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Abstract 

As it is impossible to have a lexicon with complete coverage, 
and a high proportion of unknown words are proper names, 
this paper addresses the issue of automatically finding 
pronunciations of unseen proper names in US English. Proper 
names, especially in the US, may come from a large range of 
ethnic backgrounds. We present a model and results showing 
that including ethnic origin of words in a statistical model can 
improve pronunciation results. 
 
We used a lexicon of 56,000 proper names from CMUDICT. 
We also gathered data (text and proper names) from 26 
languages to built statistical models that provide an estimate of 
word origin. 
 
Tests against held out data showed a 7.6% absolute 
improvement from a baseline of 54.8% when language based 
features were added to our CART-based model.  As there are 
potentially multiple correct pronunciations, we synthesized a 
random sample of names that did not match the “correct”  
answer in our test set. Human listeners showed a 17% 
preference for the model with language features compared to 
the baseline. 

1. Introduction 

Our hypothesis is that, in the same way people adapt their 
pronunciation according to where they think a proper name 
comes from, if we add that knowledge to a statistical model of 
pronunciation, we should get higher pronunciation accuracy. 
 
It is possible that, since many of the languages these names 
originate from have a more standardized pronunciation than 
English (e.g. Polish, Italian, Japanese), knowing the origin of 
an unknown word may allow more specific rules to be applied 
([1] and [3]). In some cases, we even expect our system to 
outperform native American English speakers, since the 
average American English speaker does not have much 
knowledge about languages other than English. One such case 
is Chinese names, since few native English speakers know 
how to pronounce them, but there are very concrete English 
rules for pronouncing such names. If we added this 
information to our system, it would pronounce those names in 
the Americanized, educated way, achieving higher 
pronunciation accuracy than average American speakers. 
 
What we are trying to model is the educated pronunciation of 
foreign proper names in American English, and not the 
original pronunciation of foreign words (which might be as 
puzzling to the American ear as a wrong pronunciation). For  

 
example, if we consider the proper name ‘Van Gogh’ , what we 
want our system to output is not /F AE1 N  G O K/ or /F AE1 
N  G O G/, which some people may claim is the correct way of 
pronouncing it, but rather the American pronunciation of it: /V 
AE1 N . G OW1/. 
 
As Kenneth Church points out in [2], people in the US tend to 
adopt a pseudo-foreign accent (different than both the accent 
in the original language and the American English accent), 
which people are able to recognize as the (mis)pronunciation 
of foreign names. So what we are interested in approximating 
as much as possible with our model is the educated, 
Americanized pronunciation of foreign proper names. 
 
For this reason we restricted ourselves to the set of American 
English phones as defined in CMUDICT [3], but we allowed 
more letter to phone alignments than the one used for the 
whole CMUDICT, which resulted in almost the double of 
phone combinations. 
 
In general, and as also pointed out in [1], the reason we want 
to build an automatic pronunciation-predicting model for TTS 
systems is that, even if dictionaries are the most reliable 
methods, it is not possible to guarantee that a large lexicon 
will contain all the words found in a text. Thus, a fallback 
position is required that predicts the pronunciation form the 
orthographic form. 
 
Previous experiments on large lists of words and 
pronunciations have shown that when a lexicon has more 
foreign words than another (CMUDICT vs. OALD in [1]), this 
has quite an impact on speech synthesis accuracy. Such 
experiments report a difference of 16.76% on word accuracy 
which can be attributed to proper names, since they are harder 
to predict without any higher level of information. Therefore, 
there is clearly room for improvement in this domain. 
 
One could argue that, in real text, foreign words account for a 
small percentage of all the words, and so improvement in this 
area would have no significant impact on the overall accuracy 
of the system. However, we argue that, even if the amount of 
foreign names were relatively small, getting them right would 
substantially improve perceived synthesis quality. Moreover, 
some real applications deal mostly with proper names, and 
therefore it is worthwhile exploring this hypothesis (e.g. 
directory assistance, customer records, appointments etc.). 
 
For practical purposes, we consider the knowledge of where a 
proper name comes from to be equivalent to what language it 
belongs, not in the sense of strict etymologic origin but rather 



in the sense of a proper name commonly used in a particular 
language. We know this not to be true, and determining “what 
language a proper name belongs to”  has many more intricacies 
than it might be apparent. Jewish names are a good example of 
this, since they are common in many countries and therefore 
many languages. Likewise, Michael is a common proper name 
in at least English, German and French. For this reason, we 
implemented a language identifier that, given a word, it will 
give us the probability of that word belonging to all the 
languages we have letter language models (LLM) for, rather 
than just giving the maximum a posteriori (MAP) solution. 
 

2. Previous related work  

Black et al. [1] used the LTS rules technique on four lexicons, 
the Oxford Advanced Learners Dictionary of Contemporary 
English (OALD) (British English), CMUDICT version 0.4 
(US English), BRULEX (French), and the German Celex 
Lexicon (DE-CELEX). Chotimongkol and Black [4] tried a 
variation of the same model with augmentation for solving 
letter to phone alignment problems in Thai (see table 1 for 
results). 
 
The work that most closely relates the one presented here is 
Tomokiyo’s unpublished project report ([5]). Tomokiyo tried 
using C4.5 and Maximum Entropy approach on the 
CMUDICT and OALD, which got lower results than the 
CART tree technique used in [1] and in this paper. After an 
error analysis, Tomokiyo observes that the existence of foreign 
words is a major cause of errors, and so he proceeds to focus 
only on the foreign word problem. He tried two different ways 
of adding ethnic origin or language class information: a 
character-based n-gram model plus k-means clustering, and 
adding n-letter suffixes as additional features for the ME 
model. 
 
For C4.5 and unpruned trees, the letter accuracy went up 0.1% 
with the clustering approach and 0.3% by adding suffixes as 
additional features, whereas for the ME model, adding 3-letter 
suffixes improved letter accuracy in 1.4% (up to 89.9%). 
 
Even if he did not get encouraging results, his work is most 
valuable for our research since he used the same data, and he 
explored the same problem using other techniques, obtaining 
results that are directly comparable to ours. 
 

3. Baseline CART 

 
For our proper name baseline, we used a list of proper names 
that came from Bell Labs’  directory listings (from at least 20 
years ago), which is supposed to contain the 50K most 
frequent surnames and 6k names in the US, and their 
pronunciation as it appears in the CMUDICT with stress 
(version 0.4). 
 
We held out every tenth word in the 56,000 name list for 
testing and used the remaining 90% as training data. 
 
Based on the techniques described in [6], we used decision 
trees to predict phones based on letters and their context. In 

English, letters map to epsilon, a phone or occasionally two 
phones. The following three mappings illustrate this: 
  
 (a) Monongahela  m ah n oa1 ng g ah hh ey1 l ax 
 (b) Pittsburgh    p ih1 t ε s b ε er g ε 

(c) exchange ih k-s ch ε ey1 n jh ε 
 
where (a) has the same number of letters as phonemes, (b) has 
several letters map to epsilon ε (i.e. not pronounced), and (c) 
has the letter ‘x’  realized by two phones /k-s/. Stress is marked 
by adding a 1 after the stressed syllable. 
 
First, we added additional multi-phones that appeared aligned 
to each letter and were not in the set of alignments allowed. In 
this case, instead of the 45-50 US phones, we ended up with 
101 phone combinations. Most of the extra phones were vowel 
variations, and some were adding a vowel between two 
consonants. For example, for the letter ‘e’ , the standard set of 
phones would be: /ih ih1 iy iy1 er er1 ax ah1 eh eh1 ey ey1 uw 
uw1 ay ay1 ow ow1 y-uw y-uw1 oy oy1 aa aa1/, but for this 
particular data, we also added /ax ey-ih ao ae/, since they 
appeared as the pronunciation of ‘e’  in some of the foreign 
names (e.g. erle -> ao r ax l); and for the letter ‘ c’ , the 
standard set of phones would be: /k ch s sh t-s, and the ones 
we needed to add for this domain were /s-iy k-ax g/ (e.g. 
cdebaca -> s-iy d ih b aa k ax, and csaszar -> k ax s aa sh er). 
 
Before training the decision trees, we aligned each letter to its 
corresponding zero or more phones. We found all possible 
alignments given the set of allowable letter/phone group 
mappings and calculated the likelihood of each. Then, we used 
that information to score all possible alignments and select the 
most likely as the actual alignment.  
 
Then, from these alignments, the CART technique was used to 
train a decision tree for each letter. Up to three letters 
preceding and following the considered letter are used as the 
context for predicting phones.  
 
As expected, the results for the CART trained on proper 
names (PN-base) are 3.72% lower than the ones for the whole 
CMUDICT, since it is harder to automatically find LTS rules 
for proper names than it is for other words: 

Table 1: Previous results plus baseline for proper names 

Lexicons Letters Words 
OALD 95.80% 74.56% 

CMUDICT  91.99% 57.80% 
BRULEX 99.00% 93.03% 

DECELEX 98.79% 89.38% 
Thai  95.60% 68.76%. 

PN-base 89.02% 54.08% 
 
In this context, letter accuracy is defined as the number of 
letters that are correctly converted to epsilon, a phone, or 
multi-phone. Word accuracy is defined as the number of 
words where all phones (once re-split) match exactly all the 
phones in the entry of the test data, i.e. a held out part of the 
CMU dictionary of pronunciation.  
 



This method of calculating the error takes into account epsilon 
alignments, so even if the generated string is correct, if the 
epsilon is aligned differently than in the test data entry, an 
error is counted, and the same is true for stress. For example, 
if we are taking stress into account and the system outputs the 
correct pronunciation but does not get the stress right, it will 
be counted as an error. In the worse case, it can happen that 
the system outputs the correct pronunciation, but since it is 
incorrectly encoded in the CMUDICT, it is counted as an 
error. 
 
There is always some variability in the way different 
transcribers transcribe different words, and one mapping is not 
necessarily more correct than another. This is particularly true 
for foreign words, which have been transcribed by different 
transcribers, or may have common segments pronounced 
differently for historical or regional reasons. Such 
inconsistencies place an upper bound on the amount of 
improvement possible using the CMUDICT.  
 
In spite of the noise, we assume the data is basically correct 
and that our statistical training methods will generate 
pronunciations that are at least reasonable approximations 
given the data. This assumption is supported by the results 
given below, where we show that even when the pronunciation 
predicted is wrong compared to held out data, it may still be 
acceptable to a human listener.  
 

4. Letter to Language Models and Language 
Identifier 

4.1. Data Collection 

We tried to hand label 10% of the training set (516 names) to 
have a better idea what the language distribution we needed to 
cover with the language models was, but we found that we 
could only tag 43% of that data confidently1. The distribution 
for that part of the data was the following2:  
 

German (96), English (73), Italian (43), French (40), 
Polish (23),  Swedish (13), Scottish (12), Spanish 
(10), Hebrew (7), Dutch (6), Catalan (6), Danish (5), 
Japanese (5), Irish (5), Russian (5), Chinese (2) and 
Portuguese (2) 

 
We then proceeded to collect data for these languages (except 
for Irish and Scottish) plus a few more to build the letter to 
language models to build a language identifier and add the 
relevant features to the CART. 
 
The data we eventually used for the LLMs was 18 corpora 
from the European Corpus Initiative Multilingual Corpus I 

                                                           
1 The data is ascii only, and all the accent marks and special 
characters (which are excellent clues for language identification) had 
been removed. Other reasons hand labeling was hard was that many of 
the names belong to many different languages, and that nobody had 
heard of many of the names in the list. 

 
2 Because of the way we hand labeled the data, it might have resulted 
into slightly boosting the languages we are more familiar with and the 
languages for which we had native speakers to look at the list first.  

(after converting all special characters to their ascii 
equivalent):  
 

English, French, German, Spanish, Croatian, Czech, 
Danish, Dutch, Estonian, Hebrew, Italian, 
Malaysian, Norwegian, Portuguese, Serbian, 
Slovenian, Swedish and Turkish.  
 

with sizes ranging from 255 thousand to 11 million words, and 
8 proper names corpora we built by crawling the web 
automatically, using the Corpusbuilder [7], as well as 
manually:  
 

Catalan, Chinese, Japanese, Korean, Polish, Thai, 
Tamil and other Indian languages (except for Tamil) 

 
with sizes ranging 500 to 6198 names. 
 

4.2. LLMs and Language Identifier 

Our Language Identifier is a variation of the algorithm 
presented in [8] that only uses trigrams, since this was shown 
to be effective for a similar classifying task in [9].  
 
Every language LLM consists of a table of all the possible 
trigrams and their relative frequencies estimated from the 
corpus for that language (sliding trigrams) and taking into 
consideration wether it occurs at the beginning or at the end of 
the word. We used Laplace smoothing, which only made a 
significant difference for the proper name corpora, since there 
is not enough data to reliably estimate all the trigrams for 
those languages. 
 
The language identifier applies a LLM on the fly for the input 
word (or document) and, for every trigram in the input, it 
calculates the probability of it belonging to all the languages 
by multiplying them by the relative frequencies for those 
trigrams in each one of the languages (LLMs). 
 
Rather than using this language identification in a direct way 
by building trees explicitly for each language, which due to 
sparseness of data would not be ideal, we use the results from 
the language identification process as features within the 
CART build process, thus allowing those features to affect the 
tree building only when their information is relevant. 
 
Given a name, the language identifier gives us the 
probabilities of that word belonging to all 26 languages. To 
build the CART we decided to only add the following features 
to each name: 1st-language, higher-probability, 2nd-language, 
2nd-higher-probability and the difference between the two 
higher probabilities. An example of input to the CART is: 
 
      ( zysk ( (best-lang slovenian.train) (higher-prob 0.18471)  

(2nd-best-lang czech.train) (2nd-higher-prob 0.18428) 
(prob-difference 0.00043) )   ) 
 

5. Results 

We built the CART (PN-lang) using 5 as stop value, which 
had been proven optimal for the CMUDICT in previous 
experiments [1]. However, since the parameter space was 



richer (the tree had more features to split itself into), we 
suspected there was a data fragmentation problem, and there 
wasn’ t actually enough data on the leaves to have reliable 
estimates, so we also built CARTs using a stop value of 8. The 
word accuracy for all the CARTs were the following:  

Table 2: Proper name experiments results 

Lexicons Letters Words 
PN-base-5 89.02% 54.08% 
PN-lang-5 91.23% 61.72% 
PN-base-8 90.29% 52.88% 
PN-lang-8 90.63% 59.77% 

 
Which represents a 7.64% increment in word accuracy over 
the proper name baseline. Note that both PN-lang-5 and PN-
lan-8 have higher word accuracy than the model trained on the 
whole CMUDICT (see table1).  
 

6. User studies 

From the names that both PN-base-8 and PN-lang-8 got 
“wrong” (did not exactly match the CMUDICT pronunciation 
in the test set), we selected the ones for which the two models 
assigned a different pronunciation. From those, we picked 20 
names at random and synthesized them to run perceived 
accuracy user studies. 
 
In the user studies, we asked users to score the two different 
pronunciations for each one of the 20 names from 1 (very 
inaccurate – not understandable) to 5 (very accurate – good 
approximation of educated American English pronunciation 
for that name). Overall, the perceived accuracy of the 
probability model was 17% higher (PN-lang-8: 46%, PN-
base-8: 29%, no preference: 25%).  
 
These results are based on 23 native American English 
speakers with a high level education (from undergraduates to 
professors), 15 of which had some knowledge of languages 
other than English, and all of which had been exposed to 
synthesized speech before. 
 
The results for non-native speakers also showed the same 
increase in perceived accuracy for the model that incorporates 
language probability information. 
 

7. Conclusions 

Language probability information definitely improves 
pronunciation accuracy of proper names. However, there are 
still many experiments that need to be done to find out what is 
the upper bound in accuracy when following this approach.  
 
Ideally, we should have trained our LLMs on just names, 
instead of text corpora, since that is the distribution of our 
training data. However, some experiments where we had LLM 
trained on both text and just proper names for German, French 
and Spanish have shown that the probability of the two LLM 
were very close, and it never happened that the LLM trained 
on text performed worse than the LLM trained on proper 
names.                     

 
Another experiment we need to try is adding prior 
probabilities. For each language, we would have a prior 
probability that would tell us how likely it is to find a name in 
that language, independently of the name. If our model were 
trained from newswires data instead of a name directory, it 
would be relatively easy to determine such priors. For 
example, if we had “Yesterday in Barcelona, the mayor Joan 
Clos inaugurated the Forum of Cultures…” , then our prior 
P(Catalan) would go up to 0.8 say, and P(Spanish) would go 
up to 0.15, whereas the prior probabilities for all other 
languages would be very close to 0. 
 
With our training data, however, it is very hard to determine 
such priors if we do not know exactly from which distribution 
the names come from. If we had all the names for CMU 
students, faculty and staff, say, then we could look up the 
country of origin statistics and set our priors accordingly. 
 
Human language identification in isolation (without having 
any contextual information nor a prior) is very hard. Humans 
can confidently tag less than 50%. Therefore, a system that 
mimics human behavior when pronouncing a foreign proper 
name but that uses an automatic language identifier is almost 
certainly going to perform better, and it will surely be more 
consistent.  
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