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Abstract
The world of statistical parametric speech synthesis contin-

ues to improve with recent investigations of different machine
learning techniques to better model spectrum, F0 and duration
from corpora of natural speech. Traditional techniques rely on
decision trees alone. This paper shows the advantages of mod-
eling with random forests of decision trees over single trees.
Improvements equivalent to more than doubling the data can be
achieved, offering end users significantly better synthesis from
the same data size. These techniques give proportionally more
improvements on smaller datasets, particularly with voices with
only 30 minutes of speech. These techniques have been tested
over a wide range of voices and languages of various sizes and
quality, producing significant improvements in all cases. These
techniques are documented, and robustly implemented for oth-
ers to use through the Dec 2014 release of the Festvox voice
building toolkit, thereby directly allowing these benefits to be
used in standard voices build for the Festival Speech Synthesis
System and CMU Flite.
Index Terms: random forests, acoustic modeling, statistical pa-
rameteric speech synthesis

1. Introduction
In spite of the continued improvements in data driven statisti-
cal parametric speech synthesis [1], until very recently we have
mostly been focusing on aspects of the speech parameteriza-
tion (e.g. STRAIGHT [2], MELCEP and LSP), and postfil-
tering techniques such as MLPG [3], Global Variance [4], and
Modulation Spectrum [5] rather than addressing core modeling
techniques. Both NITECH’s HTS [6], and CMU’s Clustergen
[7] rely on traditional CART trees [8] as their core model for
predicting spectral coefficients from linguistic/phonetic feature
contexts. However it is well known that such decision tree mod-
eling has the disadvantage of splitting the data with each ques-
tion. With sufficient data this may not be a problem, but as we
always have limited data in speech synthesis databases, other
modeling techniques have the potential to use the data better.

Recently there has been active work in applying DNN tech-
nology to speech synthesis acoustic modeling [9, 10], which
although certainly looks promising, is not yet giving the con-
clusive improvements found in speech recognition [11]. The
work presented here is in a similar but parallel line of inves-
tigating better machine learning techniques to the problem of
acoustic prediction from linguistic features. It has been well
documented that random forests [12] can produce better predic-
tions than a single decision tree over the same data. Although
there are a few uses of random forests in the speech synthesis
community (e.g. [13]) we believe there has not yet been work
in the direct prediction in acoustic modeling.

In a single decision tree, optimal questions are greedily
found that can best improve prediction. Typically some mea-

sure of impurity is used, such as reducing mean variance of the
examples relevant to a particular node in the tree. However in
splitting the data at each question, we introduce the problem
of reducing the number of examples too fast. For example if a
well-defined subset of the data can be identified by two ques-
tions thus (in a binary based decision tree system) we may be
able to identify that subset, but we will have created three other
subsets that may be better modeled together. Given that such
splits may happen over multiple dimensions, it is in fact likely
that even with carefully crafted features and questions about
their values we will over-split the data and not have the most
predictive models.

Random forests address this problem. Instead of a single
tree, multiple decision trees can be built over the same data, and
some combination can be used on each tree’s predictions (such
as averaging). When each tree is “good” (i.e. have good predic-
tive properties), their combination can in part address the over
splitting that will occur in the single tree case. The randomness
in the random forest arises from the fact that each individual
tree is built with a random set of predictors, predictees, or both.

There are examples of multiple models in the speech syn-
thesis community, [14] used multiple models, splitting the pre-
diction of static and delta MELCEPs, as did early versions of
Clustergen [7]. [15] builds multiple trees by separating linguis-
tic features based on context. But these were knowledge driven
descriptions of splitting the data into multiple trees. Given the
number of features used in prediction, and the number of coef-
ficients predicted it would be prohibitively expensive to search
the whole space (even if the search were directed by our knowl-
edge of possible interactions). In other fields random selection
of features has been a proven method to improve models.

2. The baseline
The work in this paper has been done with the Clustergen statis-
tical parameteric framework [7]. Although it is not as popular
as NITECH’s HTS [6] system, we are much more familiar with
it and its expected performance; hence it is easier for us to run
our experiments within that system and understand their im-
provements. Clustergen and HTS fulfill the same basic task in
statistical parametric speech synthesis, they both predict acous-
tic coefficients from linguistic/phonetic features. Both systems
are free software, and can use the Festival Speech Synthesis
System (or Flite) as their front ends. Both systems can use the
same NITECH SPTK speech parameterization and signal re-
construction techniques. One of the few substantial differences
between the two systems is that HTS predicts values per HMM
state, while Clustergen predicts values per frame.

Although this paper does all of its experiments within the
Clustergen system, the results are almost certainly likely to ap-
ply to HTS too. The HTS decision tree model uses the same
basic Festival produced features, thus we would expect similar
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gains in HTS to those presented here.
As much of our particular work in speech synthesis concen-

trates on voices (often recorded from low resource languages)
with limited amounts of data we are particularly interested
in techniques that can improve speech synthesis systems built
from a limited amount of recorded data. Thus our main exam-
ples throughout this paper will be with 30 minutes and 60 min-
utes of speech. Later we will show how the techniques apply
to a much wider range of voice databases sizes and languages.
Again for familiarity to the community, our core tests are with
the ARCTIC dataset [16] specifically the voices rms (a US En-
glish male speaker) and slt (a US English female speaker). We
will call these datasets rms a (30 minutes using the arctic a set)
and rms ab (around 60 minutes, both arctic a and arctic b).
Similarly with slt a and slt ab. As running listening tests for
all possible combinations is too costly, we will initially use Mel
Cepstral Distorion (MCD) as its proxy. MCD is a weighted Eu-
clidean distortion measure that we derive from comparing syn-
thesis of 10% held-out utterances against their original speech.
Thus smaller values are better. [17] shows that doubling the
size of a databases will typical decrease the MCD of a model
by around 0.12 and that reductions of around 0.08 are typically
perceived by human listeners as improvements.

Using our standard build process using SPTK MELCEP,
with no mixed-excitation and using MLPG with a single deci-
sion tree we have the following results:

speaker a set ab set
rms 4.878 4.754
slt 4.864 4.707

Table 1: Baseline results

Remember that the absolute values on MCD are not, in
themselves, good correlates of good sounding voices, but reduc-
tions in these numbers are good correlates of improved voices.

3. Random Forests
In order to test random forests, we first looked at the MELCEP
prediction tree, and decided to replace it with multiple “ran-
dom” trees. Our initial choice was to randomly pick features in
the tree building. We first set a 50% chance for picking each of
the 63 linguistic/phonetic features and built 20 trees with a dif-
ferent set of features in each tree. To combine the trees and form
a forest, we simply average the predicted values (both the pre-
dicted means, and their variances). The following graph shows
incrementally adding new random trees to the prediction from
1 to 20. The final number in the tree is the baseline (single tree
with all features). Note the initial few combinations of trees are
worse than the single tree as they use fewer features, but begin-
ning with the combination of 4 trees, the results are better.
The MCD improvements are 0.074 (for both rms a and slt a)
and 0.064 (for rms ab) and 0.051 (for slt ab). Thus numerical
MCD improvements are clear, but not really at the significant
level.

But there are a number of possible ways to address the “ran-
domness” in the tree builds. We can randomize the choice of
features, the choice of coefficients to predict, the choice of data
to train on, or some combination of these.

3.1. Randomizing prediction features

We also need to consider the amount of randomness in our
choices. If we consider randomly ignoring different amounts

Figure 1: Effect of adding random trees

of features in prediction we can see the results in the following
graph. We vary the forest by randomly ignoring 0% to 80% of
prediction features, and build 20 trees with the same amount of
randomly ignored features:

Figure 2: Effect of ignoring features

It appears that ignoring around 30% of features gives a better
result. Over their baselines, rms a improves by 0.096, rms ab
by 0.084, while slt a improves by 0.092 and slt ab by 0.079.
These improvements are significant by our 0.08 standard.

3.2. Randomizing predictee coefficients

We can also vary the percentage of predicted coefficients. Fol-
lowing the known work of building different models for static
and deltas [14], we chose to randomly ignore some coefficients
in the prediction. When we ignore them, those coefficients will
not take part in the impurity measure in the CART building al-
gorithm. Here we ignore 30% of the prediction features, and
vary the percentage of ignored predictee coefficients.

Figure 3: Effect of randomizing predicted coefficients

We again get an additional small gain over the baseline in Table
1; rms a improved by 0.106, slt a by 0.107 and rms ab improves
by 0.094 and slt ab by 0.087 (randomly ignoring 30% of the
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coefficients). These are all about the significance level.

3.3. Randomizing training data

Another method is to ramdomize the data that is being trained
on. Although we did experiements in this space we did not find
any obvious way to gain improvements. By using only a subset
of the data we found that our general MCD dropped and com-
binations of different subsets never produced better results than
using all the data. There were trends that might have given im-
provements when we trained on very large voices (>10 hours)
but we have not continued that direction in this presentation.

3.4. Overfitting

One of the common techniques used in multi-model systems is
to intentionally overfit each tree a little. Computing the average
of these trees compensates for the overfitting while still provid-
ing improvements. We found this to be the case when we used
separate models to predict static and delta MELCEPs. In our
system we use a STOP value to influence the size of generated
decision trees. For STOP=N there must be at least N examples
before we will consider a further split. Thus a smaller STOP
value will generated deeper trees. This serves the same purpose
as minimal description length (MDL) in HTS. We varied the
STOP size from 5 to 60 (50 is the baseline) to find the follow-
ing results (randomly ignoring 30% of prediction features and
randomly ignoring 30% for predicted coefficients):

Figure 4: Effect of overfitting individual trees

The improvements here are now very clear. rms a is 0.200, slt a
is 0.237, rms ab is 0.177, and slt ab is 0.203. These improve-
ments of our four base voices are equivalent to doubling or more
of the data.

3.5. Boosting

It is worth mentioning a further study we did at this time. Boost-
ing [18] is another structurally similar technique for improv-
ing prediction using multiple models. The general technique is
to build an initial model and predict the training set with that
model. And then identify the error factors and build a second
model to predict that error, and repeat, building more refined
models that predict the residual from the previous. A second
boosting technique is to increase the occurance of the more
badly predicted examples. We tried both boosting techniques,
and although both gave improvements none were close to the
full random forest models. We did not however try combina-
tions of these, for example building a 20 tree boosting model
with random features, then build 20 such multimodels. The
reason for this is that our ultimate goal is to produce a usable
model not just the best model, and processing 400 tree models
efficiently is hard.

4. Practical Models
On this point of producing usable models, we do care about the
ultimate size of our models. With a larger stop size and 20 trees,
our models now have some 40-60 times more parameters which
make them less practical in a real-time synthesis system. For
off-line generation of synthesis this may still be practical but
we are interested in also finding more economic use of these
new models.

We tested a greedy deselection of the least predictive trees
from the random forest (keeping the best N-1 models based on a
50 utterance subset of the training set – so as not to tune toward
the test set). The following graph shows the predictive value of
deleting the worst tree at each stage.

Figure 5: Effect of greedily choosing best subset of trees

We decided based on end voice size factors to only choose the
best 3 trees. With stop values of 15 this gives us a model of
approximately 10 times the size as the single tree model. Thus
we do lose some of our gain, but we also have more practically
sized models.

5. Checking our results
It is important to ensure that there are not external factors that
might be giving the improvements. We have varied the STOP
size of our trees and perhaps that alone is giving the improve-
ments. The following graph shows the results when varying the
stop size on a single tree.

Figure 6: Effect of varying stopsize on the baseline system

Thus although there are slight improvements in using
STOP=40 over the default (STOP=50) the best MCD (4.749) is
substantially worse than the best random forest results (4.577).

Because these models are random, a valid question is what
happens on different runs of the build process. We did our build
process 20 times for each of the four base voices, including se-
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lecting the best three trees. The tests show that the results are
fairly stable, with a small standard deviation of <0.01.

speaker a MCD a STD ab MCD ab STD
rms 4.717 0.009 4.590 0.004
slt 4.656 0.005 4.525 0.004

Table 2: The influence of randomness

6. Is it General?
Although we get clear improvements on these base voices, it is
important to find out if these improvements hold over a larger
number of voices, and voices of different quality, size etc. Thus
we applied this build scheme to 23 different voices. These vary
in language (mostly English but also Indic Languages too) size
(30 minutes to 20 hours) and quality (arctic, audio books, and
mixed speaker (wsj)).

We used the same standard build script
build cg rfs voice for all of these voices that builds
an initial single tree voice, then adds mixed-excitation [19],
move label [20], and then builds 20 random trees for spectral
prediction and selects the best 3; then builds 20 duration
prediction trees and selects the best 3 duration models.

size base rf3
Voice (mins) MCD MCD ∆MCD
ahw 30 4.795 4.566 0.228
aup 30 5.107 4.937 0.170
awb 60 4.347 4.187 0.160
bdl 60 5.290 5.054 0.236
axb 30 5.719 5.448 0.271
clb 60 4.167 4.019 0.149
cxb 1211 4.940 4.916 0.024
fem 30 5.035 4.804 0.231
gka 30 5.278 5.048 0.230
jmk 60 4.840 4.641 0.199
ksp 60 4.892 4.726 0.166
rms 60 4.754 4.587 0.167
rxr 30 4.763 4.587 0.173
slt 60 4.707 4.053 0.177
f1a 180 5.095 4.950 0.146
f3a 180 4.812 4.693 0.119
wsj 420 6.359 6.187 0.172
tats 367 5.080 4.987 0.093
emma 1000 4.982 4.940 0.043
iitmH 120 4.009 3.866 0.143
iiitT 180 4.472 4.316 0.156
axbH 135 4.989 4.829 0.160
sbH 120 5.456 5.225 0.231

Table 3: “rf3” results over 23 voices

Table 3 shows these results. ahw, aup, awb, bdl, axb, clb, fem,
gka, ksp, jmk, rms, rxr, slt are English Arctic databases [16]
with varying sizes and accents. cxb, tats and emma are audio
book databases from Blizzard. f1a and f3a are US English news
corpora [21]. wsj is a collection of different US male speakers
[22]. axbH and sbH are CMU Hindi databases, while iitmH is
Hindi [23], and iiitT is Telugu [23].

In the analysis of these results we can spot a trend in the
improvements. If we look at the delta improvement from the
base (single tree) voice to the “rf3” voice we see that in general

size ∆MCD STD
30 mins 0.218 0.039
60 mins 0.179 0.030
>120 mins 0.129 0.062

Table 4: Improvements as a factor of voice size

smaller voices get a bigger improvement. This is elaborated in
Table 4.

7. Listening Tests
MCD is not the ultimate measure, we also carried out listen-
ing tests for some of the voices. In all cases we compared our
base build (with mixed-excitation) with an rf3 build using the
versions of the voices described in Table 3 above. The listen-
ers (recruited through Amazon Turk) were asked to listen to
20 pairs of utterances. Each sample was synthesized with ei-
ther synthesizer (in random order) and listeners were asked to
choose which they prefer.

Preference num of num of
voice base none rf3 listeners pairs
rms a 30.70% 8.37% 49.30% 12 215
rms ab 24.08% 12.57% 52.88% 10 191
slt a 30.99% 14.04% 44.44% 9 171
slt ab 20.00% 17.00% 53.00% 10 200
aup 27.31% 12.78% 48.46% 13 227
bdl 29.69% 7.29% 52.08% 10 192

Table 5: Results of listening tests

Thus in all case people prefered rf3, or had no-preference
in around 70% of the samples.

8. Conclusions
This technique is now built into the standard build process in
the Festvox voice building tools release from Dec 2014. Thus
both Festival (2.4) and Flite (2.0.0) built voices benefit from
these results. We also use random forests to improve duration
modeling (though not discussed here). However we have not
yet applied this technique to F0 modeling. [24] reports positive
results on using a gradient boosting approach[25] for modeling
F0 trajectories. So applying a random forest approach is likely
to yield useful results.

Although the voice models are around 10 times larger than
the single tree versions, the run time speed is only about 1.5
times slower as tree traversal is not the most expensive part of
the total synthesis time.

Voice building times however are, of course, longer. A sin-
gle tree build of an Arctic voice (1 hour of speech) takes around
40 minutes on a 6 processor machine, while a full “rf3” build of
the same voice will take around 6 hours.

We are still concerned about the increase in the size of the
models and feel there is more to investigate here. However ini-
tial investigations using PCA to reduce the number of param-
eters, and sharing leaves of the different trees have not been
successful.

Our results strongly show that random forests for spectral
prediction can increase prediction accuracy equivalent to at least
doubling the training data (and in some cases quadrupling it).
Gains seem to be larger for smaller voices, something that we
are particularly interested in, given that we often work with
small amounts of data in less commonly processed languages.
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