
Flite: a small fast run-time synthesis engine

Alan W Black and Kevin A. Lenzo

Carnegie Mellon University
awb@cs.cmu.edu, lenzo@cs.cmu.edu

Abstract
Flite is a small, fast run-time synthesis library suitable for

embedded systems and servers. Flite is designed as an alter-
native run-time synthesis platform for Festival in applications
where speed and size are important. Voices built using the
FestVox process may be compiled into efficient representations
that can be linked against Flite to produce complete text-to-
speech synthesizers. The Flite library is much faster and much
smaller than the equivalent Festival system. This paper de-
scribes the motivation and the basic structure of the library, and
gives figures of its size and speed. Some intended enhance-
ments are also discussed.

1. Motivation
To some, it may seem old-fashioned to worry about size and
speed of a software application. With ever-increasing CPU
speed, and with disk sizes growing continuously, many have
forgotten what it is like to be restricted in memory and compu-
tational complexity. However, to those wishing to make speech
applications ubiquitous, it quickly becomes clear that not all
applications are deployed in resource-rich environments, with
lots of CPU cycles to burn and large amounts of memory and
storage. The ability to produce high quality synthetic speech is
quickly followed by the demand for high quality speech synthe-
sis on a range of small device, which pose interesting challenges
for modern synthesizers – especially those using concatenative
synthesis methods.

With the development of the Festival Speech Synthesis Sys-
tem [3], it has become much easier for people to develop their
own synthesis techniques. The FestVox project [1] specifi-
cally addresses the issues of building new voices, and partic-
ularly within Festival. Elsewhere, as speech technology be-
comes more mainstream, the demand for more good synthetic
speech has risen dramatically, as have the specific requirements
for these systems.

Some systems rely on large servers for rendering synthetic
speech, and render one or more ports of synthesis per ma-
chine. While such servers can be the latest large machines
with bleeding-edge bus speeds and massive amounts of mem-
ory, many applications do not fit well into that model. One may
wish to run many ports on a single machine; the deployment
may be on resource-limited handheld devices, such as portable
telephones or PDAs; and furthermore, full-bandwidth speech
input and output may be too demanding on the communication
infrastructure, given the speed of relatively ubiquitous wireless
solutions, including CDPD or GSM-based data modems.

A device that renders text locally as speech would allow
speech output to be used in more places than it currently is.
As noted in various projects at CMU and elsewhere we have
been involved with, a small footprint synthesizer for handhelds,
wearable and ultimately cellular phones would we very readily

received. But it appears that its not just the small devices that
could utilize small footprint synthesizers, large servers also are
not as large as one always needs. The ability to run many clients
on the one server would also be advantageous.

The size and computationally requirements of many of the
newer synthesis systems are much larger than their predeces-
sors; this is mostly due to the benefits of concatenative synthe-
sis, and the expansion in footprint is driven by a desire for more
naturalistic speech in applications – which require larger unit
inventories, especially if one is to avoid the introduction of the
artifacts during modification of intonation or duration.

The mounting resource requirements also result somewhat
merely because they can be met more easily; much of the syn-
thesis work done before the 90s was much smaller. Databases
of formant parameters, and rules for their implementation and
modification, are much smaller than their concatenative coun-
terparts, even with current compression and coding techniques;
even the earlier diphone synthesizers were leaner, because they
had to be.

The Festival Speech Synthesis System [3] is a fine exemplar
of a big system; it has been developed as a platform for not only
research, but as the basis for several commercial synthesis of-
ferings. While we will discuss it here, as developers with great
familiarity in both its machinery and use, part of the critique
apply to varying degree to a number of existing unit selection
synthesis systems.

Festival was designed to address three types of use. First,
for speech synthesis researchers to provide a workbench that
they could develop and test new synthesis theories within. The
second was to speech technologists who wished to use speech
synthesis as a component within their speech systems. This sec-
ond group would not modify low level aspects of the system but
would want some control over voices, lexicons etc. The third
group Festival was aimed at was the black box text-to-speech
users. End users who just want speech from text and care little
about the methods used to achieve that.

That these users are addressed by the same system is impor-
tant. Having real users use the same system as we develop in,
even with different module choices, has meant there are been a
clear focus on what real issues need to be solved, and how to
perform the process robustly. For example our work on letter to
sound rules [2] was directly a result of complaints about pronun-
ciation of unknown words. As Festival has matured, the second
group, speech technologists and integrators, have become very
important. Issues of interfaces and latency are very important to
usefulness of Festival in real dialog systems for example. Now
issues of deployment, as well as the creation of new voices, are
surfacing more.

The use of the client/server model for Festival was primar-
ily developed to make it easier to use Festival with low latency
in real time speech applications. Although has been success-
ful, it is clear that Festival is still a relatively slow, heavyweight



system for the applications that are appearing.
In a dialog system, there are many processes that must be

executed before the synthesis can even start. Speech recognition
consumes some of the cycles, and dialog management, although
it may be small per se, often depends of databases lookup which
can take a significant amount of time. Network latency and
asynchrony in such systems can also be non-trivial; by the time
the synthesizer gets to do its work, there has already been a sig-
nificant delay, and a further delay is not helpful. Furthermore,
slow response is often blamed upon the synthesis, regardless
of where the bottleneck may be, apparently because “it took so
long to speak.”

Even if Festival can produce waveforms 20 times faster
than it takes to say them, a 10 second utterance would still take
500ms to render, which at the end of a speech chain, is too long.
Much work was done in Festival to make it as efficient as possi-
ble but still keep the clear modular aspects intact. Its speed was
partly sapped by the deliberate levels of indirection introduced
in the internal structures so changing modules without affecting
others would be possible.

Festival also contains many parts which are used only by a
few users. In production use in a particular application, only a
small amount of the system is brought into action. Given this
fact, an initial investigation was done to see if a small subset
of the system could be partitioned that would provide a much
smaller and usable footprint. Although this is partly possible,
certain modules can be easily removed, and others, with a lit-
tle work, can also be ignored, the fundamental objects in these
system their related functions are still large. With version 1.4.1,
a binary object file of less than 1.5 megabytes total size can be
produced, excluding the voice and lexicon. This has been done
on a Compaq iPaq (StrongARM platform), but only by carefully
selecting modules and deleting irrelevant portions.

The large footprint of the objects in Festival, and their mem-
ber functions, is partly due to speed optimizations, in classic
space-time tradeoffs. Many of the low level access functions
are made to compile in-line so they may be fast but this has the
consequence of making the footprint larger. When large unit
selection databases of several hundreds of megabytes are used,
the size of the core Festival system is pretty much irrelevant,
but when we want to put the system on machines with less than
16M of memory and only 16M of local flash ram – such as the
iPaq – that overhead is prohibitive. On large servers, even if the
database is large, we also do not want the per-utterance run-time
synthesis RAM requirement to be as large as 10-20 megabytes,
as can be now in Festival.

Given these constraints, we decided to address the issue of
a small footprint synthesizer, not by changing Festival itself, but
by writing another system that includes re-implementations of
the core Festival design. We call this new system Flite, which
was chosen to reflect the desire for a Festival-lite system.

2. Requirements
A small, fast run-time synthesis library that can be used to de-
ploy robust, high-quality synthetic voices, including (and par-
ticulcary) concatenative voices is desirable for a lot of uses.
Also, as we are addressing some of the core issues of Festival,
we can also consider aspects that were not considered impor-
tant, or not fleshed out so fully, when Festival was first designed.

portability : as we expect Flite to run on very small proces-
sors, such as in most embedded systems, wearable com-
puters, and personal computing and communication de-

vices, it must be portable – more portable than a C++
codebase allows; thus, voices built upon Flite can be de-
ployed on more systems.

maintenance : One of the main maintenance issues for Festi-
val is the update of the code to keep it in line with the cur-
rently released versions of C++ under a myriad of twisty
little compilers, all different – a never ending task. Using
ANSI C reduces that maintenance issue.

code size : C++ is good at hiding access methods from the user
but at the cost of often generating more code than is al-
ways necessary. Moving to C would give us more control
over the size of the code generate.

data size : most of the size in a synthesis system will lie within
the data rather than the code. Festival mostly loads in
data into internal structures this requires both the space
for the disk footprint and the run-time memory copy. We
wanted to avoid the double requirement and have struc-
tures would be be used directly avoiding both the time
consuming reading and the duplicate memory. We ex-
pect much of this data will be in ROM, in some applica-
tions.

thread safety : Although Festival runs on Windows systems, it
is still UNIX-centric in its view of memory management.
The client/server framework depends of fast forking and
copy-on-write memory management for an efficient use;
this is not an efficient model under the Windows oper-
ating system, nor for smaller operating systems that can
be used in embedded systems. The most common ques-
tion about Festival from Windows develpers is whether
it is “thread safe,” that is, can multiple threads (execu-
tion paths) be run over the same instance of the code.
Because of the use of global variables at different places
in Festival, it is not thread safe, except on operating sys-
tems that implement fast forking and copy-on-write. To
make it so would take some work, but in rebuilding a
system it is something that can be addressed – as it has
been in Flite.

These requirements have consequences. Although we are
advocating ANSI C to allow more direct control of the code,
we are not advocating an abandonment of the object oriented
paradigm. We still implement objects in C with appropriate
constructors, destructors and methods, but of course without
the explicit help of the C++ compiler. Thus, with more con-
trol comes more responsibility, as the syntactic scaffolding that
C++ provides for object oriented programming is removed.

The next thing to consider was really two-fold: what do we
keep from Festival and what do we throw away. To answer this,
we need to properly define the run-time environment for Flite.
We expect Flite to be running in an constant environment where
little changes, thus giving up some of the run-time flexibility of
Festival is acceptable. Thus we decided to drop the scripting
language, Scheme, from Flite. Although many may initially
applaud that, the result is that run-time configuration of low-
level system parameters is harder, and more changes require
recompilation of the binary object code.

We also want Flite to be closely compatible with Festi-
val. Flite is not a different synthesizer as such, it a library that
provides all the routines for a alternative run-time engine, for
voices within the existing free software synthesis tool set. Thus
we need not only the library, but a clear and, if possible, auto-
matic route for converting voices and models built for Festival



to voices and models that can be linked against Flite into syn-
thesizers. Given the voice building tools distributed through the
Festvox project we know this is a viable route. Voices can be
built and debugged in Festival and, once stable, can be con-
verted to Flite-based voices.

But to be compatible and to allow existing models to sim-
ply be compiled, we do need to follow certain key architecture
choices when designing voices within Festival. The first is the
internal utterance structure. Heterogeneous Relation Graphs [7]
were designed specifically to be good for synthesis. An HRG
consists of a set of relations, each of which are an structure (e.g.
a list or tree) over some set of items. Items may appear in multi-
ple relations and may contain a set of features and values. Thus
they are both a good general structure, and they are already be-
ing being used in Festival. That structure is preserved in the
Flite library, under a completely new implementation.

Importantly, using HRGs means that feature pathnames,
which are fundamental to most of the statistical models used
in Festival, will be compatible. Feature pathnames in HRGs are
a well-defined method for referring related parts of an HRG.
Given an item we can use the pathname formalism to refer to
relative values around it. Directional control through directives
n, p, parent, daughter, etc. allow traversing the current
relation while the directive R:RELNAME allows jumping into
another relation. For example

n.R:SylStructure.parent.stress

is interpreted as moving from the current item to the next item
in the current relation, crossing into the SylStructure rela-
tion, then moving to the parent item and returning the value of
its stress feature.

Pathnames are fundamental to most of the statistical models
used in Festival. CART tree question use this mechanism in
their questions to refer to what aspect is being questioned. If
Flite is to support easy conversion of statistical models from
Festival pathname support is right thing to do.

3. Flite system
The Flite core library consists of a core architecture of funda-
mental objects. These objects often reflect the basic objects in
the Edinburgh Speech Tools. That part of the system has been
termed CST which stands for C Speech Tools.

cst val these object offer a basic object that can contains,
integers, floating-point numbers, strings, and other ob-
jects. Having a type-neutral object makes many func-
tions much easier to define. cst val’s are used to hold
values of features. cst val’s also support a cons cell
object allowing arbitrary lists of these objects. Typed
lists require multiple instance of code, while using the
cons cell model many function can operate on generic
lists. Although cst val lists code be used for trees etc,
unlike in Festival, Flite does not make such extensive use
of them but they are crucial in many places. User objects
may also be defined as cat val’s;

cst features basic lists of attribute value pairs.

cst item, cst relation, cst uttrance These
objects provide the basic HRG structure used for
representing utterances.

cst regex for regular expression support without which no
system is complete.

cst wave, cst track offers support for waveforms and
multi-channel data vectors.

cst cart, cst viterbi offering various statistical related
objects.

Higher level more specific to speech synthesis are also provided
including lexicons, phonesets, voice definitions and general sig-
nal processing routines.

4. Languages, Lexicons and Voices
Flite is the core library. For synthesis, this library require three
further three parts to make a complete synthesizer

language model : providing phoneset, tokenization rules, text
analysis, prosodic structures etc. This is not the same
as the term “Language Model” as it is often applied in
Speech Recognition, but rather as an encompassing term
for language components that may be shared by many
voices.

lexicon : a pronunciation model including a lexicon and letter
to sound rules for out of vocabulary words. The lexi-
con depends, obviously, upon the unit inventory of the
language, and possibly upon the domain.

voice : the unit inventory, speaker-specific prosody models and
the definition of the voice itself. A voice depends upon
the primitives provided by the language model.

The first two of these can be shared across voices of the same
language. Each of these subsection are compiled into separate
libraries.

Unlike Festival, voice definitions are explicitly attached to
each utterance as it is created. In Festival there is a notion of
a “current voice” accessed through a global variable, which is
not thread safe. In Flite, all top-level synthesis routines require
a voice as an argument, which is then attached as a feature to
each create utterance. A voice definition includes the definition
of how synthesis is to proceed. This is specified as a C function
which calls the necessary sub-functions of tokenization, lexical
access, prosody etc. This means voices themselves can specify
what steps are required for rendering text as speech. Although
Festival could support such a model, it does not by default.

A voice definition consist of a set of feature value pairs set-
ting voice specific aspects such as models for prosody, unit se-
lect database to use, lexicon etc. The equivalent in Festival is
not so neat (though this model was discussed as a method for
Festival at various times).

5. Building voices
As we want good compaction of data, we do want to define
what are basically compilers of lexicons, unit databases, CART
tree models etc into some efficient byte representation that can
be linked in to the Flite binary. Rather than writing code that
generates .o format binaries we have written conversion func-
tions that will generate C code that can then be compiled into
the appropriate binary representation.

In most cases this C code is only C data structures. As
most of these structures will be constant we want these to be
explicitly declared as such as that they will be read-only and
can be put in ROM. Building a new synthesizer that uses the
same basic voice definitions as an existing synthesizer requires
us to be very specific of what really is in a voice definition.

Although we intend to follow the NSW model for text nor-
malization [6], something Festival does not yet quite do, the
basic “expanders” had to be explicitly recoded (e.g. number
to word routines). This level of recoding for new languages is



probably always going to be required and will never be auto-
matically compiled from the Festival code.

Many of Festival models use simple CART trees; thus we
include a simple routine that can take a Scheme CART tree as
used by Festival and convert it to a C representation. This allows
various models to be translated into C directly. CART trees
consist of nodes, and leaves; the nodes consist of a question
containing a feature pathname, an operator, and a value, plus an
outcome-yes-node and an outcome-no-node. These can easily
be encoded in an efficient C structure which can treated as a
constant (const) object. Although you may chose between
different CART trees at run-time, they will never be modified at
run-time.

We have not yet made the conversion of a FestVox voice
fully automatic and its not clear we ever will or should. Each
voice definition in FestVox although follows a basic pattern may
be customized in very idiosyncratic ways including specific to-
kenization rules and prosody rules. However we can provide
the basic tools.

For basic diphone voices for known languages and sim-
ple generic limited domain voices built using the FestVox build
model, we believe a generic conversion process is possible and
will be provided, but there will always a fair amount of skill
involved in conversion as there is in voice building itself.

Also as we expect that building a voice for Flite is not just a
one-to-one mapping but a time when customization for size and
speed will occur, human decisions will be necessary.

6. Size and scaling
This section deals two specific interesting aspects of convert-
ing and customizing the size of a voice. By far the two largest
parts of a voice (for English) are the lexicon and related letter
to sound rule systems, and the unit database.

6.1. Lexicons and Letter-to-sound rules

For English, a lexicon is required to give pronunciations of
words, though as all lexicons will be incomplete there is also a
requirement for a mechanism for giving pronunciation of words
not found in the lexicon. For the example voices in the basic
Flite distribution, we based our lexicon on the CMUDICT 0.6
(a slightly later version than distributed with standard US En-
glish Festival voices).

After several experiments with lexical tries, and finite state
machine mechanisms to represent the entries it was found that
simple sorted lists of characters and phones were the most com-
pact form. Phones are encoded with single bytes which the let-
ters are left as simple ASCII. Because our lexicons also dis-
tinguish some homographs, there is an extra character users to
denote part of speech. Each word in the lexicon is converted to
a list of letters (plus part of speech) and held in a sorted table,
each entry has an index into a list of phones (with lexical stress
marked on vowels). We exclude entries from this list that our
letter to sound rules get perfectly correct. The full list consists
of 112,340 entries, after pruning we are left with about 50% of
these. Note CMUDICT is particular hard due partly due to it
containing many proper name. The letters and phones take up
1.559 megabytes.

Our letter-to-sound rules are built using CART techniques
as described in [2] and [5]. But in order to make a smaller rep-
resentation, we further minimize the generated CART trees as
follows: each tree is treated as a finite state transducer whose
arcs are labeled with the questions on the nodes of the CART

tree plus their answers. Thus each state in the FST has two arcs
one labelled “QUESTION Y” and the other labelled “QUES-
TION N”, where QUESTION is simply a textual representa-
tion of the question in the CART tree. The final states of the
FST output the predicted phone. We then use a standard FST
minimization algorithm to reduce the FST, thus merging much
of the later states in the tree, we call this a decision graph. For
example the basic decision tree for the letter V (in one instance)
looks like

name=v

_

n.name=v not(n.name=v)

n.name=# not(n.name=#)

F

p.p.name=t

V

not(p.p.name=t) n.name=s

V

not(n.name=s)

F

p.p.name=n

V

not(p.p.name=n)

After minimization its leaves are joined and will look like

name=v

_

n.name=v not(n.name=v)

n.name=#

not(n.name=#)

F

p.p.name=t

V

not(p.p.name=t)

not(n.name=s)

n.name=s

p.p.name=nnot(p.p.name=n)

In complex trees, whole sub-trees can be merged, not just the
leaves. In the resulting graph, the number of CART tree nodes
reduces from 24,900 to 13,126. Each state in the minimized
FST can be represented by 6 bytes making the whole LTS rule
set a little over 79 kilobytes.

The exception list is still too big for most people’s use, and
we should prune it further based on word frequency. Typically,
very common words and very rare words have non-standard
pronunciations, and we could afford to remove some of the very
rare words from this lexicon.

6.2. Unit databases

The second largest data structure in a synthesizer is the unit
database representing the speech units that are to be concate-
nated.

In Festival although a number of synthesis techniques are
supported, at present only one basic type, with a number of



options, has been ported to Flite. The residual excited pitch
synchronous LPC method [4] is used as a method for modi-
fying pitch and duration independently. LPC coefficients plus
encoded residual also has the advantage of being smaller than
the full pulse coded modulated signal (PCM).

The basic representation of the units is a short term pitch
synchronous signals consisting of a set of coefficients and possi-
ble a residual. In the the default case, these are LPC coefficients
and encoded residuals.

7. Results
A Flite-based synthesizer has been thoroughly tested, and it
runs on multiple platforms. The example voice distributed is
an 8KHz diphone voice; this is the same voice as kallpc8K as
distributed with Festival. That voice is rather old and not very
good, but we deliberated wanted to use a stable voice as our first
example so we could properly ensure the quality in Flite was the
same as it is under Festival.

The following table gives code/data size comparisons for
the 8KHz kal voice.

Flite Festival

core code 50K 2.6M
USEnglish 35K ??
lexicon 1.6M 5M
diphonedb 2.1M 2.1M

Festival doesn’t have a clear separation between its language
implementation and its core code so its difficult to give a figure
for that. However, the Festival Scheme representation of a basic
duration model alone is 35 kilobytes.

Run-time memory requirements for Flite are less than twice
the size of the largest waveform built. In its current form a
complete 16 bit waveform is built for each utterance being syn-
thesized, the complete runtime memory requirements are about
1.75 times that size. For our test set of the first two chap-
ters of “Alice’s Adventures in Wonderland,” the requirement
is less that 1 megabyte. For the same task with Festival us-
ing the equivalent 8KHz diphone voice the size is about 16-20
megabytes.

The current Flite system with an 8KHz diphone voice has a
full footprint of 5M, 4M of code and data and 1M of RAM. The
equivalent for Festival is about 30-40M.

As for speech of synthesis, our test consist of the first two
chapters of alice which renders to just under 22 minutes of
speech. On a 500MHz PIII running Linux, Flite renders this in
19.1 seconds (70.6 times faster than real time) while the equiva-
lent voice in Festival takes 97 seconds (13.4 times faster). Thus
Flite is over 5 times faster.

Another key speed test we did was to time how quickly the
system can start to speak. For a twenty word utterance, Flite
starts writing to the audio device in 45ms, for a 40 word utter-
ance it is about 75ms. The startup time before the first synthesis
function is called is about 23ms. For Festival running from the
command line the equivalent is about 4-5 seconds. When run-
ning as a server and using the client access method and thus
exclude the start up time, we still can’t make the time less that
1 second for the 20 word utterance and nearer 2 seconds for the
40 word utterance.

8. Improvements
We do not consider Flite finished. There are many more things
we wish to do to make it more useful to more people.

8.1. Fixed Point Arithmetic

As many small devices do not have floating point processors we
have also started looking at how much of the system can be done
in fixed point arithmetic. By far the most computationally in-
tensive part of the synthesis process is the reconstruction of the
signal from the LPC coefficients and residuals. We have exper-
imented with replacing that function with a fixed point equiv-
alent, and encoded the unit database accordingly (and adjusted
the residuals with respect to the error the fixed point LPC rep-
resentation introduces). The result, although different from the
floating point version is indistinguishable. Importantly however
it is much faster on processors without floating point allowing
us to run on a 486SX 33MHz machine in 1.5 times faster than
real time.

There are other aspects of the system that use floating point
and they too deserve addressing.

8.2. Streaming Synthesis

A second important aspect of synthesis is to change the basic
model of when things happen, both Flite and Festival synthesis
utterance by utterance, thus a whole structure is built for each
utterance, this takes up space and of course time. The time as-
pect is not usually a problem when multiple utterances are be-
ing generated but it is an issue in how fast the system can start
speaking, especially important when synthesis is being used in
a dialog systems.

There is the issue of how much text is required before syn-
thesis can reasonable start. Basically how much context is re-
quired to synthesis. This is an interesting question that deserves
study, though presently we have only taken an engineering view
of it.

As most of the work, and the memory requirement is in
the building of the waveform from the LPC parameters we can
make that function know where it is to send the data thus it can
use short buffers and write them directly to the audio device or
through a socket to some player elsewhere. This would reduce
memory requirement significantly as well as the make the time
to first audio be much less affected in absolute terms by the size
of the uttrances.

The next obvious improvement for streaming synthesis is
to do synthesis using prosodic phrases as chunks, not by utter-
ance (which are closer to sentences); the particular application
will make a difference here. In cases where speed and size are
paramount, utterances are usually pretty short anyway so it may
not be worth it. Longer utterances are more common in flowing
text, web pages, novels, and the like.

8.3. Much smaller synthesizers

We have already been asked to make Flite much smaller. By
moving to spike excite LPC or similarly encoding the resid-
ual into a smaller form, we can reduce the size of the diphone
database to 423 kilobytes from 2.1 megabytes. Removing cer-
tain diphones is also possible as not all diphones are distinct, e.g
a vowel going into different stops are often close enough to be
rendered with the same diphone. We can probably encode the
LPC coefficients by quantizing them and our other work is al-
ready looking at acoustic modeling to find acoustically distinct
units so that much smaller databases than a standard diphone
set will be possible. Though of course there will be the conse-
quence of degraded quality.

The lexicon is still the largest single item, but we can prune
the exception list aggressively reducing the lexicon footprint to



a few hundred kilobytes. However, this probably deserves more
study. Tailoring the lexicon to the domain the application to run
in is always a good thing to do.

With our present models and techniques we know we can
make a full synthesizer with a footprint of 512K for code and
data and use less than 512K of memory (assuming streaming
synthesis). Though there are still requests for smaller footprints
especially with respect to RAM requirements as battery power
for RAM is expensive and some embedded systems have as lit-
tle as 2K of memory, and if we wish to deliver speech synthesis
in games, toys etc. meeting such targets would be good. Al-
though we have not looked closely at this, we feel Flite is a
basis from which to approach this problem.

9. Summary
Flite is a small, fast run-time synthesis engine appropriate
for embedded systems and servers. It offers an alternative
run-time engine to Festival for delivery of voices. The sys-
tem is free software and disbributed from its home page at
http://cmuflite.org.

10. References
[1] Black, A., and Lenzo, K. Building voices in the Festival

speech synthesis system. http://festvox.org, 2000.

[2] Black, A., Lenzo, K., and Pagel, V. Issues in building
general letter to sound rules. In Proc. ESCA Workshop on
Speech Synthesis (Australia., 1998), pp. 77–80.

[3] Black, A., Taylor, P., and Caley, R.
The Festival speech synthesis system.
http://www.cstr.ed.ac.uk/projects/festival.html, 1998.

[4] Hunt, M., D., Z., and R., C. Issues in high quality LPC anal-
ysis and synthesis. In Eurospeech89 (Paris, France, 1989),
vol. 2, pp. 348–351.

[5] Pagel, V., Lenzo, K., and Black, A. Letter to sound rules
for accented lexicon compression. In ICSLP98 (Sydney,
Australia., 1998), vol. 5.

[6] Sproat, R., Black, A., Chen, S., Kumar, S., Ostendorf, M.,
and Richards, C. Normalization of non-standard words.
submitted to Computer Speech and Language, 2001.

[7] Taylor, P., Black, A., and Caley, R. Hetrogeneous relation
graphs as a mechanism for representing linguistic informa-
tion. Speech Communications 33 2001, 153–174.


