
Open-Source Consumer-Grade Indic Text To Speech

Andrew Wilkinson1, Alok Parlikar1, Sunayana Sitaram1,
Tim White2, Alan W Black1, Suresh Bazaj2

1Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA
2Hear2Read, Indians for Collective Action, Palo Alto, CA

{aewilkin, aup, ssitaram, awb}@cs.cmu.edu; {tim, suresh}@hear2read.org

Abstract
Open-source text-to-speech (TTS) software has en-

abled the development of voices in multiple languages,
including many high-resource languages, such as English
and European languages. However, building voices for
low-resource languages is still challenging. We describe
the development of TTS systems for 12 Indian languages
using the Festvox framework, for which we developed a
common frontend for Indian languages. Voices for eight
of these 12 languages are available for use with Flite, a
lightweight, fast run-time synthesizer, and the Android
Flite app available in the Google Play store.

Recently, the baseline Punjabi TTS voice was built
end-to-end in a month by two undergraduate students
(without any prior knowledge of TTS) with help from two
of the authors of this paper. The framework can be used
to build a baseline Indic TTS voice in two weeks, once
a text corpus is selected and a suitable native speaker is
identified.
Index Terms: speech synthesis, Indian languages, low-
resource languages, open source, Android text to speech

1. Introduction
According to [1], in 2010, India had 15-22 million blind
and over 100 million visually impaired persons. An adult
goes blind every five minutes, and a child goes blind every
60 seconds. Without intervention, the number of people
with vision loss could double from 2010 levels by 2020.
Worldwide (including neighboring countries Bangladesh,
Nepal, and Pakistan), the population of visually chal-
lenged persons for whom the primary language is an In-
dian language is probably 50% higher. Intelligible and
natural-sounding TTS systems exist for many languages.
As of the submission date of this this paper, Google TTS
for Android supports 22 languages, of which only two
(Hindi and Bengali) are from the Indian subcontinent.

This work will help bridge the digital divide for visu-
ally challenged persons who have been deprived of ed-
ucation and employment opportunities due to lack of
consumer-grade TTS software for low-cost devices, such
as sub-$100 (USD) Android phones and tablets.

The system uses the Indic frontend for grapheme-to-
phoneme (g2p) conversion described in [2]. The Indic
frontend was used for g2p conversion to build TTS syn-
thesizers for various Indian languages for use with the
Flite (“Festival Lite”) Speech Synthesis engine [3]. The
Indic frontend handles many phenomena common to In-
dian languages such as schwa deletion, contextual nasal-

ization, and voicing. It also handles multi-script synthe-
sis between various Indian-language scripts and English.

1.1. Relation to Prior Work

Most prior work on Indic TTS has focused on specific lan-
guages. Furthermore, it is generally proprietary, or avail-
able for research purposes only. The Festvox/Festival
and Flite implementation described in this paper is the
most widely available open-source TTS software for In-
dian languages, with the exception of eSpeak, which uses
formant synthesis that requires significant listener train-
ing to comprehend.

Commercially available TTS software for Indian lan-
guages includes Google Android TTS for Hindi and Ben-
gali and Apple iOS TTS for Hindi, which uses Nuance
Vocalizer. Some of these commercial implementations
have used elements of the Festvox framework.

Indian-language TTS work available for research pur-
poses only includes work submitted at various Blizzard
conferences and Indic TTS Consortium projects funded
by the Technology Development for Indian Languages
(TDIL) program of the Indian government. The TDIL
consortium used the Festvox framework and the HTS-
based engine, as described at [4].

For the 2013 Blizzard challenge, a team from the In-
dian Institute of Science, Bangalore, developed a unit
selection–based TTS system for Kannada and Tamil,
which does not use Festvox or Festival [5].

We used the open-source Kannada corpus published
by IIIT Hyderabad [6] and the Marathi corpus published
by the Center for Indian Language Technology at IIT
Bombay [7].

1.2. Novel Contributions

We provide a repeatable process to generate new voices
suitable for an end user, by supporting the steps from
finding prompts, to recording, to building the voice, to
making it available and practical to use on Android.

Historically, TTS systems have been developed one
language at a time. Efforts by different institutions to
develop TTS for Indic languages in this way have been
ongoing for some years. This approach requires signif-
icant manpower and financial resources. Our approach
expands upon the Festvox framework by leveraging the
commonalities between Indian languages. Data from the
2001 census show that about 93% of the population of
India use one of the country’s top 12 languages as their
primary language. With our framework, we have built

9th ISCA Speech Synthesis Workshop • September 13 – 15, 2016 • Sunnyvale, CA, USA

205



voices for eight of these 12 languages, representing 80%
of the population; and our framework can be expanded
for use in synthesizing all the official languages of India.

Recently, the baseline Punjabi TTS voice was built
end-to-end in a month by two undergraduate students
(without any prior knowledge of TTS) with help from two
of the authors of this paper. The framework can be used
to build a baseline Indic TTS voice in two weeks, once
a text corpus is selected and a suitable native speaker
is identified. The availability of sufficient open-source
corpora in Unicode format varies significantly from lan-
guage to language. Auditioning and selecting a suitable
speaker is a function of the location and availability of a
recording studio.

Our framework does not require the creation or use of
a pronunciation lexicon for any of the Indian languages.
In English TTS, either very complicated letter-to-sound
rules are needed, or a lexicon of tens of thousands of en-
tries, or both. This is because the relationship between
English orthography and pronunciation is relatively con-
voluted. The Indian languages are simpler in this regard.
Thus, through a combination of taking advantage of com-
monalities between the scripts and encoding a manage-
able number of language-specific letter-to-sound rules, we
avoid having to spend time specifying the pronunciations
of individual words.

Most of the published work on Indic TTS has used
Festival, which is a runtime system designed to run on
Unix servers. We use Flite (described in the next sec-
tion) in a consumer-friendly app that runs on sub-$100
(USD) Android phones and tablets using less than a third
of the available processing power. This leaves sufficient
processing power and memory for other applications to
run simultaneously without loss of performance.

2. Flite Overview
Flite is a small, fast-runtime open-source TTS engine de-
veloped at Carnegie Mellon University. It is an alterna-
tive to the Festival TTS engine, for voices built using the
Festvox suite of voice building tools. Flite is part of the
suite of free speech synthesis tools which include Edin-
burgh University’s Festival Speech Synthesis System and
Carnegie Mellon University’s Festxox project, which pro-
vides tools, scripts, and documentation for building new
synthetic voices. Flite is less intensive in memory and
computation than Festival.

Flite is written in ANSI C, and is designed to
be portable to almost any platform, including low-end
smartphones, tablets, PCs, and servers which must serve
synthesis to many users.

2.1. Offset-Based Indic Frontend

The Flite Indic frontend uses an offset-based approach in-
stead of creating explicit support for each Indian script.
Chapter 12 of the Unicode specification [8] specifies
offset-based character tables for each script, with each
containing up to 128 characters. Within each script,
there is a fixed sequence of characters which makes it easy
to build general rules for phenomena common to Indian
languages such as schwa deletion, contextual nasaliza-
tion, and voicing. This makes it possible to have a single
mapping with offsets for all scripts for Indian languages.

For example, the Devanagari block begins at (hex-
adecimal) codepoint 0900, the Bengali block begins at
0980, and the Tamil block begins at 0B80. The Devana-
gari letter 〈क〉 〈k〉 occupies position 22 in the Devanagari
block, or 0915; the corresponding Bengali letter 〈ক〉 oc-
cupies position 22 in the Bengali block, or 0995; and the
corresponding Tamil letter 〈க〉 occupies position 22 in
the Tamil block, or 0B95. By identifying the range in
which each character falls, and subtracting the begin-
ning value of its block, we map corresponding characters
in different scripts to one representation, which is used
as a basis for further processing.

2.2. Android Flite port

The “Flite for Android” project is an open-source project
that provides a wrapper for the Flite engine to run in
the Android environment. It is available to build from
source, and is also available in the Google Play store as
“CMU Flite Text to Speech.”

The project integrates into Android’s TTS API so
that once the app is installed on an Android device, the
Flite engine is available as an alternative to the default
synthesizer. The project is mostly Java code that con-
tains callbacks into Flite via the Java Native Interface.
The app supports CLUSTERGEN voices as download-
able voice files, and currently supports English, Gujarati,
Hindi, Marathi, Kannada, Tamil, and Telugu. It is pos-
sible to use unit selection voices (Festival “clunit”) by
compiling the app with the appropriate voice libraries.
The app defaults to streaming synthesis under the An-
droid framework, but also supports batch synthesis.

The Indian languages that have received the most
support to date are Hindi, Tamil, and Marathi. Ongoing
efforts support periodic upgrades to all voices, which are
available for download within the app without the need
to update the app itself.

3. Building Indic Voices
CLUSTERGEN is a method for building statistical para-
metric synthesizers from databases of natural speech. Al-
though the result is not as crisp as a well-crafted unit se-
lection voice, this method makes it much easier to build
a clear synthetic voice that models the original speaker
well.

This section describes the process and tools developed
to build Indic voices using CLUSTERGEN, though many
of the steps are the same for other synthesis methods.
The steps described through subsection 3.7 are carried
out on Unix server(s) and Apache web server(s).

3.1. Open-Source Indic Corpus

We follow the techniques and requirements described in
[3] for designing a good corpus for obtaining recordings
for use in speech synthesis. The challenge is in gathering
open-source corpora that can be published for use by
others in conformance with an MIT X11–type license.
This is accomplished by using source materials:

• With expired copyright (e.g., Hindi novels by Mun-
shi Premchand).

• Released as open source (e.g., Bengali Wikipedia).

A. Wilkinson, A. Parlikar, S. Sitaram, T. White, A.W. Black, S. Bazaj

206



• With written permission from the copyright holder
(e.g., [9]).

3.2. Qualifying Voice Talent for Recording
CLUSTERGEN uses a diphone database (referred to
here as “Voice”) to synthesize speech for arbitrary text.
This database is built from speech recorded by a native
speaker, as described in [3].

The quality of recorded prompts selected from the
open-source corpus plays a critical role in the quality
of synthesized speech. All recordings must be made in
an anechoic chamber with a high-quality microphone us-
ing a pop filter and without dynamic range compression.
The speaker should be relaxed; keep a constant distance
from the microphone; and not be suffering from a cold,
a cough, or allergies, etc. These conditions are necessary
but not sufficient. The speaker should speak in a natu-
ral style; that is, they should not speak differently just
because they are reading rather than speaking extempo-
raneously.

At the same time, for reasons of consistency, the
speaker should limit prosodic variations as much as pos-
sible, and maintain a reasonably constant rate of speech.
Accomplishing this is not easy for most people, as it re-
quires them to speak differently than their normal speech
pattern and yet sound natural. Doing so, however, helps
with fundamental frequency (f0) extraction and phoneme
duration calculations.

We ask potential speakers to record 15-20 test sen-
tences selected from the list of prompts that will be
recorded later to build the Voice. These test sentences
are evaluated by researchers who have been working in
this field and can recognize prosodic variation, changes in
rate of speech, and other properties, based on their prior
experience. This step is quite subjective and is more art
than science. The test recording need not be made in a
studio, since it is not used to build a Voice.

The next step is to record the first 100-200 prompts
in a studio, as described above. These recordings are
used to build a test Voice. The purpose of building a
test voice is twofold:

• Ensure that the f0 variance is minimal.
• Ensure that the synthesized speech built using

the test voice has reasonable resemblance to the
recorded speech.

Speech generated using the test voice may not nec-
essarily be intelligible, depending on the number of
prompts recorded, the language, and the speaker. Once
again, we relied on the subjective judgment of the
researchers to decide if we should proceed with the
next step to record all the prompts needed to build a
production-quality Voice.

3.3. Building CLUSTERGEN Voices
The selected Voice talent then records as many prompts
as necessary to generate intelligible speech. We limit each
recording session to an hour. For most people, the vocal
cords are tired by the end of the hour, such that the voice
quality degrades. Most speakers are able to record about
250 sentences in an hour, with rest breaks after every
50 sentences. For an average duration of six seconds per
sentence, this results in 25 minutes of recorded speech.

Having a second native speaker listen in during the
recording session allows the speaker to receive feedback
on mispronunciations, unintended noise (such as cough-
ing, paper shuffling, or foot tapping), and intonation. It
is much easier to rerecord a sentence immediately, or to
skip it if there are spelling errors that make the word
difficult to pronounce, than to address the problem later
on.

If a listener is not available during the recording ses-
sion, then the recordings must be played back by a native
speaker later to make sure that they match the prompts
and, if necessary, either edit the text to match the record-
ing or remove the recording where editing of the prompt
is not possible.

The amount of recording needed to build good CLUS-
TERGEN Voices depends on the language, the prompt
list, and the speaker. For some languages, we have built a
good Voice with about an hour of recorded speech, while
others have required up to two hours.

We have experimented with deleting recordings with
the highest distortion as measured by the mel-cepstral
distortion (MCD) metric. In some cases it improved the
Voice quality, while in other cases it did not. We believe
it is worthwhile to try it.

3.4. A/B Listening Tests
Speech research often requires scientists to conduct
subjective listening tests to compare different methods
against each other. For example, A/B tests are used to
determine if a new synthetic voice is better than an ear-
lier voice that might have been built using a different
algorithm or dataset.

TestVox is an open-source web-based framework for
running subjective A/B listening tests. It allows one to
quickly set up listening tasks.

Typically, TestVox is configured to play 15-20 sen-
tences of approximately 5-6 seconds each. The order in
which the sentences are played, and the order in which
the synthesized speech alternatives are played, can both
be randomized.

3.5. Numbers to Text Transliteration
Indian language texts may employ the numerals native to
the script of the language, or may employ the standard
numerals common to most of the world today (known as
“Arabic” or “Indo-Arabic” numerals; we refer to them as
“English” numerals for simplicity). In modern Indian-
language texts, English numerals are more commonly
used than native numerals.

Speaking numbers in Indian languages requires use
of a pronunciation lookup table for all numbers between
zero and 100, because these numbers take idiosyncratic
forms that cannot be deterministically generated. Com-
bination rules are used to compose higher-order numbers.

Surprisingly, the complete number vocabulary in-
formation (for integers through 100, plus fractions and
higher powers of 10) is readily available only for some of
the Indian languages, such as Hindi, Marathi and Gu-
jarati (e.g., at [10]). Finding reliable information is par-
ticularly daunting in cases where many or most native
speakers have switched to writing and speaking num-
bers in English instead of the native language, such as
Tamil. It required consulting elderly speakers to find

9th ISCA Speech Synthesis Workshop • September 13 – 15, 2016 • Sunnyvale, CA, USA

207



out how numbers were spoken in Tamil at one time, and
sometimes different speakers have differing versions of
the same number.

For this reason, we synthesize numbers written with
English numerals in English, and numbers written in a
native script in the corresponding language. This reflects
a compromise between respecting the desires both of au-
thors who use English numerals and wish the text to be
accessible to a wide audience (including people who may
not have full familiarity with the native number system),
and of authors who use native numerals and wish to con-
tinue the traditions of the language. We plan to make
these representation options (English, native, or mixed
numbers) a choice in the future for the user.

Further design decisions on this subject are described
in [2].

3.6. Collecting Actionable Feedback
For each language, 10 or more volunteer native speak-
ers were recruited to provide actionable feedback on the
Voice. This is an iterative process where rules are added
or edited based on the feedback, until an acceptable qual-
ity level is reached. A web-based application was built
to collect feedback on accuracy of pronunciations in the
synthesized speech.

The web application allows the volunteers to listen
to synthesized speech for 50 representative sentences and
comment on awkward or mispronounced words, one sen-
tence at a time. The user interface allows the volunteers
to identify mispronounced words and to write a descrip-
tion of why a word is wrong. The best actionable feed-
back is when the comment identifies the incorrect sylla-
ble. Multiple comments can be entered for a sentence if
multiple syllables are mispronounced. The comments are
captured via email sent to the researcher(s) for analysis
and follow-up action. For example:

From: [Volunteer’s Name] [Volunteer’s Email]
Voice: sun400_ta.flitevox
Test sentence 13:
உ க க வ ப னணி, ம த ேபாைதய
ேவைலஇவ ைற ப ற ச ற மா?
Comments: Correction - in all these words tra sounds
like ra
Test sentence 2: இத கான வரேவ எ ப
இ த அ ேக?
Comments: Correction - Idarkana (a is missing in the
pronunciation)

The biggest challenge in this process is training the
volunteers to provide actionable feedback to the re-
searcher who may not be a linguist. Simply stating that
certain pronunciations are bad does not help. Similarly,
sending an .mp3 recording of how the volunteer speaks
the sentence is generally not very helpful.

Feedback is qualified by ensuring that multiple vol-
unteers have responded the same way with only a few (or
no) dissenters.

3.7. Exception Rules and Language-Specific Lex-
icon
After collecting feedback from testers on a voice, we use
the feedback to make corrections and improvements to

the voice. This can take several forms.
In some cases, the letter-to-sound rules for the lan-

guage need to be updated to reflect regular rules that
the language exhibits in the mapping from orthography
to pronunciation, which can be predicted by context.
Such rules are intrinsically understood by native, liter-
ate speakers, such that when they are violated by the
synthesized voice it is apparent to the speaker; but they
are not evident to a nonnative speaker.

In other cases, one or a small number of words provide
an exception to a rule, and these words can be added to
a pronunciation lexicon for the language. In still other
cases, a letter commonly maps to more than one different
phoneme in a way that is not systematically predictable
from context, so we must discover the variants and input
them into the lexicon to train the system to achieve the
correct pronunciation.

As an example of a regular rule, in Tamil, in words
written with a double 〈ற〉 〈r〉, the pronunciation is as /tr/
for those characters. E.g., 〈ம 〉 〈marrum〉 “and” is
pronounced as /matrum/.

As an example of letters representing multiple
phonemes, in Marathi, the letter 〈ज〉 can represent ei-
ther /z/ or /ʤ/, as in 〈दरवाजा〉 /dərəvaza/ “door” and 〈समाज〉
/səmaʤ/ “society.” In Hindi, ambiguity for this and other
letters is resolved with the use of the nukta diacritic, but
Marathi does not use the nukta, so we use native-speaker
feedback initially to learn which phoneme applies where,
and use that information in building a new version of the
voice.

3.8. Porting to Android After Successful QA

After testing for a version of a voice is completed and the
voice has passed quality assurance criteria, the voice is
made available for download in the Android app. No ad-
ditional processing is necessary at this stage; the same file
is used in the app as for the UNIX-based Flite platform.

3.9. Bilingual (Indic & English) TTS

We are now looking into creating versions of the Indic
voices that can speak both the primary language and
also high-quality English, for the common situation in
which English text is encountered in a primarily Indian-
language document. Currently, English synthesis is sup-
ported by our Indic voices by mapping English phonemes
to the Indian-language phonemes and synthesizing as if
the English word were a word in the Indian language.
The resulting English synthesized speech sounds heavily
accented, since using this mapping is inferior to perform-
ing a voice build using English prompts with the English
lexicon and rules.

Several of our voice talent speakers have recorded sets
of English prompts in addition to the Indian-language
prompts. We have built separate English voices us-
ing these prompts. The goal is to use both the En-
glish prompts together with the Indian-language prompts
recorded by the same speaker in a unified voice build that
will synthesize both languages well. In addition to pre-
dicting correct pronunciations for English based on rules,
this approach will improve the English quality by incor-
porating English phonemes that are not present in the
other language. At the same time, it will retain pro-

A. Wilkinson, A. Parlikar, S. Sitaram, T. White, A.W. Black, S. Bazaj

208



nunciation characteristics of Indian English, such that
when the voice switches between languages, the result
naturally reflects the comfortable code-switching exhib-
ited by many speakers and does not switch to a jarring
American accent, for example.

4. Availability
The current version of Flite has support for Indic voices
created using Festvox. Voices for Hindi, Gujarati,
Marathi, Tamil, and Telugu are available for download,
with Kannada and Bengali to come next.

The Flite TTS for Android application is also built
with support for Indian languages, and the same voices
can be downloaded in the app.

Documentation is provided in the Festvox manual for
building voices using the Indic frontend, and for adding
support for new voices. [11]

Flite binaries and voices (Indic and US English):
http://www.festvox.org/flite/packed/flite-2.0

Indic voice demos:
http://tts.speech.cs.cmu.edu:8084

Festival Indic voices:
http://www.festvox.org/cmu_indic/index.html

Festival and Festvox binaries:
http://www.festvox.org

CMU Flite TTS Android app:
https://github.com/happyalu/
Flite-TTS-Engine-for-Android/

http://play.google.com/store/apps/details?id=
edu.cmu.cs.speech.tts.flite&hl=en

TestVox:
http://bitbucket.org/happyalu/testvox/wiki/Home

Hear2Read demo:
http://www.hear2read.org/demo/app.php

5. Conclusions
We described the design and development of an open-
source TTS framework for 12 Indian languages. The
feedback on Release 1.0 of the first six languages has been
positive, though more work is needed. We have received
many requests to port the Flite engine to the Windows
operating system using the Speech API, which confirms
the technology and reinforces our mission to empower
the visually challenged to become productive members
of society.

Since starting this project, we have learned that many
users with good eyesight are also interested in using Indic
TTS. These include:

• People living in areas where the native language is
different from their own native language. This is a
very common situation in any multilingual country.
It is certainly true in India, which has 22 official
languages. People learn to understand the spoken
words after living in the area for a while. However,
they rarely learn to read it. TTS gives them the
ability to read local language content.

• People in an environment where reading on a
screen is not feasible. Examples include crowded
trains and buses, exercising in the gym or running,
sitting on a plane when other passengers want all
lights to be off, etc.

• People who want to learn a new language. This is
especially true for children of immigrants to a new
country. The United States and Canada are good
examples.

6. Acknowledgements
This research was partially supported by Hear2Read
donors and volunteers. We would like to thank all those
who helped us over the past several years with design, de-
velopment, open-source corpus collection, recording the
prompts, multiple rounds of feedback, and the website.

9th ISCA Speech Synthesis Workshop • September 13 – 15, 2016 • Sunnyvale, CA, USA

209


