
Knowledge of Language Origin Improves Pronunciation
Accuracy of Proper Names

Ariadna Font Llitjos and Alan W Black

Language Technologies Institute
Carnegie Mellon University
{aria,awb}@cs.cmu.edu

Abstract

As it is impossible to have a lexicon with complete coverage,
and a high proportion of unknown words are proper names,
this paper addresses the issue of automatically finding
pronunciations of unseen proper names in US English. Proper
names, especially in the US, may come from a large range of
ethnic backgrounds. We present a model and results showing
that including ethnic origin of words in a statistical model can
improve pronunciation results.

We used a lexicon of 56,000 proper names from CMUDICT.
We also gathered data (text and proper names) from 26
languages to built statistical models that provide an estimate of
word origin.

Tests against held out data showed a 7.6% absolute
improvement from a baseline of 54.8% when language based
features were added to our CART-based model. As there are
potentially multiple correct pronunciations, we synthesized a
random sample of names that did not match the “correct”
answer in our test set. Human listeners showed a 17%
preference for the model with language features compared to
the baseline.

1. Introduction

Our hypothesis is that, in the same way people adapt their
pronunciation according to where they think a proper name
comes from, if we add that knowledge to a statistical model of
pronunciation, we should get higher pronunciation accuracy.

It is possible that, since many of the languages these names
originate from have a more standardized pronunciation than
English (e.g. Polish, Italian, Japanese), knowing the origin of
an unknown word may allow more specific rules to be applied
([1] and [3]). In some cases, we even expect our system to
outperform native American English speakers, since the
average American English speaker does not have much
knowledge about languages other than English. One such case
is Chinese names, since few native English speakers know
how to pronounce them, but there are very concrete English
rules for pronouncing such names. If we added this
information to our system, it would pronounce those names in
the Americanized, educated way, achieving higher
pronunciation accuracy than average American speakers.

What we are trying to model is the educated pronunciation of
foreign proper names in American English, and not the
original pronunciation of foreign words (which might be as
puzzling to the American ear as a wrong pronunciation). For

example, if we consider the proper name ‘Van Gogh’ , what we
want our system to output is not /F AE1 N G O K/ or /F AE1
N G O G/, which some people may claim is the correct way of
pronouncing it, but rather the American pronunciation of it: /V
AE1 N . G OW1/.

As Kenneth Church points out in [2], people in the US tend to
adopt a pseudo-foreign accent (different than both the accent
in the original language and the American English accent),
which people are able to recognize as the (mis)pronunciation
of foreign names. So what we are interested in approximating
as much as possible with our model is the educated,
Americanized pronunciation of foreign proper names.

For this reason we restricted ourselves to the set of American
English phones as defined in CMUDICT [3], but we allowed
more letter to phone alignments than the one used for the
whole CMUDICT, which resulted in almost the double of
phone combinations.

In general, and as also pointed out in [1], the reason we want
to build an automatic pronunciation-predicting model for TTS
systems is that, even if dictionaries are the most reliable
methods, it is not possible to guarantee that a large lexicon
will contain all the words found in a text. Thus, a fallback
position is required that predicts the pronunciation form the
orthographic form.

Previous experiments on large lists of words and
pronunciations have shown that when a lexicon has more
foreign words than another (CMUDICT vs. OALD in [1]), this
has quite an impact on speech synthesis accuracy. Such
experiments report a difference of 16.76% on word accuracy
which can be attributed to proper names, since they are harder
to predict without any higher level of information. Therefore,
there is clearly room for improvement in this domain.

One could argue that, in real text, foreign words account for a
small percentage of all the words, and so improvement in this
area would have no significant impact on the overall accuracy
of the system. However, we argue that, even if the amount of
foreign names were relatively small, getting them right would
substantially improve perceived synthesis quality. Moreover,
some real applications deal mostly with proper names, and
therefore it is worthwhile exploring this hypothesis (e.g.
directory assistance, customer records, appointments etc.).

For practical purposes, we consider the knowledge of where a
proper name comes from to be equivalent to what language it
belongs, not in the sense of strict etymologic origin but rather

in the sense of a proper name commonly used in a particular
language. We know this not to be true, and determining “what
language a proper name belongs to” has many more intricacies
than it might be apparent. Jewish names are a good example of
this, since they are common in many countries and therefore
many languages. Likewise, Michael is a common proper name
in at least English, German and French. For this reason, we
implemented a language identifier that, given a word, it will
give us the probability of that word belonging to all the
languages we have letter language models (LLM) for, rather
than just giving the maximum a posteriori (MAP) solution.

2. Previous related work

Black et al. [1] used the LTS rules technique on four lexicons,
the Oxford Advanced Learners Dictionary of Contemporary
English (OALD) (British English), CMUDICT version 0.4
(US English), BRULEX (French), and the German Celex
Lexicon (DE-CELEX). Chotimongkol and Black [4] tried a
variation of the same model with augmentation for solving
letter to phone alignment problems in Thai (see table 1 for
results).

The work that most closely relates the one presented here is
Tomokiyo’s unpublished project report ([5]). Tomokiyo tried
using C4.5 and Maximum Entropy approach on the
CMUDICT and OALD, which got lower results than the
CART tree technique used in [1] and in this paper. After an
error analysis, Tomokiyo observes that the existence of foreign
words is a major cause of errors, and so he proceeds to focus
only on the foreign word problem. He tried two different ways
of adding ethnic origin or language class information: a
character-based n-gram model plus k-means clustering, and
adding n-letter suffixes as additional features for the ME
model.

For C4.5 and unpruned trees, the letter accuracy went up 0.1%
with the clustering approach and 0.3% by adding suffixes as
additional features, whereas for the ME model, adding 3-letter
suffixes improved letter accuracy in 1.4% (up to 89.9%).

Even if he did not get encouraging results, his work is most
valuable for our research since he used the same data, and he
explored the same problem using other techniques, obtaining
results that are directly comparable to ours.

3. Baseline CART

For our proper name baseline, we used a list of proper names
that came from Bell Labs’ directory listings (from at least 20
years ago), which is supposed to contain the 50K most
frequent surnames and 6k names in the US, and their
pronunciation as it appears in the CMUDICT with stress
(version 0.4).

We held out every tenth word in the 56,000 name list for
testing and used the remaining 90% as training data.

Based on the techniques described in [6], we used decision
trees to predict phones based on letters and their context. In

English, letters map to epsilon, a phone or occasionally two
phones. The following three mappings illustrate this:

 (a) Monongahela m ah n oa1 ng g ah hh ey1 l ax
 (b) Pittsburgh p ih1 t ε s b ε er g ε

(c) exchange ih k-s ch ε ey1 n jh ε

where (a) has the same number of letters as phonemes, (b) has
several letters map to epsilon ε (i.e. not pronounced), and (c)
has the letter ‘x’ realized by two phones /k-s/. Stress is marked
by adding a 1 after the stressed syllable.

First, we added additional multi-phones that appeared aligned
to each letter and were not in the set of alignments allowed. In
this case, instead of the 45-50 US phones, we ended up with
101 phone combinations. Most of the extra phones were vowel
variations, and some were adding a vowel between two
consonants. For example, for the letter ‘e’ , the standard set of
phones would be: /ih ih1 iy iy1 er er1 ax ah1 eh eh1 ey ey1 uw
uw1 ay ay1 ow ow1 y-uw y-uw1 oy oy1 aa aa1/, but for this
particular data, we also added /ax ey-ih ao ae/, since they
appeared as the pronunciation of ‘e’ in some of the foreign
names (e.g. erle -> ao r ax l); and for the letter ‘ c’ , the
standard set of phones would be: /k ch s sh t-s, and the ones
we needed to add for this domain were /s-iy k-ax g/ (e.g.
cdebaca -> s-iy d ih b aa k ax, and csaszar -> k ax s aa sh er).

Before training the decision trees, we aligned each letter to its
corresponding zero or more phones. We found all possible
alignments given the set of allowable letter/phone group
mappings and calculated the likelihood of each. Then, we used
that information to score all possible alignments and select the
most likely as the actual alignment.

Then, from these alignments, the CART technique was used to
train a decision tree for each letter. Up to three letters
preceding and following the considered letter are used as the
context for predicting phones.

As expected, the results for the CART trained on proper
names (PN-base) are 3.72% lower than the ones for the whole
CMUDICT, since it is harder to automatically find LTS rules
for proper names than it is for other words:

Table 1: Previous results plus baseline for proper names

Lexicons Letters Words
OALD 95.80% 74.56%

CMUDICT 91.99% 57.80%
BRULEX 99.00% 93.03%

DECELEX 98.79% 89.38%
Thai 95.60% 68.76%.

PN-base 89.02% 54.08%

In this context, letter accuracy is defined as the number of
letters that are correctly converted to epsilon, a phone, or
multi-phone. Word accuracy is defined as the number of
words where all phones (once re-split) match exactly all the
phones in the entry of the test data, i.e. a held out part of the
CMU dictionary of pronunciation.

This method of calculating the error takes into account epsilon
alignments, so even if the generated string is correct, if the
epsilon is aligned differently than in the test data entry, an
error is counted, and the same is true for stress. For example,
if we are taking stress into account and the system outputs the
correct pronunciation but does not get the stress right, it will
be counted as an error. In the worse case, it can happen that
the system outputs the correct pronunciation, but since it is
incorrectly encoded in the CMUDICT, it is counted as an
error.

There is always some variability in the way different
transcribers transcribe different words, and one mapping is not
necessarily more correct than another. This is particularly true
for foreign words, which have been transcribed by different
transcribers, or may have common segments pronounced
differently for historical or regional reasons. Such
inconsistencies place an upper bound on the amount of
improvement possible using the CMUDICT.

In spite of the noise, we assume the data is basically correct
and that our statistical training methods will generate
pronunciations that are at least reasonable approximations
given the data. This assumption is supported by the results
given below, where we show that even when the pronunciation
predicted is wrong compared to held out data, it may still be
acceptable to a human listener.

4. Letter to Language Models and Language
Identifier

4.1. Data Collection

We tried to hand label 10% of the training set (516 names) to
have a better idea what the language distribution we needed to
cover with the language models was, but we found that we
could only tag 43% of that data confidently1. The distribution
for that part of the data was the following2:

German (96), English (73), Italian (43), French (40),
Polish (23), Swedish (13), Scottish (12), Spanish
(10), Hebrew (7), Dutch (6), Catalan (6), Danish (5),
Japanese (5), Irish (5), Russian (5), Chinese (2) and
Portuguese (2)

We then proceeded to collect data for these languages (except
for Irish and Scottish) plus a few more to build the letter to
language models to build a language identifier and add the
relevant features to the CART.

The data we eventually used for the LLMs was 18 corpora
from the European Corpus Initiative Multilingual Corpus I

1 The data is ascii only, and all the accent marks and special
characters (which are excellent clues for language identification) had
been removed. Other reasons hand labeling was hard was that many of
the names belong to many different languages, and that nobody had
heard of many of the names in the list.

2 Because of the way we hand labeled the data, it might have resulted
into slightly boosting the languages we are more familiar with and the
languages for which we had native speakers to look at the list first.

(after converting all special characters to their ascii
equivalent):

English, French, German, Spanish, Croatian, Czech,
Danish, Dutch, Estonian, Hebrew, Italian,
Malaysian, Norwegian, Portuguese, Serbian,
Slovenian, Swedish and Turkish.

with sizes ranging from 255 thousand to 11 million words, and
8 proper names corpora we built by crawling the web
automatically, using the Corpusbuilder [7], as well as
manually:

Catalan, Chinese, Japanese, Korean, Polish, Thai,
Tamil and other Indian languages (except for Tamil)

with sizes ranging 500 to 6198 names.

4.2. LLMs and Language Identifier

Our Language Identifier is a variation of the algorithm
presented in [8] that only uses trigrams, since this was shown
to be effective for a similar classifying task in [9].

Every language LLM consists of a table of all the possible
trigrams and their relative frequencies estimated from the
corpus for that language (sliding trigrams) and taking into
consideration wether it occurs at the beginning or at the end of
the word. We used Laplace smoothing, which only made a
significant difference for the proper name corpora, since there
is not enough data to reliably estimate all the trigrams for
those languages.

The language identifier applies a LLM on the fly for the input
word (or document) and, for every trigram in the input, it
calculates the probability of it belonging to all the languages
by multiplying them by the relative frequencies for those
trigrams in each one of the languages (LLMs).

Rather than using this language identification in a direct way
by building trees explicitly for each language, which due to
sparseness of data would not be ideal, we use the results from
the language identification process as features within the
CART build process, thus allowing those features to affect the
tree building only when their information is relevant.

Given a name, the language identifier gives us the
probabilities of that word belonging to all 26 languages. To
build the CART we decided to only add the following features
to each name: 1st-language, higher-probability, 2nd-language,
2nd-higher-probability and the difference between the two
higher probabilities. An example of input to the CART is:

 (zysk ((best-lang slovenian.train) (higher-prob 0.18471)

(2nd-best-lang czech.train) (2nd-higher-prob 0.18428)
(prob-difference 0.00043)))

5. Results

We built the CART (PN-lang) using 5 as stop value, which
had been proven optimal for the CMUDICT in previous
experiments [1]. However, since the parameter space was

richer (the tree had more features to split itself into), we
suspected there was a data fragmentation problem, and there
wasn’ t actually enough data on the leaves to have reliable
estimates, so we also built CARTs using a stop value of 8. The
word accuracy for all the CARTs were the following:

Table 2: Proper name experiments results

Lexicons Letters Words
PN-base-5 89.02% 54.08%
PN-lang-5 91.23% 61.72%
PN-base-8 90.29% 52.88%
PN-lang-8 90.63% 59.77%

Which represents a 7.64% increment in word accuracy over
the proper name baseline. Note that both PN-lang-5 and PN-
lan-8 have higher word accuracy than the model trained on the
whole CMUDICT (see table1).

6. User studies

From the names that both PN-base-8 and PN-lang-8 got
“wrong” (did not exactly match the CMUDICT pronunciation
in the test set), we selected the ones for which the two models
assigned a different pronunciation. From those, we picked 20
names at random and synthesized them to run perceived
accuracy user studies.

In the user studies, we asked users to score the two different
pronunciations for each one of the 20 names from 1 (very
inaccurate – not understandable) to 5 (very accurate – good
approximation of educated American English pronunciation
for that name). Overall, the perceived accuracy of the
probability model was 17% higher (PN-lang-8: 46%, PN-
base-8: 29%, no preference: 25%).

These results are based on 23 native American English
speakers with a high level education (from undergraduates to
professors), 15 of which had some knowledge of languages
other than English, and all of which had been exposed to
synthesized speech before.

The results for non-native speakers also showed the same
increase in perceived accuracy for the model that incorporates
language probability information.

7. Conclusions

Language probability information definitely improves
pronunciation accuracy of proper names. However, there are
still many experiments that need to be done to find out what is
the upper bound in accuracy when following this approach.

Ideally, we should have trained our LLMs on just names,
instead of text corpora, since that is the distribution of our
training data. However, some experiments where we had LLM
trained on both text and just proper names for German, French
and Spanish have shown that the probability of the two LLM
were very close, and it never happened that the LLM trained
on text performed worse than the LLM trained on proper
names.

Another experiment we need to try is adding prior
probabilities. For each language, we would have a prior
probability that would tell us how likely it is to find a name in
that language, independently of the name. If our model were
trained from newswires data instead of a name directory, it
would be relatively easy to determine such priors. For
example, if we had “Yesterday in Barcelona, the mayor Joan
Clos inaugurated the Forum of Cultures…” , then our prior
P(Catalan) would go up to 0.8 say, and P(Spanish) would go
up to 0.15, whereas the prior probabilities for all other
languages would be very close to 0.

With our training data, however, it is very hard to determine
such priors if we do not know exactly from which distribution
the names come from. If we had all the names for CMU
students, faculty and staff, say, then we could look up the
country of origin statistics and set our priors accordingly.

Human language identification in isolation (without having
any contextual information nor a prior) is very hard. Humans
can confidently tag less than 50%. Therefore, a system that
mimics human behavior when pronouncing a foreign proper
name but that uses an automatic language identifier is almost
certainly going to perform better, and it will surely be more
consistent.

8. Acknowledgement

This work was supported in part by a “La Caixa” Fellowship
2000-2001.

9. References

[1] Black, A., Lenzo, K. and Pagel, V. Issues in Building

General Letter to Sound Rules. 3rd ESCA Speech
Synthesis Workshop, pp. 77-80, Jenolan Caves,
Australia, 1998

[2] Church, K. (2000). Stress Assignment in Letter to Sound
rules for Speech Synthesis (Technical Memoradnum).
AT&T Labs –Research. November 27, 2000.

[3] CMUDICT. Carnegie Mellon Pronunciation Dictionary.
1998. http://www.speech.cs.cmu.edu/cgibin/cmudict

[4] Chotimongkol, A. and Black, A. Statistically trained
orthographic to sound models for Thai. Beijing October
2000.

[5] Tomokiyo, T. Applying Maximum Entropy to English
Grapheme-to-Phoneme Conversation. LTI, CMU.
Project for 11-744, CMU unpublished. May 9, 2000.

[6] Black, A. Festival Manual: Building letter to sound rules.
http://www.speech.cs.cmu.edu/festival/manual-1.4.1/
festival_13.html#SEC44

[7] Ghani R., Jones R. and Mladenic D. Building Minority
Language Corpora by Learning to Generate Web Search
Queries. Technical Report CMU-CALD-01-100, 2001.
http://www.cs.cmu.edu/~TextLearning/corpusbuilder/

[8] Canvar, W.B., and Trenkle J.M. N-Gram-Based Text
Categorization. In Proceedings of 3rd Annual Symposium
on Document Analysis and Information Retrieval, Las
Vegas, NV. April 13, 1994.

[9] Sproat, R. et al. (1999). Normalization of Non-standard
Words WS ’99 Final Report. John Hopkins University
Workshop 99, CLSP, Pronunciation Group.

