-
nents improved performance. After the initial trials, our basic
choices were 16, 32, 64, or 128 components. These generally
appeared to capture the range where results first improved and
then worsened, presumably due to overtraining, or training even
failing.

5. Experiments
5.1. Baseline Experiments

The first experiment was a comparison of only using MCEP
features with using a combination of MCEP and EMA features.
The only change made to the GMM mapping procedure for the
initial trials including EMA was to include the EMA values in
the feature vectors as well as the MCEP values. The results are
in Table 1.

Adding all the EMA features directly as z-scored x and y
coordinates in the mid-sagittal plane did not help in any of the
trials, so it was necessary to investigate the data and the learning
process more closely.

5.2. Attempts to Remove Noise from the Data

One possibility was that there was noise in the EMA data. Some
potential causes were:

• The electrical apparatus originally used to collect the
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Table 2: Drift Correction MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M EMAMCEP EMAMCEP
16 6.09(1.73) 5.58(1.59)
32 N/A 5.31(1.78)
64 N/A N/A
128 N/A N/A

Table 3: First EMA Repeated MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M MCEP EMAMCEP MCEP EMAMCEP
16 5.54(1.80) 6.16(1.84) 5.18(1.59) 5.49(1.62)
32 5.67(1.82) N/A 5.04(1.61) 5.45(1.71)
64 5.80(1.90) N/A 5.02(1.61) N/A
128 N/A N/A N/A N/A

data
• The alignment of the MCEP with the EMA
• The resampling of the EMA data to match the default

MCEP sampling rate
It has been noted by others [2] that there appears to be line

noise at 50Hz in the MOCHA data. For that reason and also
assuming that the motions of the articulators would be slow
enough at our sampling rate, we tried applying low-pass filters
with cut-offs of 45Hz and 10Hz to the MOCHA data using the
sigfilter program from the Edinburgh Speech Tools [9]. Adding
this low-pass filtered EMA data to the MCEP data failed to re-
duce the MCD error when compared to only using the MCEP
data for voice transformation.

Another possible problem with the MOCHA data is that the
means of the feature positions appear to vary over time more
than what would be expected based on the differing phonetic
contexts alone, according to other researchers [12] [13]. Al-
though these sources were not certain whether this “drift” came
from the Electo-Magneto Articulograph or the adjustment of
speakers to the probes used to measure them, they found for
their tasks that it was useful to try to compensate for it. We
tried applying the “drift correction” strategy from the latter ref-
erence to the EMA data. This consisted of treating the mean
values per utterance of the EMA features as signals, low-pass
filtering these signals forward and backward with a FIR filter
of length 100 and cut-off of 0.04π, and subtracting the result-
ing per-utterance “drift” values from the corresponding EMA
features in the corresponding utterances. Adding the resulting
drift-corrected data to the MCEP data failed to reduce the MCD
error when compared to using the MCEP data alone for voice
transformation, as can be seen in Table 2.

Another possible problem was that the EMA data was not
aligned with the MCEP data. We experimented by shifting the
EMA data one frame by repeating the first EMA frame. The
results of this experiment are in Table 3.

This only made a minor change to the results and demon-
strated that shifting the EMA by repeating the first EMA frame
did not help. A companion experiment was performed where
the first EMA frame was removed from each utterance. Shift-
ing the EMA frames in that direction did not lead to an im-
provement in the results for trials using EMA data either. The
results for this experiment are in Table 4. In both of these exper-
iments, due to differences in the truncation of the feature files

Table 4: First EMA Deleted MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M MCEP EMAMCEP MCEP EMAMCEP
16 5.54(1.80) 6.15(1.79) 5.18(1.59) 5.47(1.59)
32 5.47(1.76) N/A 5.06(1.59) 5.69(1.67)
64 5.65(1.61) N/A 4.99(1.61) N/A
128 5.81(1.78) N/A N/A N/A

Table 5: DTW Based only on MCEPs MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M EMAMCEP EMAMCEP
16 5.84(1.81) 5.35(1.73)
32 5.90(1.76) 5.31(1.77)
64 N/A N/A
128 N/A N/A

after alignment, there are small differences in the results for the
trials which only used MCEP data.

5.3. Attempts to Refine the Transformation Process

The baseline script that was used to perform voice transforma-
tion was based on techniques that were refined over time to
handle MCEP data. It was unclear whether parts of this pro-
cess were still appropriate when adding EMA data to the MCEP
vectors. We investigated the following areas more closely:

• Dynamic Time Warping (DTW) used for alignment of
the two speakers

• Use of the Maximum Likelihood Parameter Generation
(MLPG) algorithm

• Use of multiple iterations of DTW during training

In the baseline voice transformation system, DTW was per-
formed over all features and their derived dynamic features to
align feature vectors between speakers. The distance measure
used in the DTW was Euclidean. Because the MCEP and z-
scored EMA values were not of the same scale, this did not seem
appropriate. For this reason, we ran experiments that only con-
sidered the MCEP values during DTW when additional EMA
features were used. The results are in Table 5. As can be seen
through comparison with Table 1, this approach did not give
better results than using MCEP data alone for the entire process.
However, it did improve the results of the trials that included
EMA data in comparison to previous trials that used EMA data,
so it was used in later experiments.

One other thing to note is that basing the DTW only on
MCEP features in the trials that also include EMA data leads to
the same source speaker and target speaker frames being aligned
across the different trials. This is not guaranteed when the DTW
in the trials using EMA data also uses EMA values.

In the baseline voice transformation system, a program
called MLPG is used to take the GMM estimates of the tar-
get speaker’s MCEP and MCEP dynamic feature means and
covariances to try to estimate final MCEP values that form a
good path. It was unclear whether including EMA features in
this process was appropriate. We ran another set of experiments
where we used the means of the MCEP features for predictions
and did not use MLPG (in addition to using the abovementioned
strategy of only considering MCEP and MCEP dynamic feature
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Table 6: No MLPG and MCEP DTW MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M MCEP EMAMCEP MCEP EMAMCEP
16 5.39(1.78) 5.49(1.86) 4.95(1.57) 4.97(1.86)
32 5.60(1.78) 5.50(1.81) 4.91(1.59) 4.97(1.83)
64 5.76(1.84) N/A 5.10(1.69) N/A
128 N/A N/A N/A N/A

Table 7: Lip Distance MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M EMAMCEP EMAMCEP
16 5.64(1.96) 5.40(1.78)
32 5.55(2.00) 5.25(1.80)
64 6.07(2.08) 5.19(1.81)
128 6.01(2.11) 5.19(1.89)

values during DTW). The results of these experiments are in Ta-
ble 6. Adding EMA data helped in the trial that used 32 Gaus-
sian components for the transformation from msak0 to fsew0.
However, this was not a global best result for this transforma-
tion direction as the 16 Gaussian trial using only MCEP data
still had better results.

5.4. Representation of EMA Features

Another possibility was that the x and y coordinates in the EMA
data were a poor match for voice transformation in general or
even the GMM mapping technique in particular. Perhaps there
is more relevant information in features that are derived from
these coordinates. After all, the x and y coordinate values are
related to each other, both in terms of pairs being related to the
same articulators, and in the sense that the positions of some
articulators can pose constraints on the positions of others. Fur-
thermore, the positions of some articulators relative to others
provide information on constrictions in the vocal tract, which
influence the filter characteristics. We investigated the follow-
ing types of derived EMA features:

• Distances between the lips
• 1st order differences
• Projections onto lines fit to the articulator data
One type of vocal tract constriction that seemed rea-

sonable to measure from the 7 articulators available in the
MOCHA database was the distance between the lips. The two-
dimensional Euclidean distance between the lips was used as a
derived feature. The results for this experiment are in Table 7.
In comparison with Table 1, it can be seen that adding lip dis-
tance improved the MCD when transforming from the msak0
voice to the fsew0 voice with 32 Gaussian components in the
GMM.

Another thought was that capturing information about the
motion of the articulators in two-dimensional space might
supply more information. We ran experiments where the
two-dimensional Euclidean distances were calculated between
(x, y) coordinate pairs from frame to frame. This constructed
7 EMA derived features that could be added to the MCEP data.
In this case, the dynamic features for the EMA are akin to sec-
ond order differences. These trials were performed using only
the MCEP and MCEP dynamic features for DTW and did not
use MLPG. The results of these experiments are in Table 8. As

Table 8: 2-D EMA Distances MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M EMAMCEP EMAMCEP
16 5.47(1.99) 5.21(1.73)
32 5.62(2.01) 5.14(1.80)
64 5.56(2.02) N/A
128 N/A N/A

Table 9: EMA Projection MCD Means (Std. Devs.)

msak0 to fsew0 fsew0 to msak0
M EMAMCEP EMAMCEP
16 5.60(1.78) 5.01(1.85)
32 5.36(1.97) 5.00(1.86)
64 N/A N/A
128 N/A N/A

can be seen by comparison with Table 6, adding these EMA de-
rived distance features helped in the case of using 64 Gaussian
components for the transformation from msak0 to fsew0. How-
ever, this was not a global positive result for the msak0 to fsew0
transformation as it did not perform as well as the 16 and 32
Gaussian component trials which only used MCEP data.

One problem with using 2-dimensional distances as fea-
tures is that it does not include any notion of directionality,
which seems like it should be important. There is a ques-
tion of how to include this directionality in a meaningful way
in the vectors used in the GMM mapping strategy. Although
the articulator positions were measured in two dimensions, in
many cases it appeared that individual articulators moved more
along certain lines than others. For example, the lower incisor
data showed more motion along the y-dimension than the x-
dimension. In an attempt to capture some of this information,
we derived features from the EMA by running linear regression
on the (x, y) coordinate pairs in the training set for individual
articulators to create best-fit lines, projecting the EMA (x, y)
pairs onto these lines, and determining how far along these lines
the articulators were. The results of using these projected EMA
features are in Table 9. Again, in these trials, only the MCEP
features were used for DTW and MLPG was not used. By com-
parison with Table 6, it can be seen that not only does adding
these features improve the trial using 32 Gaussians for the trans-
formation from msak0 to fsew0, but that this is a global posi-
tive result as it is better than all the other trials for transforming
msak0 to fsew0, including the ones that only use MCEP data.

A different approach to investigating the possibility of the
data being a mismatch for the model is to switch the model
instead of changing the features. To this end, we tried using
wagon, the Classification And Regression Tree (CART) pro-
gram from the Edinburgh Speech Tools [9], instead of GMM
mapping to learn the mapping between speakers. Using a step
size of 100, CART predicted MCEPs from MCEPs in the fsew0
to msak0 direction with a MCD mean of 4.71 and standard devi-
ation of 1.71. Using the combination of EMA data with MCEPs
from the fsew0 speaker to predict MCEPs for the msak0 speaker
gave a MCD mean of 5.22 and standard deviation of 1.90. Even
with a different learning algorithm, adding EMA data failed to
help improve voice transformation in terms of MCD. Although
the numbers for the individual trials were better than for the
GMM mapping baseline, there was the same general trend of
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the MCEP-only trial performing better than a trial that adds
EMA x and y coordinates directly.

6. Conclusions
A number of strategies were applied to the problem of trying
to use EMA data to improve a fairly standard GMM mapping
based voice transformation technique in terms of Mel-Cepstral
Distortion. For the most straightforward extension of the base-
line voice transformation technique, none of the experimental
trials that used additional EMA data directly as x and y coordi-
nates improved the Mel-Cepstral Distortion. We made a num-
ber of attempts to use the EMA data to improve results. These
attempts focused on the following three areas:

1. Removing noise from the data

2. Modifying parts of the voice transformation process that
no longer appeared appropriate when using a combina-
tion of EMA and MCEP data

3. Finding a better way of representing EMA information
in the model

In the first case, attempts to remove noise through filter-
ing and realigning the EMA data, among other things, did not
appear to help. In the second case, changing the way DTW
was performed and not using MLPG led to results for the tri-
als that used EMA to improve to the point where there was a
trial where adding the EMA data led to better performance than
using MCEP data alone. However, this was still not a global
positive result as there was an MCEP trial with a different num-
ber of Gaussian components that outperformed it. In the third
case, there was another positive result that came from using the
distance between the lips, and finally, the first global positive
result appeared in the case of using features derived from EMA
by projecting the coordinates onto lines fit to the data through
linear regression. In this case, the strategies of basing the DTW
only on the MCEP data and not using MLPG were also fol-
lowed.

It appears that the use of EMA data to improve voice trans-
formation is not very straightforward. One additional thing to
note is that all of the positive results occurred while transform-
ing from msak0 to fsew0. There were none in the other direc-
tion. This appears to be another case of asymmetry in voice
transformation. Asymmetric results have also been noted in
identity perception for voice transformation [14].

There are numerous areas for further investigation. Maybe
the Mel-Cepstral Distortion metric is not good enough for this
task, even though it shows some correlation to subjective listen-
ing tests. Perhaps the information necessary for voice transfor-
mation is already present in MCEPs and EMA provides noth-
ing additional. It is also possible that EMA features need to be
combined or represented in a different space before they will be
useful. Further experimentation will be necessary to tell.
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