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Abstract—It is a common feature of modern automated voice-

driven applications and services to record and transmit a user’s 

spoken request. At the same time, several domains and 

applications may require keeping the content of the user’s 

request confidential and at the same time preserving the 

speaker’s identity. This requires a technology that allows the 

speaker’s voice to be de-identified in the sense that the voice 

sounds natural and intelligible but does not reveal the identity of 

the speaker. In this paper we investigate different voice 

transformation strategies on a large population of speakers to 

disguise the speakers’ identities while preserving the 

intelligibility of the voices. We apply two automatic speaker 

identification approaches to verify the success of de-identification 

with voice transformation, a GMM-based and a Phonetic 

approach. The evaluation based on the automatic speaker 

identification systems verifies that the proposed voice 

transformation technique enables transmission of the content of 

the users’ spoken requests while successfully preserving their 

identities. Also, the results indicate that different speakers still 

sound distinct after the transformation. Furthermore, we carried 

out a human listening test that proved the transformed speech to 

be both intelligible and securely de-identified, as it hid the 

identity of the speakers even to listeners who knew the speakers 

very well. 

I. INTRODUCTION 

There are multiple aspects to the area of speaker 

identification.  The most common is to use automatic methods 

to identify which speaker is speaking.  But technology that 

makes it hard to identify a speaker also has its uses.  We 

envision a number of scenarios where masking a speaker’s 

voice is important.  For example, in doctor-patient interviews, 

it may be necessary to mask the patient’s voice such that the 

speech is still fully intelligible and remains natural sounding, 

but such that the listeners can no longer recognize the identity 

of the original speaker. 

In earlier work [1] we proposed using voice transformation 

techniques to de-identify speech.  In this paper we expand on 

that notion to further test our techniques on much larger 

populations of speakers. De-identification with larger groups 

of speakers could, theoretically, be easier.  As the number of 

speakers increases, the probability that a modified speaker 

will be confused with another speaker increases.  Therefore, 

we have used empirical tests to evaluate the different 

hypotheses.  More importantly we also show through human 

listening tests that the de-identification process is very 

successful, and show that even after de-identification the 

generated voices can still be distinguished between each other 

even when they may not be related back to the original 

speaker.  This property is important when conversations of 

multiple speakers are de-identified as we wish the resulting 

voices still to sound different from each other so that the 

listener is able to discriminate between the contributions of 

different speakers. 

The technology of voice de-identification nicely 

complements other privacy and security related technologies, 

such as face de-identification [2] and word choice de-

identification [3].  While our techniques perform de-

identification only based on modifications of spectral and 

prosodic features, we are aware that other aspects of the de-

identified speech, such as the speaker’s word choice, may still 

hold residual identification information.  However, we feel 

that de-identification technologies should offer choices of 

what level and aspects of de-identification should be applied. 

The paper is organized as follows. Section II describes the 

voice transformation system and the four approaches we 

explored for speaker de-identification. Section III introduces 

the two speaker identification systems used for evaluating the 

success of de-identification. In section IV, we present the de-

identification performance via voice transformation, the 

human listening test results, and distinguishability of de-

identified voices. We conclude in Section V with a summary 

of our findings and suggest several avenues for future work. 

II. VOICE TRANSFORMATION (VT) 

Voice transformation (VT) attempts to make speech spoken 

by the source speaker sound as if it were produced by the 

target speaker. It can be applied to speaker de-identification 

since one strategy for de-identifying speech from multiple 

speakers is to transform it such that it sounds like it was all 

produced by the same speaker.  In this section, we briefly 

describe the four different voice transformation approaches 

we explored for speaker de-identification. 

A. Voice Transformation based on GMM-mapping (Baseline) 

For our baseline system, we used our freely available 

GMM-mapping based VT system [4] to convert source 

speakers to a target synthetic voice called kal-diphone [5]. 

The VT system has a training phase and a testing, or 

transformation, phase. Training is based on pairs of parallel 

utterances with the same text spoken by both the source and 

target speaker.  Training collects speaker means and standard 

deviations for log F0 and computes mel-scale warped cepstral 
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coefficients (MCEPs) and their dynamic features.  The joint 

distribution of acoustic features (1
st
-24

th
 MCEPs and their 

dynamic features) from the source and target speaker is 

modelled with a GMM. During transformation, the source 

speaker’s log F0 is z-score mapped to match the target mean 

and standard deviation. Power (0
th

 MCEP) is taken from the 

source speaker. A detailed description of the training and 

transformation procedures can be found in [1]. 

B. De-Duration Voice Transformation (DurVT) 

As VT based on GMM-mapping is a frame-by-frame 

process, the baseline system produces speech that retains the 

duration characteristics of the source speakers. This might be 

a disadvantage against SID systems which could use duration 

characteristics to identify a speaker. We therefore proposed a 

strategy called DurVT. It tries to normalize transformed 

speech durations [1]. During training we linearly scale 

durations of source speakers to match target utterance 

durations. We then scale the durations of test utterances based 

on training set statistics. 

C. Double Voice Transformation (DoubleVT) 

The DoubleVT approach [1] is motivated by our 

assumption that the baseline voice transformations did not 

move far enough away from the source speakers. We therefore 

compose a double VT by applying two VTs in sequence, i.e. 

we first transform the source speaker to the target speaker 

(kal-diphone synthetic voice) via de- DurVT and second we 

transform the de-durationed transformed speech to the target 

speaker (kal-diphone synthetic voice) via baseline voice 

transformation. 

D. Transterpolated Voice Transformation (TransVT) 

The reason we proposed transterpolated voice 

transformation is that we think double transformations still did 

not move far away enough from the source speaker. As our 

baseline VT systems essentially perform linear mappings from 

the space of source speaker features to the space of the target 

speaker features, we explored an extrapolation beyond the 

target speaker.  We refer to this process of inter- or 

extrapolating between the source speaker and converted 

features as “transterpolation.” In this technique, the 

transterpolated feature x, is computed from the formula 

x=s+f*(v-s), where s is the value of the source speaker’s 

feature, v is the value of the converted feature, and f is the 

factor of inter- or extrapolation [1]. The relationship between 

the factor f and transterpolation can be described as: 

 f=0: source speaker (resynthesized) 

 0<f<1: interpolation between source and baseline VT 

 f=1: baseline VT 

 f>1: extrapolation beyond target speaker 

Large factors in transterpolation may project the 

transformation into non-speech, but values greater than 1.0 

still produce normal sounding speech. In conventional voice 

transformation the goal is to produce output as close as 

possible to the target speech, but in de-identification we do 

not require being close to the target, only far away from the 

source, so transterpolation can be justified. 

Though we typically transterpolate both fundamental 

frequencies and warped cepstra, we decided to experiment 

with transterpolating the warped cepstra only as it seemed that 

transterpolated fundamental frequencies might be more 

exploitable for identifying the source speakers. Our improved 

GMM-based SID system proved that making use of 

fundamental frequency related features improves the 

identification system performance [6]. Therefore, it suggests 

our future discretion of improving fundamental frequencies 

transformation for speaker de-identification.  Also, as we 

wanted to focus solely on the contribution of transterpolation 

to de-identification in this set of experiments, we did not 

combine it with duration modification, though that would also 

be possible. 

III. SPEAKER IDENTIFICATION (SID) 

Using VT for de-identification in automated processes is 

only as good as the ability of a VT system to deceive a 

speaker identification (SID) system. If a SID system is able to 

identify the source speaker from the transformed speech, the 

speech has not been successfully de-identified. We used two 

SID systems to evaluate the success of speaker de-

identification via voice transformation techniques, a Gaussian 

Mixture Model (GMM)-based and a Phonetic system.  The 

two systems capture speaker characteristics at different levels: 

low-level short-term spectral features by the GMM-based 

system and high-level super-segmental features beyond 

spectral representations by the Phonetic system. 

A. GMM-based SID System  

 

 

Fig. 1.  GMM-based SID System 

The GMM-based SID system used in this work is shown in 

Fig. 1. After speech detection and feature extraction on the 

input audio it operates in one of three modes: (1) universal 

background model (UBM) training; (2) speaker enrolment; 

and (3) testing. All three modes of operation rely on identical 

feature extraction, which frames the signal every 10ms into 32 

ms windows. Frames whose energy is too low to be 

considered speaker-discriminative are excluded from 

subsequent processing. From each remaining frame, the first 

20 MFCCs are computed and normalized using cepstral mean 

subtraction (CMS), yielding the final feature vector. Speaker 

enrolment is preceded by UBM parameter inference [7] via 

the expectation-maximization (EM) algorithm using a large 
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corpus of speech. The means of the enrolment speaker model 

are then adapted based on the UBM via maximum a posteriori 

(MAP) estimation [8], using only the enrolment speaker’s 

speech. Testing proceeds by applying the same feature 

processing as for model training. The observed sequence of 

feature vectors is then scored by each speaker’s model. The 

system hypothesizes the speaker whose model best accounts 

for the observed sequence, i.e. gives the highest likelihood. 

B. Phonetic SID System 

The basic idea of our Phonetic SID system is to apply a 

statistical model of a speaker’s pronunciation, which gets 

trained on phone sequences that are derived from the 

speaker’s utterances. Although the phone sequences are 

decoded by phone recognizers using acoustic features, the 

identification decision is made based solely on the phone 

sequences [9]. In our Phonetic SID system, phone sequence 

decoding is performed using Phone Recognizers that are 

available in 12 languages from GlobalPhone [10]. Phone 

recognition is performed with a Viterbi search using a fully 

connected null-grammar network of monophones, thus the 

hypothesized phone sequence relies on acoustic evidence only. 

Fig. 2.  Phonetic SID System 

A Language-dependent Speaker Phonetic Model (LSPM) is 

generated using the n-gram modeling technique with the 

CMU-Cambridge Statistical Language Modeling Toolkit 

(CMU-SLM), i.e. for each combination of speaker and phone 

recognizer a separate bi-gram phone model is trained. Fig. 2 

shows the steps of the Phonetic SID system using a single-

language phone recognizer: 

1. The phone recognizer processes the spoken test 

utterance to produce a test phone sequence.  

2. The perplexity of the resulting test phone sequence is 

computed based on all previously trained LSPMs.  

3. The system hypothesizes the speaker whose LSPM 

gives the lowest perplexity score on the phone 

sequence.  

This process can be expanded to use multiple phone 

sequences from a bank of phone recognizers trained on 

different languages. In our case, each phone stream is 

independently scored and the scores are fused together with 

equal weights to form a single decision score. As mentioned 

above, we apply a bank of 12 parallel GlobalPhone phone 

recognizers for all experiments in this paper. 

 

IV. EXPERIMENTAL RESULTS 

A. Data 

The database used for our experiments in this paper 

consists of data drawn from the LDC CSR-I (WSJ0) [11] and 

LDC CSR-II (WSJ1) [12] corpora. Speech snippets consist 

primarily of read sentences from the Wall Street Journal, but 

also include some spontaneously produced utterances. They 

were selected from files recorded with a Sennheiser HMD-414 

close-talk head-mounted microphone. For each source speaker, 

VTTrainSET, SIDTrainSET, and TESTSET contributions 

were constructed by accumulating utterances until there were 

at least 6 minutes of speech data for training VT systems 

(VTTTrainSET), 5 minutes of speech data for training SID 

systems (SIDTrainSET), and at least 3 minutes, in 3 trials of 1 

minute each, for testing (TESTSET). In total, this results in a 

set of 95 male speakers and 102 female speakers. The total 

number of test trials was 285 and 306, for male and female 

speakers, respectively. Speech from the remaining speakers 

(approximately 70 hours) was placed in the UBMSET for 

UBM training in the GMM-based SID system. 4096 Gaussian 

mixtures are used for UBM and GMM. We selected the kal-

diphone synthetic voice available in the Festival distribution 

[5] as the target speaker to construct voice transformed 

versions for each of the male and female speakers. 

The baseline performances of the GMM-based and 

Phonetic SID systems on the original natural speech are 

shown in Table I. 

TABLE I 
SPEAKER IDENTIFICATION ACCURACY ON THE ORIGINAL SPEECH WITH 

GMM-BASED AND PHONETIC SID SYSTEMS 

 GMM-based SID Phonetic SID 

Male 94% 100% 

Female 89% 96% 

 

B. De-identification Performance against SID 

In earlier work [1], we evaluated the four voice 

transformation approaches described in section II on a small 

pilot database which contains 24 male speakers. On this pilot 

database, TransVT showed the best de-identification 

performance. The de-identification performance is measured 

by de-identification rate, which is the percentage of the test 

trials that are not correctly identified by the automatic SID 

systems. Also from an earlier human listening test [1], we 

found that transterpolation with factor 1.6 achieves the best 

intelligibility.  Our first experiment in this paper is therefore 

to confirm the effectiveness of TransVT approach with factor 

1.6 on the large database described in section IV.A. As shown 

in Table II, TransVT achieved 100% and 95.8% de-

identification rates against the GMM-based and Phonetic SID 

systems respectively for the 95 male speakers. For the 102 

female speakers, TransVT achieved 97.7% and 99.0% de-

identification rates against the GMM-based and Phonetic SID 

systems respectively. We also found in our investigation that 

other choices of factors ranging from 1.2 to 2.0 did not 

improve over 1.6. Also TransVT outperformed the other three 

VT approaches described in section II for the purpose of 

speaker de-identification. Finally, the performance is 

comparable to the de-identification rates on the small data set 
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and thus indicates that the TransVT approach with factor 1.6 

successfully de-identified the source speakers’ identities 

against automatic SID systems even on a larger dataset that is 

more typical in size for automatic SID experiments 

We noticed that the de-identification performance on the 

female speakers against the GMM-based and Phonetic SID 

systems is in the reverse order compared to that on the male 

speakers. This may be due to the fact that in our experiments 

we used kal-diphone, a male voice, as the target voice. This 

may deserve more investigation. It also suggests one avenue 

for our future work which is to optimize the choice of target 

voices to improve voice transformation. 

TABLE II 

TRANSVT WITH FACTOR 1.6 DE-IDENTIFICATION RATE AGAINST TWO SID 

SYSTEMS 

 GMM-based SID Phonetic SID 

Male 100% 97.7% 

Female 95.8% 99.0% 

 

C. Human Evaluation 

De-identification as a means to securely transmit 

information without revealing the speaker’s identity is only 

useful if the content of the information is transmitted, i.e. the 

voice is still intelligible for human beings. Consequently, we 

conducted a human evaluation to investigate the intelligibility. 

As we found in [1], human listeners are able to correctly 

identify 100% of the words from the transformed speech 

produced via TransVT with a factor of 1.6. Our second human 

evaluation reported here aims to study if the identity of the 

speaker can be successfully hidden even to listeners who 

know the speaker very well. 

We created three listening tests for the purpose of 

determining whether humans could properly recognize the de-

identified speech.  The de-identified speech in these tests was 

created by TransVT speech from five different source 

speakers to a single target speaker.  The five source speakers 

were from the awb, bdl, jmk, ksp, and rms sets from the 

ARCTIC data [13]. These five ARCTIC speakers are all male 

and represent a range of English accents, including Scottish, 

Canadian, Indian, and two American varieties. In all cases the 

target speaker was the kal-diphone synthetic voice, which is a 

male American voice.  As in the other de-identification trials, 

we used TransVT with a factor of 1.6. The volunteer listeners 

in this human evaluation were picked from people who 

personally know the five source speakers. 

In the first test the listeners were asked to identify the 

speakers based on 20 samples of de-identified utterances.  For 

each utterance, the listeners were asked to select one out of the 

five speaker choices.  There were four text-disjunct de-

identified utterances for each speaker.  The utterances were 

randomly ordered based on a Fisher-Yates shuffle [14]. 

In the second test listeners were asked to determine if a pair 

of utterances was spoken by the same speaker.   Each of the 

25 utterance pairs consisted of one recording from the 

ARCTIC database and one de-identified utterance.  For each 

of the five speakers, there were five ARCTIC recordings 

paired with sample de-identified utterances from each of the 

five speakers.  Again, a Fisher-Yates shuffle was used to 

randomly order the pairs, and none of the utterances contained 

the same text. 

In the third test listeners were asked to listen to 20 sets of 

utterances, each consisting of one ARCTIC utterance and 3 

de-identified utterances. The listeners had to choose which de-

identified utterance was closest to the ARCTIC speaker.  For 

each of the five speakers, four example ARCTIC utterances 

were used.  Different de-identified utterances were used with 

each ARCTIC example, but one always matched the speaker 

of the ARCTIC utterance.  Again, a Fisher-Yates shuffle was 

used to randomly order the utterances, and none of the 

utterances contained the same text. The tests were taken by 5 

listeners, all of whom were very familiar with the original 

speakers, and the databases (in fact we included three of the 

ARCTIC speakers in the set of listeners).  For test 1, listeners 

correctly identified 26 samples out of 100; chance would be 

20%.  For test 2, 6 out 25 samples were correctly identified 

(chance would be 5).  For test 3, 36 out of 100 were correct 

where chance would be 33%. Some of the listeners admitted 

using non-speech properties to improve their scores, such as 

background silence properties and silence length. 

Given these results we are confident that the proposed 

TransVT technique successfully de-identifies speakers, even if 

they are well known to listeners. 

D. Distinguishability of De-identified Voices 

It is also important to keep the de-identified voices 

distinguishable from each other. For some applications, it is 

required to hide the original identity of the speaker in the 

speech, but at the same time, we still want to be able to 

discriminate different voices. The de-identification may 

become easier for larger speaker populations, but preserving 

the distinguishability becomes harder for larger speaker 

populations. 

To prove the distinguishability of de-identified voices, we 

ran speaker identification experiments on the de-identified 

voices. We conducted the transterpolation via TransVT with 

factor 1.6 on the original training data in SIDTrainSET (5 

minutes per speaker for training a speaker model), we then 

trained speaker models using such de-identified speech. Then 

closed-set speaker identification experiments were conducted 

on the de-identified speech using both the GMM-based and 

Phonetic SID systems. On the small pilot database, 100% and 

96% identification accuracy were achieved with the GMM-

based and Phonetic SID systems, respectively. On the large 

database, for the male speakers, 100% and 91% identification 

accuracy were achieved with the GMM-based and Phonetic 

SID systems, respectively. For the female speakers, 100% and 

96% identification accuracy were achieved with the GMM-

based and Phonetic SID systems, respectively. These results 

show that the de-identified voices are clearly distinguishable. 

Table III compares the distinguishability (measured by 

speaker identification accuracy) between the original voices 

and the de-identified voices. It is interesting to see that the de-

identified voices are easier to distinguish than the original 

speech for the GMM-based SID system. Apparently, VT 
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transforms the original speaker’s feature space such that the 

speaker classes become more separable in the transformed 

space. In contrast to the GMM-based SID system, the 

distinguishability for the Phonetic SID system remains 

unchanged for the female speakers but is significantly reduced 

for male speakers. After comparing the results, we found that 

17 out of 95 male speakers cannot be correctly identified on 

the de-identified voices. Fig. 3 compares the number of 

correctly identified test trials (3 test trials per speaker) for 

these 17 speakers based on original vs. de-identified speech.  

We can see from the figure that only one speaker out of the 17 

speakers (speaker 11 in Fig. 3) got totally confused as another 

speaker. The distinguishability drop of de-identified voices of 

male speakers for the Phonetic SID systems was caused by a 

small number of speakers. 

The observation in distinguishability change also inspires a 

new direction of our future work which is to investigate voice 

transformation approaches such as discriminative approaches 

that can make the de-identified/transformed voices more 

distinguishable. 

TABLE III 
DISTINGUISHABILITY OF THE ORIGINAL SPEECH AND DE-IDENTIFIED SPEECH 

 
GMM-based SID Phonetic SID 

Original De-identified Original De-identified 

Male 94% 100% 100% 91% 

Female 89% 100% 96% 96% 

 

 

Fig. 3: Number of correctly identified test trials on original vs. de-identified 

speech by Phonetic SID over the 17 speakers 

V. CONCLUSIONS 

In this paper we tackle the problem of how to securely 

transmit information via voice without revealing the identity 

of the speaker to unauthorized listeners. For this purpose we 

studied the potential of voice transformation for speaker de-

identification. We explored different voice transformation 

strategies including a standard GMM-mapping based voice 

transformation, de-duration voice transformation, double 

voice transformation, and transterpolated voice transformation. 

The transterpolated voice transformation with a factor of 1.6 

gave the best de-identification performance, achieving 100% 

and 95.8% de-identification rate against the GMM-based and 

Phonetic SID systems on 95 male speakers and 97.7% and 

99.0% de-identification rate against the GMM-based and 

Phonetic SID systems on 102 female speakers. Human 

evaluation reveals that factor 1.6 for transterpolation gives full 

understandability of the securely transmitted content and 

successfully de-identifies even speech from people who are 

well known to the listeners. 

In the future work, we will investigate improved voice 

transformation techniques that can successfully de-identify the 

speakers’ identities and at the same time preserve high 

understandability and naturalness of the speech content and 

high distinguishability of de-identified voices. We will also 

explore the impact of these techniques in improving speaker 

recognition system performance with respect to inherently 

hard to separate speakers in the original speaker space.  As we 

are interested in preserving the naturalness in the de-identified 

voices, we would like to also investigate the selection of a 

wide range of target transformation voices which we feel may 

make the de-identified voices easier to listen to by humans. 
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