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Consider a seller with multiple digital goods or services for sale, such as movies, soft-
ware, or network services, over which buyers may have complicated preferences. In order
to sell these items through an incentive-compatible auction mechanism, this mechanism
should have the property that each bidder is offered a set of prices that do not depend on
the value of her bid. The problem of designing a revenue-maximizing auction is known
in the economics literature as the optimal auction design problem [Myerson 1981]. The
classical model for optimal auction design assumes a Bayesian setting in which players’
valuations (types) are drawn from some probability distribution that furthermore is known
to the mechanism designer. For example, to sell a single item of fixed marginal cost,
one should set the price that maximizes the profit margin per sale times the probability a
random person would be willing to buy at that price. However, in complex or non-static
environments, these assumptions become unrealistic. In these settings, machine learning
can provide a natural approach to the design of near-optimal mechanisms without such
strong assumptions or degree of prior knowledge.

Specifically, notice that while a truthful auction mechanism should have the property
that the prices offered to some bidder i do not depend on the value of her bid, they can
depend on the amounts bid by other bidders j. From a Machine Learning perspective,
this is very similar to thinking of bidders as “examples” and our objective being to use
information from examples j 6= i to produce a good prediction with respect to example
i. Thus, without presuming a known distribution over bidders (or even that bidders come
from any distribution at all) perhaps if the number of bidders is sufficiently large, enough
information can be learned from some of them to perform well on the rest. In recent
work [Balcan et al. 2007] we formalize this idea and show indeed that sample-complexity
techniques from machine learning theory [Anthony and Bartlett 1999; Vapnik 1998] can
be adapted to this setting to give quantitative bounds for this kind of approach. More
generally, we show that sample complexity analysis can be applied to convert incentive-
compatible mechanism design problems to more standard algorithm-design questions, in a
wide variety of revenue-maximizing auction settings.

Our reductions imply that for these problems, given an algorithm for the non incentive-
compatible pricing problem, we can convert it into an algorithm for the incentive-compatible
mechanism design problem that is only a factor of (1 + ε) worse, so long as the number
of bidders is sufficiently large as a function of an appropriate measure of complexity of
the class of allowable pricings. We apply these results to the problem of auctioning a
digital good [Goldberg et al. 2001; Goldberg et al. 2006], to the attribute auction prob-
lem which includes a wide variety of discriminatory pricing problems [Blum and Hartline
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2005; Aggarwal and Hartline 2006], and to the problem of item-pricing in unlimited-supply
combinatorial auctions [Guruswami et al. 2005]. From a machine learning perspective,
these settings present several challenges: in particular, the loss function is discontinuous,
is asymmetric, and has a large range.

The high level idea of the most basic reduction in [Balcan et al. 2007] which is based on
the idea of a random sampling auction is actually fairly natural. For concreteness, let us
imagine we are selling a collection of n goods or services of zero marginal cost to us, to m
bidders who may have complex preference functions over these items, and our objective
is to achieve revenue comparable to the best possible assignment of prices to the various
items we are selling. Thus, we are in the setting of maximizing revenue in an unlimited
supply combinatorial auction. Then given a set of bids S, we perform the following oper-
ations. We first randomly partition S into two sets S1 and S2. We then consider the purely
algorithmic problem of finding the best set of prices p1 for the set of bids S1 (which may
be difficult but is purely algorithmic), and the best set of prices p2 for the set of bids S2.
We then use p1 as offer prices for bidders in S2, giving each bidder the bundle maximizing
revealed valuation minus price, and use p2 as offer prices for bidders in S1. We then show
that even if bidders’ preferences are extremely complicated, this mechanism will achieve
revenue close to that of the best fixed assignment of prices to items so long as the number
of bidders is sufficiently large compared to the number of items for sale. For example, if all
bidders’ valuations on the grand bundle of all n items lie in the range [1, h], then O(hn/ε2)
bidders are sufficient so that with high probability, we come within a (1 + ε) factor of the
optimal fixed item pricing. Or, if we cannot solve the algorithmic problem exactly (since
many problems of this form are often NP-hard [Guruswami et al. 2005; Balcan and Blum
2007; Balcan et al. 2007; Briest and Krysta 2006]), we lose only a (1 + ε) factor over
whatever approximation our method for solving the algorithmic problem gives us.

More generally, these methods apply to a wide variety of pricing problems, including
those in which bidders have both public and private information, and also give a formal
framework in which one can address other interesting design issues such as how fine-
grained a market segmentation should be. This framework provides a unified approach to
considering a variety of profit maximizing mechanism design problems including many
that have been previously considered in the literature. Furthermore, our results substan-
tially generalize the previous work on random sampling mechanisms by both broadening
the applicability of such mechanisms and by simplifying the analysis.

Some of our techniques give suggestions for the design of mechanisms and others for
their analysis. In terms of design, these include the use of discretization to produce smaller
function classes, and the use of structural-risk minimization to choose an appropriate level
of complexity of the mechanism for a given set of bidders. In terms of analysis, these in-
clude both the use of basic sample-complexity arguments, and the notion of multiplicative
covers for better bounding the true complexity of a given class of offers.

Finally, from a learning perspective, this mechanism-design setting presents a number of
technical challenges when attempting to get good bounds: in particular, the payoff function
is discontinuous and asymmetric, and the payoffs for different offers are non-uniform.
For example, we develop bounds based on a different notion of covering number than
typically used in machine learning, in order to obtain results that are more meaningful for
this mechanism design setting.
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