
Randomized Algorithms (Blum/Gupta) Homework 5
Date: Monday Mar 21, 2011 Due: Monday Apr 4, 2011

Groundrules

• Homeworks will generally consist of exercises, easier problems designed to give you practice, and
problems, that may be harder, trickier, and/or somewhat open-ended. You should do the exercises by
yourself, but you may work with a friend on the harder problems if you want. One exception: no fair
working with someone who has already figured out (or already knows) the answer. If you work with a
friend, then write down who you are working with.

• If you’ve seen a problem before (sometimes we’ll give problems that are “famous”), then say that in
your solution (it won’t affect your score, we just want to know). Also, if you use any sources other than
the textbook, write that down too (it’s fine to look up a complicated sum or inequality or whatever,
but don’t look up an entire solution).

Exercises

1. (Problem 4.9 in M&R) Show that there exists a permutation that would cause 2Ω(n) congestion under
random-order shortest-path routing on the hypercube. That is, rather than fixing bits in a left-to-right
order, you fix the bits in a random order (which corresponds to taking a random shortest path from
each source to its destination).

2. (Centers and FRT don’t mix.) In the lecture notes, we saw how to reduce k-median on general
metrics to k-median on trees. This used random tree embeddings that satisfy two properties: (a)
distances in the trees are greater, and (b) the expected distances are not much greater. Show such a
reduction fails for k-center. Specifically, as a counter-example,

• construct a metric (V, d), and a distributionD over trees on the vertex set V which have (a) dT ≥ d,
and (b) for every x, y, ED[dT (x, y)] ≤ O(1)d(x, y), such that

• if we draw a random tree T from this distribution, solve k-center optimally on this tree T to get
centers FT , the expected cost ET←D[maxv∈V d(v, FT )] is much larger than the cost of the optimal
k-center solution on the original metric. (Ideally, the expected cost should exceed the optimal
cost by nε for some constant ε > 0.)

Note: it is not enough to point out where the reductions break down—we want a counter-example. Note
#2: you can do this with k = 2.

Extra Credit: Show such an example for the k-means problem as well.

3. (How long, how long?) For n points S picked independently and uniformly from the unit square
[0, 1]2, show that E[TSP (S)] = Θ(

√
n). Note you need to show both the upper and lower bounds.

(Hint: have a read over the geometric lemma from class.)

Problems

1. (External regret vs Swap regret.) In Rock-Paper-Scissors, Rock beats Scissors (winner has loss
0, loser has loss 1), Scissors beats Paper, and Paper beats Rock; if both players play the same action,
they tie (each gets loss of 1/2).

Consider playing T games of Rock-Paper-Scissors against an opponent who first plays Rock T/3 times,
then plays Scissors T/3 times, then plays Paper T/3 times.

1



(a) Thinking of Rock, Paper, and Scissors as three “experts”, describe in words what Randomized
Weighted Majority would do against such an opponent. To be concrete, consider the version of
RWM that, when expert i incurs loss `, updates using wi ← wi(1 − ε)`. Assume a learning rate
ε � 1/T , or if you like, you can think of limε→1. Approximately (ignoring terms that are o(T ))
what is the total loss of RWM and how does that compare to the loss of the best expert?

(b) What approximately is the swap regret of RWM (ignoring terms that are o(T ))?

(c) Since external regret is defined as the difference between the loss of the algorithm and the loss
of the best expert, any two sequences of actions with the same total loss will result in the same
external regret. Is this true for swap regret? In the context of this Rock-Paper-Scissors example,
is there a behavior with approximately the same total loss as RWM but with much less swap
regret?

(d) Extra credit: what would the swap-regret algorithm from class do in the above situation? Feel
free to code it up.

2. (I Stream, You Stream.) Recall the data streaming model: elements from [D] stream by, and
frequency vector is x ∈ ZD≥0 where xi counts the number of occurences of element i ∈ [D] seen so far.
We want a streaming algorithm that stores information about the stream so that when it is eventually
queried with some index q ∈ [D], returns a value x̂q ≈ xq with probability at least 1− δ. One way to
do this is to store x explicitly, but we want to use less space.

Consider the following algorithm:

Keep a global hash function H : [D]→ [d], and also d counters C1, C2, . . . , Cd (initially zero),
each with its own hash function hi : [D] → {−1,+1}. If you see element e ∈ [D], first hash
it using the global hash function H to get the bucket number H(e), and then update

CH(e) ← CH(e) + hH(e)(e)

When faced with the query q, output A(q) := hH(q)(q) · CH(q).

Assume that H and the hi’s are indepenedently picked, and each hash function is itself pairwise
independent.

(a) Show that E[A(q)] = xq.

(b) Show that the variance of A(q) = 1
d (F2 − x2

p) ≤ F2/d.

(c) Show that if we set d = 1/ε2δ, we get an estimate A(q) ∈ xq ± ε
√
F2 = xq ± ε‖x‖2 w.p. 1− δ.

(d) Finally, consider an extension of this idea: maintain t independent copies of the above data
structure. On a query for q, if the answers are A1(q), A2(q), . . . , At(q), return the median M(q)
of these t answers.
Show that with t = 10 log 1/δ, and d = 3/ε2, you get M(q) ∈ xq ± ε‖x‖2 w.p. 1− δ.

Note: This shows that the element q is such that xq is large compared to ‖x2‖, then we get a good
estimate. In many data streams, there are a few very frequent elements (the “elephants”) and others
are fairly rare (the “mice”). This method allows us to estimate the size of any elephant well.

3. (Large girth graphs.) Recall the lower bound on low-diameter decompositions: we used the existence
of graphs with at sufficiently many edges and yet large girth (no short cycles). In this problem, we
prove that such graphs exist.

Consider the random graph Gn,p with p = c/n. Delete all edges that lie on cycles of length 1
2 logc n.

Now use the probabilistic method to infer that for sufficiently large n, there exist graphs with at least
(c− 1)(n− 1)/2 edges and girth at least 1

2 logc n.

2


