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ABSTRACT
So far, most of the voice conversion training procedures are
text-dependent, i.e., they are based on parallel training utter-
ances of source and target speaker. Since several applications
(e.g. speech-to-speech translation or dubbing) require text-
independent training, over the last two years, training tech-
niques that use non-parallel data were proposed. In this pa-
per, we present a new approach that applies unit selection to
find corresponding time frames in source and target speech.
By means of a subjective experiment it is shown that this
technique achieves the same performance as the conventional
text-dependent training.

1. INTRODUCTION
Voice conversion is the adaptation of the characteristics of a
source speaker’s voice to those of a target speaker [1]. Con-
ventional voice conversion techniques are text-dependent.
I.e., they need equivalent utterances of source and target
speaker as training material which can be automatically
aligned by dynamic time warping [2]. This procedure is nec-
essary since the training algorithms require corresponding
time frames for feature extraction.
The precondition of having equivalent utterances is incon-
venient and often results in expensive manual work: New
speech material must be recorded or bilingual speakers are
required. E.g. when applying voice conversion to speech-to-
speech translation [3], we want the target voice that is synthe-
sized by a text-to-speech system to be identical to the source
speaker’s voice. Since source and target language are dif-
ferent, it is very unlikely to have parallel utterances of both
speakers. Here, the usage of text-independent training is in-
evitable.
In this paper, we review former approaches to text-indepen-
dent voice conversion emphasizing advantages and shortcom-
ings of the respective techniques, cf. Section 3. We then de-
rive the new technique based on unit selection in Section 4.
Finally, text-dependent and unit-selection based text-indepen-
dent training are compared using a subjective test in Section 5.

2. VOICE CONVERSION BASED ON LINEAR
TRANSFORMATION

The most popular voice conversion technique is the applica-
tion of a linear transformation to the spectra of pitch-synchro-
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nous speech frames [2]. The transformation parameters are
estimated using a Gaussian mixture model to describe the
characteristics of the considered speech data. In doing so, we
cannot use the full spectra of the processed time frames, as
their high dimensionality leads to parameter estimation prob-
lems. Therefore, the spectra are converted to features that are
linearly transformed and then converted back to the frequency
domain or directly to the time domain. Mostly, these spectral
features are mel frequency cepstral coefficients [2, 4] or line
spectral frequencies [5, 6]. According to the linear predictive
source-filter model [7], the features are supposed to represent
the vocal tract contribution, i.e. mainly the phonetic content of
the processed speech. In addition, the speaker-dependence of
the excitation contribution has to be taken into account. This
leads to the issue of residual prediction, for details see [8].
In order to reliably train the Gaussian mixture model param-
eters, parallel sequences of training feature vectors are re-
quired. The parallelity is necessary because otherwise there is
no guaranty that in the conversion phase the phonetic contents
remain unchanged – as a result, the speech would become
inarticulate or even unintelligible. Parallel feature vectors can
be derived from parallel utterances by applying dynamic time
warping [9].

3. TEXT-INDEPENDENT VOICE CONVERSION:
STATE-OF-THE-ART

3.1. Automatic Segmentation and Mapping of Artificial
Phonetic Classes
Now, we consider text-independent voice conversion, i.e., we
are given source and target speech based on non-parallel ut-
terances, and the goal is to find frames that phonetically cor-
respond to each other. If we had a phonetic segmentation of
the respective speech, we could take a set of frames from cor-
responding segments of source and target speech as input of
a conventional parameter training. However, we do not have
phonetically segmented speech, thus, we must find a way to
automatically produce an appropriate segmentation.
In our previous work on this basic concept [10], the k-means
algorithm was applied to length-normalized magnitude spec-
tra of pitch-synchronous speech frames resulting in a seg-
mentation into artificial phonetic classes. Figure 1 displays
the speech waveform of the word Arizona. In this example,
the clustering algorithm was to distribute the speech frames
among eight classes. It automatically assigned class 0 to si-
lence, class 1 to the phoneme /i/, class 2 to /e/, etc.
This automatic segmentation is executed for both source and
target speech resulting in K source classes andL target classes.
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Fig. 1. Automatic class segmentation of the word Arizona

As discussed above, now the objective is to find correspond-
ing, i.e. phonetically equivalent source and target classes. This
is done by comparing the centroids of the source and target
clusters, i.e. the prototype magnitude spectra of each source
and target class, respectively. For each target cluster l ∈
{1, . . . , L}, we find one corresponding source cluster:

k(l) = arg min
κ = 1,...,K

S(X̄κ − Ȳl); S(X) =
√

X ′X . (1)

As we suggested in [11], aside from a sole cluster mapping,
we must produce full parallel frame sequences to be used to
reliably train the linear transformation parameters. This is
done by shifting each target cluster in such a way that its
centroid Ȳ coincides with the corresponding source centroid
X̄ . Finally, for each shifted target cluster member Y ′ =
Y − Ȳ + X̄ , we determine the nearest member of the mapped
source class, X , in terms of the Euclidean distance. The de-
sired spectrum pairs consist of the respective unshifted target
spectra Y and the determined corresponding source spectra
X:

X = arg min
χ

S(χ − Y − X̄ + Ȳ ) .

3.2. Text-independent voice conversion using a speech
recognizer

The fully automatic segmentation and mapping does not re-
quire any phonetic knowledge about the considered languages.
This fact is advantageous on the one hand since the technique
can be applied to arbitrary languages without additional data.
On the other hand, more information about the phonetic struc-
ture of the processed speech could lead to a more reliable
mapping between source and target frames.
Consequently, Ye and Young [12] proposed to use a speaker-
independent hidden Markov model-based speech recognizer
to label each frame with a state index such that each source
or target speaker utterance is represented by a state index se-
quence. If the text of these utterances is known, this can be
done by means of forced alignment resulting in more reliable
state sequences.
In a second step, subsequences are extracted from the set of
target sequences to match the given source state index se-
quences using a simple selection algorithm. This algorithm
favors longer matching sequences to ensure a continuous spec-
tral evolution of the selected target speech frames. The latter
are derived from the state indices considering the frame–state

mapping delivered by the speech recognizer. Based on these
parallel frame sequences, the conventional linear transforma-
tion parameter training is applied.

4. TEXT-INDEPENDENT VOICE CONVERSION
BASED ON UNIT SELECTION

So far, the algorithms for parallelizing frame sequences of
source and target speech tried to

• extract the phonetic structure underlying the processed
speech,

• find a mapping between the phonetic classes of source and
target speech,

• and transform the class mapping back to a frame mapping.

All these steps may produce errors that accumulate and may
lead to a poor parameter estimation or even to a convergence
failure of the parameter estimation algorithm as reported in
[11]. Hence, it would be helpful to avoid the detour through
the class layer and, instead, find the mapping only using
frame-based features. These features could be those used
for the spectral representation of speech frames mentioned in
Section 2: mel frequency cepstral coefficients or line spectral
frequencies.
Given the source speech feature sequence xM

1
, we would sim-

ply be able to determine the best-fitting sequence of corre-
sponding target feature vectors ỹM

1
by selecting from an arbi-

trary target feature sequence yN
1

. This could be done similarly
to the class mapping in Equation 1:

ỹm = arg min
n = 1,...,N

S(xm − yn); m = 1, . . . , M .

However, as we learned in Section 3.2, in this selection one
should also take the continuity of the spectral evolution into
account.
To find the best possible compromise between minimizing the
distance of source and target features and achieving a maxi-
mal continuity, we make use of the well-studied unit selec-
tion framework widely used for concatenative speech synthe-
sis [13] and recently applied to residual prediction for text-
dependent voice conversion [14].
Generally, in the unit selection framework two cost functions
are defined. The target cost Ct(um, tm) is an estimate of
the difference between the database unit um and the target
tm which it is supposed to represent. The concatenation cost
Cc(um−1, um) is an estimate of the quality of a join between
the consecutive units um−1 and um.
In speech synthesis, the considered units are phones, sylla-
bles, or even whole phrases, whereas in the frame alignment
task, we set our base unit length to be a single speech frame,
since this allows for being independent of additional linguis-
tic information about the processed speech as for instance the
phonetic segmentation. Hence, the cost functions can be de-
fined by interpreting the feature vectors as database units, i.e.
t := x and u := y.
For determining the target vector sequence ỹM

1
best-fitting

the source sequence xM
1

, we have to minimize the sum of
the target and concatenation costs applied to an arbitrarily se-
lected sequence of vectors taken from the non-parallel target
sequence yN

1
.
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Furthermore, since all compared units are of the same struc-
ture (they are feature vectors) and dimensionality, the cost
functions may be represented by Euclidean distances, thus,
we finally have

ỹM
1

=arg min
yM

1

M∑
m=1

{∑
αS(ym−xm)+(1−α)S(ym−1−ym)

}
.

Here, the parameter α is for adjusting the tradeoff between
fitting accuracy of source and target sequence and the spectral
continuity criterion.

5. EXPERIMENTS
We already mentioned that one of the main applications of
text-independent voice conversion is the post-processing step
of a speech-to-speech translation system as for instance in
the European project TC-Star [3]. This project involves the
world’s three most spoken languages: English, Mandarin and
Spanish. In the scope of three evaluation campaigns, the sin-
gle modules’ performances are to be assessed and compared
among the numerous project partners as well as external par-
ticipants.
In the recently performed first campaign, the text-dependent
voice conversion algorithm described in Section 2 was as-
sessed with respect to voice conversion performance and
sound quality [15]. Here, two different residual prediction
techniques were compared. For the following investigations,
we decided to focus on the technique that achieved a higher
speech quality: residual transformation based on vocal tract
length normalization.

5.1. Residual Transformation Based on Vocal Tract
Length Normalization
Unlike the ideal source-filter model that assumes the voice
source to be a white noise, some investigations have shown
that producing an appropriate excitation is crucial for generat-
ing natural voice-converted speech [5, 8]. Unfortunately, it is
not enough to directly use the source speech
frame’s residual and use it as excitation of the transformed
(linear predictive) feature vector because it contains an essen-
tial amount of speaker-dependent information. Consequently,
efforts have been undertaken to predict suitable target residu-
als based on the target feature vectors.
In this work, we applied vocal tract length normalization
(VTLN) [16], a technique that is widely used for speaker nor-
malization in speech recognition. Although VTLN has al-
ready been used for voice conversion [10], the novelty of the
recent investigation was its application to the residuals instead
of to the speech frames.
The successful application of VTLN to the residuals of speech
may seem unmotivated for the following reasons:

• As the name implies, vocal tract length normalization is to
change the length, or more generally, the shape of the vocal
tract. According to the source-filter model, the vocal tract
is represented by the features rather than by the residuals.
Consequently, an application to the residuals should hardly
change the speech characteristics.

• Furthermore, according to experiences in speech recog-
nition, applying VTLN in conjunction with a linear trans-
formation in feature space should not help since the linear
transformation already compensates for the effect of speaker-
dependent vocal tract lengths and shapes [17].

Surprisingly, perceptive tests have shown that the application

of VTLN to the residuals before filtering with the vocal tract
features strongly influences the voice identity and may influ-
ence voice properties as gender or age.
Unlike the residual prediction techniques discussed in [8],
the contribution of the VTLN-based residual transformation
to the speech quality deterioration is almost negligible com-
pared to those of the linear transformation and the pitch and
time-scale modification. However, due to the small number of
parameters used for the VTLN (in general only two: warping
factor and fundamental frequency ratio, cf. [18]), for partic-
ular source / target voice combinations the residuals are not
reliably transformed.
5.2. Subjective Experiments
In this section, we want to compare text-dependent voice con-
version with the unit selection-based text-independent con-
version regarding the voice conversion performance and
speech quality.
For this purpose, we utilized the same database as used for
the aforementioned TC-Star evaluation campaign: A Spanish
speech corpus consisting of 50 phonetically balanced utter-
ances of four speakers (two male and two female). From each
of the 50 sentences, 10 sentences were randomly selected to
be used as test data; the remaining data was used for training.
For the text-dependent technique, we took exactly the same
speech samples as for the TC-Star evaluation to have a stan-
dard of comparison.
For the text-independent case, we randomly split the training
data into 20 different sentences for the source and for the tar-
get speaker, respectively, to have a real-world scenario where
the source and target texts are completely different.
From the possible twelve source / target speaker combina-
tions, we selected the same four pairs as in the TC-Star eval-
uation (each gender combination once).
To carry out the comparison, we performed a subjective test
according to [19] where 13 subjects (exclusively speech pro-
cessing specialists) participated.
The subjects were asked to rate the presented speech samples
regarding two aspects:
• For each conversion method and gender combination, the
subjects listened to speech sample pairs from the converted
and the target voice and were to rate their similarity on a five-
point scale (1 for different to 5 for identical). This single score
is referred to as dc,t. The same was done for the respective
source / target speaker pairs resulting in ds,t. According to
the TC-Star specification [19], both scores are combined to
take the similarity of the involved voices before the conver-
sion into account and obtain a better estimation of the conver-
sion’s contribution to the final voices’ similarity:

Dc,t =

⎧⎪⎪⎨
⎪⎪⎩

1.0 : dc,t < ds,t

∅ : dc,t = ds,t = 5
5 − dc,t

5 − ds,t

: otherwise

Finally, this score is averaged over all subjects resulting in the
voice conversion score (VCS) which corresponds to a normal-
ized distance or error measure (0 ≤ VCS ≤ 1).
• To assess the overall speech quality, we used the mean opin-
ion score (MOS) well-known from telecommunications [20].
For each speech sample, the subjects are asked to rate the
speech quality on a five-point scale (1 for bad, 2 for poor, 3
for fair, 4 for good, 5 for excellent). The average over all par-
ticipants is the MOS.
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VCS text-dependent text-independent TC-Star
m2m 0.51 0.24 0.53
m2f 0.67 0.60 0.85
f2m 0.73 0.81 0.88
f2f 0.85 0.84 0.91
Σ 0.69 0.62 0.79

Table 1. Results of the subjective test: voice conversion per-
formance (VCS = 0 is success, VCS = 1 is failure)

MOS text-dependent text-independent TC-Star
m2m 2.4 2.3 3.4
m2f 2.9 2.7 3.3
f2m 2.7 2.5 3.2
f2f 2.8 2.7 2.9
Σ 2.7 2.6 3.2

clean 4.7 4.6

Table 2. Results of the subjective test: overall speech quality

In Table 1 and 2, the results of the subjective tests are dis-
played for the four gender combinations and the two com-
pared techniques. As a standard of comparison, the results
of the TC-Star evaluation based on the same text-dependent
technique are shown.

5.3. Interpretation
Having a look at the voice conversion scores displayed in Ta-
ble 1, we note that the outcomes highly depend on the partic-
ular voice combination. Interestingly, the scores consistently
become worse the higher the female contribution is. This
statement agrees with former investigations [11] and encour-
ages a stronger emphasis on female voice conversion in future
investigations. Surprisingly, in this test, the text-independent
voice conversion outperforms the text-dependent conversion.
Furthermore, we note a large gap between the identical test
sets of the TC-Star evaluation and the text-dependent case.
This gap is also obvious when focusing on the overall speech
quality results shown in Table 2. In average, the TC-Star and
text-dependent scores differ by 0.5 MOS points which could
be interpreted as a considerable deterioration of the speech
quality. However, as the speech samples in both tests were
identical, the reason must be due to the evaluation framework.
The major differences between the two subjective tests are
• the subjects’ scientific background (naı̈ve subjects in the
case of TC-Star vs. speech processing experts in the other
case) and
• the fact that in the TC-Star evaluation one more technique
with considerably different characteristics was assessed. This
technique featured a better voice conversion performance but
worse speech quality. Hence, the participants tended to divide
the samples into 3 classes: bad, fair, and good speech qual-
ity, where fair was associated with the VTLN-based residual
transformation and good with the natural (clean) speech.
In contrast to the latter, in the present case, we only assessed
two kinds of speech, converted1 and natural. Now, the sub-
jects tended to divide the samples into two opposite cate-
gories: bad for converted and good for natural speech.

1According to Table 2, text-dependent and text-independent conversion
were hardly distinguishable in terms of speech quality.

6. CONCLUSION
In this paper, we presented a novel approach for text-indepen-
dent parameter training for linear transformation-based voice
conversion. This approach uses the unit selection framework
well-studied in speech synthesis. A subjective test has shown
that the novel text-independent approach achieves the same
performance as the conventional text-dependent training based
on dynamic time warping.
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“Evaluation of VTLN-Based Voice Conversion for Embedded Speech
Synthesis,” in Proc. of the Interspeech’05, Lisbon, Portugal, 2005.
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