
15-859(M) Randomized Algorithms
Notes for 01/24/11

* useful probabilistic inequalities: Markov, Chebyshev, Chernoff

* Proof of Chernoff bounds

* Application: Randomized rounding for randomized routing

Useful probabilistic inequalities

Say we have a random variable X. We often want to bound the probability that X is too
far away from its expectation. [In first class, we went in other direction, saying that with
reasonable probability, a random walk on n steps reached at least

√
n distance away from

its expectation]

Here are some useful inequalities for showing this:

Markov’s inequality: Let X be a non-negative r.v. Then for any positive k:

Pr[X ≥ kE[X]] ≤ 1/k.

(No need for k to be integer.) Equivalently, we can write this as:

Pr[X ≥ t] ≤ E[X]/t.

Proof. E[X] ≥ Pr[X ≥ t] · t + Pr[X < t] · 0 = t ·Pr[X ≥ t].

Defn of Variance: var[X] = E[(X − E[X])2]. Standard deviation is square root of vari-
ance. Can multiply out variance definition to get:

var[X] = E[X2 − 2XE[X] + E[X]2] = E[X2] − (E[X])2.

Chebyshev’s inequality: Let X be a r.v. with mean µ and standard deviation σ. Then
for any positive t, have:

Pr[|X − µ| > tσ] ≤ 1/t2.

Proof. Equivalently asking what is the probability that (X − µ)2 > t2var[X]. Now,
just think of l.h.s. as a new non-negative random variable Y . What is its expectation?
So, just apply Markov’s inequality.

Let’s suppose that our random variable X = X1 + . . . + Xn where the Xi are simpler things
that we can understand. Suppose there is not necessarily any independence. Then we can
still compute the expectation

E[X] = E[X1] + . . . + E[Xn]
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and use Markov. (i.e., expectation is same as if they were independent)

Suppose we have pairwise independence. Then, var[X] is same as if the Xi were fully
independent. In fact, var[X] =

∑

i var[Xi].

Proof.

E[X2] − (E[X])2 =
∑

i

∑

j

E[XiXj ] −
∑

i

∑

j

E[Xi]E[Xj]

=
∑

i

E[X2
i ] −

∑

i

E[Xi]
2

where the last equality holds because E[XY ] = E[X]E[Y ] for independent random variables,
and all pairs here are independent except when i = j. So, can apply Chebyshev easily.

Chernoff and Hoeffding bounds

What if the Xi’s are fully independent? Let’s say X is the result of a fair, n-step {−1, +1}
random walk (i.e., Pr[Xi = −1] = Pr[Xi = +1] = 1/2 and the Xi are mutually independent.)
In this case, var[Xi] = 1 so var[X] = n and σ(X) =

√
n. So, Chebyshev says:

Pr[|X| ≥ t
√

n] ≤ 1/t2.

But, in fact, because we have full independence, we can use the stronger Chernoff and
Hoeffding bounds that in this case tell us:

Pr[X ≥ t
√

n] ≤ e−t2/2.

The book contains some forms of these bounds. Here are some forms of them that I have
found to be especially convenient.

Let X1, . . . , Xn be a sequence of n independent {0, 1} random variables with Pr[Xi = 1] = pi

not necessarily the same. Let S be the sum of the RVs, and let µ = E[S]. Then, for 0 ≤ δ ≤ 1,
the following inequalities hold:

• Pr[S > (1 + δ)µ] ≤ e−δ2µ/3,

• Pr[S < (1 − δ)µ] ≤ e−δ2µ/2.

Additive bounds:

• Pr[S ≥ µ + δn] ≤ e−2nδ2

.

• Pr[S ≤ µ − δn] ≤ e−2nδ2

.

Also, for any k > 1, we get:

• Pr[S > kµ] <
(

ek−1

kk

)µ
.
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We’re going to prove the additive form of the bounds. The two directions are symmetric
(the same proof works) so we will just focus on the upper end. To prove this, we are going
to make heavy use of the fact that for independent random variables, the expected value of
the product is the product of the expectations.

Proof. Consider the random variable Z = eλS, where λ is a quantity we will optimize for
later. Using Markov’s inequality, we can now say:

Pr[S ≥ µ + δn] = Pr[Z ≥ eλ(µ+δn)] ≤ E[Z]/eλ(µ+δn).

To figure out the RHS, we need to get a handle on E[Z]. Using the fact that the Xi are
independent, we get:

E[Z] = E[eλ(X1+...+Xn)] = E[eλX1 ]E[eλX2 ] · · ·E[eλXn ]

Now, if we were really lucky, we would have E[eλXi ] = eλE[Xi]. In that case, we would get
E[Z] = eλE[S] = eλµ. Plugging this in, we would get an overall bound of e−λδn, which would
be great, especially since λ hasn’t been fixed yet so we could make it as large as we want!
But really, the two quantities are not equal, and in fact the gap depends on λ. One intuitive
way to think of what is going on is like this. Let µ∗ be the value of S under which Z equals
its expectation. It is very unlikely that S will be much larger than µ∗ because that will cause
Z to be a lot larger than its expectation (since Z is exponential in S), especially when λ is
large. On the other hand, the larger λ is, the larger µ∗ is compared to µ. So we will then
solve for the optimal tradeoff.

Specifically, let Ri = E[eλXi ]/eλpi. We can solve for the numerator: with probability pi we
get eλ and with probability 1 − pi we get e0 = 1. So, we have:

Ri =
pie

λ + (1 − pi)

eλpi

.

Now, the claim is that for all values of pi and λ we have Ri ≤ eλ2/8. In particular, −λpi +
ln(pie

λ + 1 − pi) ≤ λ2/8, which one can prove by Taylor expansion around 0. Let’s not do
that here....

Assuming this, we now get an overall bound of enλ2/8−λδn. Setting λ = 4δ to minimize this,
we get en2δ2

−4δ2n = e−2δ2n.

Randomized routing/rounding

Given a directed graph and a set of pairs {(si, ti)} we want to route these pairs to minimize
the maximum congestion. This problem is NP-hard. Can we find an approximate solution?

Idea: (Raghavan & Thompson)
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1. Solve fractionally. Think of as multi-commodity flow (e.g., allow si to route to ti by
sending 1/2 down one path, 1/4 down another path, and 1/4 down another). Can
solve with linear programming: for each (directed) edge e, and each commodity i,
have variable Xei. Constraints for inflow = outflow. Constraints ∀e,

∑

i Xie ≤ C, and
minimize C.

2. For each pair (si, ti) we have a flow. Now what we do is view these fractional values as
probabilities and select a path such that the probability we pick edge e is equal to the
flow of this commodity on e. How can we do this algorithmically? (Give proof that
greedy approach works.)

Analysis: fix some edge. Let fi be the flow of commodity i on this edge. This also means
that fi is the probability that we picked this edge for routing (si, ti). So, for a given edge,
can think of {0, 1} random variables Xi corresponding to event that we picked this edge for
commodity i, where Pr[Xi = 1] = fi. For a given edge, these Xi are all INDEPENDENT.
(Not independent for the same i across different edges, but that’s OK). Expected value of
sum is at most C. Now apply Chernoff.

Pr[total > (1 + ǫ)C] < e−ǫ2C/3

The point now is if this is small enough (e.g., o(1/n2)) then the probability that there exists

an edge whose congestion exceeds this bound is also small (o(1)).

So, if C ≫ log(n), then w.h.p., maximum is only 1 + ǫ times larger than the expectation.

What if C = 1, or C is constant? In this case, we can apply the bound:

Pr[total > kC] < (ek−1/kk)C

So, set k to be O(log(n)/ log log(n)), and then get 1/poly(n).
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