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ABSTRACT
We present approximation and online algorithms for a num-
ber of problems of pricing items for sale so as to maximize
seller’s revenue in an unlimited supply setting. Our first re-
sult is an O(k)-approximation algorithm for pricing items
to single-minded bidders who each want at most k items.
This improves over recent independent work of Briest and
Krysta [5] who achieve an O(k2) bound. For the case k = 2,
where we obtain a 4-approximation, this can be viewed as
the following graph vertex pricing problem: given a (multi)
graph G with valuations we on the edges, find prices pi ≥ 0
for the vertices to maximize

X

{e=(i,j):we≥pi+pj}

(pi + pj) .

We also improve the approximation of Guruswami et al. [11]
from O(log m + log n) to O(log n), where m is the number
of bidders and n is the number of items, for the “highway
problem” in which all desired subsets are intervals on a line.

Our approximation algorithms can be fed into the generic
reduction of Balcan et al. [2] to yield an incentive-compatible
auction with nearly the same performance guarantees so
long as the number of bidders is sufficiently large. In ad-
dition, we show how our algorithms can be combined with
results of Blum and Hartline [3], Blum et al. [4], and Kalai
and Vempala [13] to achieve good performance in the online
setting, where customers arrive one at a time and each must
be presented a set of item prices based only on knowledge
of the customers seen so far.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

ity]: General
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1. INTRODUCTION
Consider the problem of a retailer trying to price its prod-

ucts to make the most profit. If customers had valuations
over individual items only, then the problem of setting prices
would be relatively easy: for each product i, the optimal
price is such that the profit margin pi per item sold, times
the number of customers willing to buy at that price, is
maximized. So, each item can be considered separately, and
assuming the company knows its market well, the computa-

tional problem of setting prices is fairly trivial.
However, suppose that customers have valuations over

pairs of items (e.g., a computer and a monitor, or a tank of
gas and a cup of coffee), and will only purchase if the com-
bined price of the items in their pair is below their value.
In this case, we can model the problem as a (multi) graph,
where each edge e has some valuation we, and our goal is to
set prices pi ≥ 0 on the vertices of the graph to maximize
total profit: that is,

Profit(p) =
X

{e=(i,j):we≥pi+pj}

(pi + pj) .

where p is the vector of individual prices.1

We call this the graph vertex pricing problem. More gen-
erally, if customers have valuations over larger subsets, we
can model our computational problem as one of pricing ver-
tices in a hypergraph, or in more standard terminology, the
problem of pricing items in an unlimited-supply combina-
torial auction with single-minded bidders. Guruswami et
al. [11] show an O(log m+log n)-approximation for the gen-
eral problem, where n is the number of items (vertices) and
m is the number of customers (hyperedges). They also show

1This formula corresponds to a model in which items have
zero marginal cost to the retailer (digital goods) so that
an item sold at price pi generates profit pi. Alternatively,
if products have a fixed marginal cost, and we cannot sell
them below cost (say, due to the presence of resellers), then
we can think of pi as the profit margin on item i and simply
subtract our costs for the endpoints from each valuation we.



that even the graph vertex pricing problem is APX-hard —
and this is true even when all valuations are identical (if
self-loops are allowed) or all valuations are either 1 or 2 (if
self-loops are not allowed). In related work, Hartline and
Koltun [12] give a (1 + ε)-approximation that runs in time
exponential in the number of vertices, but that is near-linear
time when the total number of vertices in the hypergraph is
constant. Recently, Demaine et al. [7] have shown that it is
hard to approximate the hypergraph vertex pricing problem
within a factor of logδ n, for some δ > 0, assuming that NP

6⊆ BPTIME
“

2nε
”

for some ε > 0.

In this paper, we give a 4-approximation for the graph
vertex pricing problem, and more generally we present an
O(k)-approximation for the case of hypergraphs in which
each edge has size at most k (i.e., all customers’ valuations
are over subsets of size at most k). The latter result improves
over the recent independent work of Briest and Krysta [5]
who give a bound of O(k2).

We also consider the highway problem studied in [11].
This problem is the special case of the hypergraph pric-
ing problem where vertices are numbered 1, . . . , n and each
customer wants an interval [i, j].2 For this problem, we
give an O(log n)-approximation, improving slightly over the
O(log m + log n) approximation of [11], and also give an
O(1)-approximation for the case that all users want the same

number of items up to a constant factor. Finally, we also give
a fully polynomial time approximation scheme (FPTAS) for
the case that the desired subsets of different customers form
a hierarchy (this is defined more precisely in Section 6).

1.1 Incentive-compatibility
Our results described above assume the seller “under-

stands the market”: that is, we know how many customers
will buy different sets of items and at what prices. Thus,
we are simply left with a computational problem. If we
do not understand the market and are in the setting of
an unlimited-supply combinatorial auction, we would in-
stead want an algorithm that is incentive-compatible, mean-
ing that it is in bidders’ self-interest to reveal their true
valuations. Fortunately, a generic reduction of [2] shows
that if there are sufficiently many bidders, then for prob-
lems of this type one can convert any approximation to the
computational problem into a nearly-as-good approximation
to the incentive-compatible auction problem. In particular,
Õ

`

hn
ε2

´

bidders are sufficient for this reduction to produce
only a factor (1 + ε) loss in approximation ratio when all
valuations lie in the range [1, h]. Essentially, the idea of the
reduction is to randomly partitions bidders into two sets S1

and S2, run the approximation algorithm separately on each
set, and then use the prices found for S1 on S2 and vice-versa
(making the process incentive-compatible); the results in [2]

then show that Õ
`

hn
ε2

´

bidders are sufficient to ensure that
the resulting profit is nearly as large as if one had used prices
determined on each Si on that set itself. Related results of
[10, 9] give bounds of this form for the case of a single digital
good. Thus, if one has sufficiently many bidders, one can
focus attention on solely the computational approximation

2Previous work [12, 11] uses “m” to denote the number of
items and “n” to denote the number of customers, viewing
the items as edges in some network. Since we are viewing
items as vertices and customers as (hyper)edges, we have
reversed this notation.

problem, and handle incentive-compatibility through these
generic reductions.

The above results assume a one-shot mechanism (sealed-
bid auction) in which all bidders are present at the same
time. We also consider the more demanding case that bid-
ders arrive online, and one must present to each bidder a set
of item prices that depend only on bidders seen in the past.
We show how methods of [3, 4] for the online digital-good
auction can be applied to our algorithms for graph (or k-
hypergraph) vertex pricing to achieve good performance for
these problems in the online setting as well. For the high-
way problem, we need a somewhat more involved argument
using an algorithm of Kalai and Vempala [13].

2. NOTATION AND DEFINITIONS
We assume we have m customers (or “bidders”) and n

items (or “products”). We are in an unlimited supply set-
ting, which means that the seller is able to sell any number of
units of each item, and they each have zero marginal cost to
the seller (or if they have some fixed marginal cost, we have
subtracted that from all valuations and the seller may not
sell any item below cost). We consider single-minded bid-

ders, which means that each customer is interested in only
a single bundle of items and has valuation 0 on all other
bundles. Therefore, valuations can be summarized by a set
of pairs (e, we) indicating that a customer is interested in
bundle (hyperedge) e and values it at we. Given the hy-
peredges e and valuations we, we wish to compute a pricing
of the items that maximizes the seller’s profit. We assume
that if the total price of the items in e is at most we, then
the customer (e, we) will purchase all of the items in e, and
otherwise the customer will purchase nothing. That is, we
want the price vector p that maximizes

Profit(p) =
X

(

e:we≥
P

i∈e

pi

)

X

i∈e

pi.

Let p∗ be the price vector with the maximum profit and let
OPT = Profit(p∗).

Let us denote by E the set of customers, and V the set of
items, and let h be max

e∈E
we. Let G = (V, E) be the induced

hypergraph, whose vertices represent the set of items, and
whose hyperedges represent the customers. Notice that G
might contain self-loops (since a customer might be inter-
ested in only a single item) and multi-edges (several cus-
tomers might want the same subset of items). In the special
case that all customers want at most two items, so G is a
graph, we call this the graph vertex pricing problem. As
mentioned in Section 1, this pricing problem was shown to
be APX-hard in [11]. If all customers want at most k items,
we call this the k-hypergraph vertex pricing problem. In [11]
a simple O(log m + log n) polynomial time approximation
algorithm is given for the general problem.

3. GRAPH VERTEX PRICING
We begin by considering the Graph Vertex Pricing prob-

lem, and show a factor 4 approximation.

Theorem 1. There is a 4-approximation for the Graph

Vertex Pricing problem.

Proof. First notice that if G is bipartite (with self-loops
allowed as well), then there is a simple 2-approximation al-



gorithm. Specifically, consider the optimal price-vector p∗

and let OPTL be the amount of money it makes from nodes
on the left, and OPTR be the amount it makes from nodes
on the right (so OPT = OPTL +OPTR). Notice that if one
takes p∗ and zeroes out all prices for nodes on the right,
then this has profit at least OPTL since all previous buy-
ers still buy (and some new ones may too). Therefore, we
can algorithmically make profit at least OPTL by setting all
prices on the right to 0, and then separately fixing prices for
each node on the left so as to make the most money possible
on each node. This makes the optimal profit subject to all
nodes on the right having price 0 because no edges have two
distinct endpoints on the left and so the profit made from
some node i on the left does not affect the optimal price for
some other node j on the left. Similarly we can make at
least OPTR by setting prices on the left to 0 and optimizing
prices of nodes on the right. So, taking the best of both
options, we make

max (OPTL, OPTR) ≥
OPT

2
.

Now we consider the general (non-bipartite) case. Define
opte to be the amount of profit that OPT makes from edge
e. We will think of opte as the weight of edge e, though it
is unknown to our algorithm. Let E2 be the subset of edges
that go between two distinct vertices, and let E1 be the set
of self-loops. Let OPT1 be the profit made by p∗ on edges
in E1 and let OPT2 be the profit made by p∗ on edges in E2,
so

P

e∈Ei

opte = OPTi for i = 1, 2 and OPT1 +OPT2 = OPT.

Now, randomly partition the vertices into two sets L and
R. Since each edge e ∈ E2 has a 1

2
chance of having its

endpoints on different sides, in expectation OPT2

2
weight is

on edges with one endpoint in L and one endpoint in R.
Thus, if we simply ignore edges in E2 whose endpoints are
on the same side and run the algorithm for the bipartite
case, the profit we make in expectation is at least

1

2

»

OPT1 +
OPT2

2

–

≥
OPT

4
.

This proves the desired result.

3.1 Derandomization
If desired, the above algorithm can be derandomized by

using the fact that our analysis only needs the partition-
ing distribution to be pairwise-independent. In particu-
lar, pairwise-independent distributions can be realized using
small (polynomial-size) sample spaces [14, 16]. Thus, given
a problem instance, one can simply try each possibility in
the sample space and then choose the one that produces the
highest profit.

4. K-HYPERGRAPH VERTEX PRICING
We now show how to extend the algorithm in Theorem 1

to get an O(k)-approximation when each customer wants at
most k items. This improves over the O(k2) bound of [5].

Theorem 2. There is an O(k)-approximation algorithm

for the k-Hypergraph Vertex Pricing problem.

Proof. We can use the following procedure.

Step 1 Randomly partition V into VL and Vrest by placing
each node into VL with probability 1

k
.

Step 2 Let E′ be the set of edges with exactly one endpoint
in VL. Ignore all edges in E − E′.

Step 3 Set prices in Vrest to 0 and set prices in VL optimally
with respect to edges in E′.

To analyze this algorithm, let OPTi,e denote the profit made
by p∗ selling item i to bidder e. (So OPTi,e ∈ {0, p∗

i } and
OPT =

P

i∈V,e∈E

OPTi,e.) Notice that the total profit made

in Step 3 is at least
P

i∈VL,e∈E′

OPTi,e because setting prices

in Vrest to 0 can only increase the number of sales made by
p∗ to bidders in E′. Thus, we simply need to analyze the

quantity E

"

P

i∈VL,e∈E′

OPTi,e

#

.

Define indicator random variable Xi,e = 1 if i ∈ VL and
e ∈ E′, and Xi,e = 0 otherwise. We have:

E[Xi,e] = Pr[i ∈ VL and e ∈ E′] ≥
1

k

„

1 −
1

k

«k−1

(1)

Therefore,

E

2

4

X

i∈VL,e∈E′

OPTi,e

3

5 = E

"

X

i∈V,e∈E

Xi,eOPTi,e

#

=
X

i∈V,e∈E

E [Xi,e] OPTi,e

≥
1

k

„

1 −
1

k

«k−1

OPT

= O

„

OPT

k

«

.

4.1 Derandomization
As with the algorithm of Theorem 1, the above algorithm

for k-hypergraph vertex pricing can also be derandomized
if desired, but in this case the more sophisticated tools of
Even et al. [8] are needed. First, note that we are only
interested in the case that k is o(log n + log m), since for
larger values of k we can switch to the generic algorithm of
Guruswami et al. [11]. Thus, we can allow for a blowup of

2O(k) in our running time. Now, consider the algorithm in
Theorem 2 and define indicator random variables Xi = 1
if i ∈ VL and Xi = 0 otherwise. So, each Xi = 1 with
probability 1

k
, and notice that we need only k-wise indepen-

dence among the Xi to calculate E[Xi,e] in Equation (1).
Even al. [8] give a construction of small sample spaces that
is especially well-suited to our needs. Their construction
runs in time polynomial in 2k, n, and 1

ε
, and produces an

explicit sample space with the following property: for any
k-tuple (Xi1 , . . . , Xik

) of the random variables Xi and any
assignment (v1, . . . , vk) to their values, the fraction of points
in their sample space under which these variables all take
on those values is within ±ε of the probability of this event
under our product distribution. In particular, the k-tuples
we care about are those corresponding to edges e ∈ E, with
values of the form (1, 0, . . . , 0) corresponding to the event
that Xi,e = 1. Setting ε = o

`

1
k

´

, we get that under the
uniform distribution over their sample space, Equation (1)
holds up to 1 − o(1), which suffices for our bounds. Thus,
we simply run the construction of Even al. [8] using such a



value of ε, and try each partitioning in their explicit sample
space, choosing the one that produces the highest profit.

5. THE HIGHWAY PROBLEM
A particular interesting case considered in [11] is the high-

way problem. In this problem we think of the items as seg-
ments of a highway, and each desired subset e is required
to be an interval [i, j] of the highway. A special case of this
problem shown in [11] to be solvable in polynomial time
is the case when all path requests share one common end-
point r. For this case, Guruswami et al. [11] give an O(m2)
exact dynamic programming algorithm, which we will call
A. They also give pseudo-polynomial dynamic programming
algorithms for two particular cases: an O(hh+2mh+3)-time
exact dynamic programming algorithm for the case when
all valuations are integral, and an O(hk+1m) time exact dy-
namic programming algorithm for the case that furthermore
all requests have path lengths bounded by some constant k.
The highway problem was recently shown to be weakly NP-
hard by Briest and Krysta [5].

We now present an O(log n) approximation algorithm for
the highway problem, improving somewhat over the previous
bound of O(log n + log m) [11].

Theorem 3. There is an O(log n)-approximation algo-

rithm for the highway problem.

Proof. We begin by partitioning the customers into log2 n
groups. Specifically, let S1 be the set of all customers who
want item n

2
. Let S2 be the set of all customers not in S1 who

want either item n
4

or item 3n
4

. More generally, let Si be the
set of customers not in S1 ∪ · · · ∪ Si−1 who want some item

in
n

n
2i , 2n

2i , . . . , (2i−1)n

2i

o

. Now, for each set Si we can use

algorithm A from [11] to get a 2-approximation to the opti-
mal profit over Si. Specifically, for each j ∈ {1, . . . , 2i − 1}
let Sij be the subset of customers in Si who want item jn

2i .
Notice that by design, customers in set Sij do not have any
desired item in common with customers in Sij′ for j′ 6= j,
which means we can consider each of them separately. Now,
for each Sij we get a 2-approximation to OPT(Sij) by run-
ning A twice, first zeroing out all prices for items to the left
of item jn

2i and then again zeroing out all prices for items to

the right of jn
2i and taking the best of the two cases. Since

there are only log2 n groups Si, we simply use the algorithm
A from [11] to get a 2-approximation to the optimal profit
over Si, and then take the best of all options, thus obtaining
a 2 log2 n approximation overall.

5.1 Special cases
Using algorithm A we can also get a constant-factor ap-

proximation in the special case that everyone wants exactly
k items, for any (not necessarily constant) k. To see this,
split the items into groups G1, G2, . . . , G n

k
of size k, and

let OPTeven and OPTodd be the amount of money that
OPT makes from the even-numbered groups and from the
odd-numbered groups respectively. We can make at least
OPTeven

2
as follows. We first set all the prices on items in the

odd groups to zero. Now notice that each customer wants
items in at most one even-numbered group: let us associate
that customer with that group. We can now partition the
customers in each even group into two types: those that
want the leftmost item in the group and those that want
the rightmost item in the group; we then run the dynamic

program separately over each type, and take the best out-
come. In a similar way, we can make at least OPTodd

2
by

setting prices items in the even groups to 0. So we try both
and take the best, thus obtaining a factor of 4 algorithm.

Similarly we can get a factor of 4c approximation algo-
rithm if everyone wants between k

c
and k elements, for any

value of k.

6. WHEN BIDDERS FORM A HIERARCHY
We present here a fully polynomial time approximation

scheme for the case that the desired subsets of different
(single-minded) customers form a hierarchy.3 Specifically,
we consider the case of a hypergraph where for any two
edges e, e′, we have either e ⊆ e′ or e ⊇ e′ or e∩e′ = ∅. This
means that the edges themselves can be viewed as forming a
tree structure ordered by containment. Let Te be the set of
all bidders whose desired subset is contained in e. Note that
we can assume for simplicity that we have a binary hierar-
chy (if the hierarchy is not binary, then we can transform
it into a binary hierarchy by adding fake edges e, increasing
the size of the hypergraph by at most a constant factor).

We start by presenting a pseudopolynomial algorithm for
the case that the bidders have integral valuations (between
0 and h). In this case, by the integrality lemma in [11]
there exists an integral optimal solution. For each e ∈ E
and nonnegative integer s ≤ h, let us denote by ne

s the
number of bidders with desired set e whose valuations are
at least s. Now, for each e ∈ E and nonnegative integer
s ≤ nh, let A[s, e] represent the maximum possible profit we
get from bidders in Te when the total sum of the prices on
items in e is exactly s. Our dynamic programming algorithm
for computing the quantities A[s, e] can be now specified as
follows.

Step 1 For each “leaf” e in the hierarchy (an edge e that
does not contain any other edges e′) initialize A[s, e] =
s · ne

s.

Step 2 Consider any edge e with children e1 and e2 whose
A-values have been computed. Compute A[s, e] =
max

s1+s2=s
(A[s1, e1] + A[s2, e2]) + sne

s.

Step 3 Return max
s∈V al

A[s, r], where r is the root V .

After computing the A-values, we can then easily determine
the optimal pricing vector by backtracking. Clearly, the
overall procedure above runs in time polynomial in n, m
and h.

If we do not want to have a polynomial dependence on h,
we can instead use the above pseudopolynomial algorithm
to obtain an FPTAS in a fairly standard way as follows.

Step 1 Given ε > 0, let l = εh
nm

.

Step 2 Define w′
e =

¨

we

l

˝

, for each hyperedge e ∈ E.

Step 3 Run the dynamic programming algorithm on the
instance specified by G = (V, E) and valuations w′

e,
and let p′ be the returned price vector.

Step 4 Output the price vector p̃ defined as p̃i = l · p′
i, for

i ∈ V .

3Independently, Briest and Krysta [5] show a similar result.



Theorem 4. The above algorithm is an FPTAS, achiev-

ing profit at least (1 − ε)OPT in time polynomial in n, m,

and 1/ε.

Proof. In the following discussion, let Profitw′(p) de-
note the profit made by using the price vector p in the
rounded instance specified by G = (V, E) and valuations
w′

e. In order to prove that the profit we obtain by using p̃

in the original instance (given by G = (V, E) and valuations
we) is at least (1− ε)OPT, we first make some observations.

Let p be a pricing vector and let W be the set of win-
ners under the pricing scheme p in the original instance. If
p′′ is the pricing vector defined as p′′

i =
¨

pi

l

˝

for i ∈ V ,

then Profitw′ (p′′) ≥ 1
l
· Profit(p) − nm. To see why this is

true, notice first that W ⊆ W ′′, where W ′′ is the set of win-
ners under the pricing scheme p′′ in the rounded instance
(specified by G = (V, E) and valuations w′

e). This follows
from the fact that

P

i∈e

pi ≤ we implies
P

i∈e

p′′
i =

P

i∈e

¨

pi

l

˝

≤
¨

we

l

˝

= w′
e. This implies Profitw′(p′′) =

P

e∈W ′′

P

i∈e

p′′
i ≥

P

e∈W

P

i∈e

`

pi

l
− 1

´

= 1
l
· Profit(p) − nm, as desired.

Let p′ be a pricing vector and let W ′ be the set of winners
under the pricing scheme p′ in the rounded instance. If
p̃ is the pricing vector defined as p̃i = l · p′

i for i ∈ V ,
then Profit(p̃) ≥ l · Profitw′(p′). To see why this is true,
notice first that W ′ ⊆ W , where W is the set of winners
under p̃ in the original instance. This follows from the fact
that

P

i∈e

p′
i ≤ w′

e implies
P

i∈e

p̃i = l ·
P

i∈e

p′
i ≤ w′

e = l
¨

we

l

˝

=

we. This implies Profit(p̃) =
P

e∈W

P

i∈e

p̃i =
P

e∈W

P

i∈e

l · p′
i ≥

P

e∈W ′

P

i∈e

l · p′
i = l · Profitw′ (p′), as desired.

We are now ready to show that Profit(p̃) ≥ (1 − ε)OPT.
Let p∗ and p′ be the price vectors with the maximum profit
in the original and rounded instances respectively, and let
W ∗ and W be the corresponding set of winners. Let p̃ be the
price vector defined as p̃i = l · p′

i for i ∈ V and let p′′ is the

pricing vector defined as p′′
i =

j

p∗

i

l

k

for i ∈ V . According to

the previous observations we have Profit(p̃) ≥ l·Profitw′(p′).
Since p′ is the price vector with the maximum profit in the
rounded instance we have Profitw′(p′) ≥ l · Profitw′(p′′).
Combining these together with the fact that Profitw′(p′′) ≥
1
l
· Profit(p∗) − nm, we get Profit(p̃) ≥ Profit(p∗) − lnm,

which implies Profit(p̃) ≥ (1 − ε)OPT, as desired.
Since w′

e ≤ nm
ε

for all e ∈ E, we also have that our pro-

cedure runs in polynomial time in n, m, and 1
ε
, thus being

a FPTAS for the hierarchy case.

7. ONLINE PRICING
As mentioned in Section 1.1, results of Balcan et al. [2] can

be used to convert our algorithms into incentive-compatible
mechanisms in the offline “batch” setting (i.e., a sealed-bid
auction). In this section we consider a natural, more de-
manding online setting in which customers arrive one at a
time, and we must set prices to the items for customer t
based only on information about customers 1, . . . , t − 1.

7.1 The model
We assume customers arrive one at a time. Each cus-

tomer will be shown a set of item prices, and will then
decide whether to purchase or not at those prices. We

assume customers cannot return and cannot control their
time of arrival, so any take-it-or-leave-it set of prices for cus-
tomer t based only on information received from customers
1, . . . , t − 1 is incentive-compatible. In addition, we assume
an oblivious adversary model: that is, our objective is to
achieve good expected performance for any sequence of cus-
tomers, but this sequence cannot depend on the outcome of
any probabilistic choices made by our algorithm.

We consider two information models. In the full informa-

tion model, we assume that after the t-th customer departs,
we learn his desired set et and valuation vt. In the more diffi-
cult posted-price model, we assume we only find out whether
and what the customer purchased but not his actual valua-
tions. That is, if he purchases a subset at the current prices
we do not know if he still would have purchased at higher
prices, and if he does not purchase at the current prices,
we do not know if (or what) he would have purchased at
lower prices. In both models, we will be interested in algo-
rithms that perform well compared to the best fixed setting
of prices for the entire sequence. Thus, we are comparing to
the same notion of OPT as in the offline case.

7.2 The Online Graph andk-Hypergraph
Pricing Problems

Our 4-approximation for graph vertex-pricing, and our
O(k)-approximation for k-hypergraph vertex pricing, can be
directly adapted to the online setting by using the results of
[3, 4] for the online digital-good auction.

Specifically, note that our algorithms begin by selecting a
subset VL of items to have non-zero prices, and then achieve
their approximation guarantees considering only profit made
from customers who want exactly one item in VL. Thus,
we can view these algorithms as effectively performing |VL|
separate digital-good auctions, ignoring customers who want
zero, or more than one, item from VL. In particular, to apply
these algorithms to the full-information online setting, we
begin by randomly choosing the set VL as described in the
algorithms, setting prices for items in V −VL to 0. We then
instantiate a separate copy of the online digital-good auction
from [3] for each item i ∈ VL. When a customer arrives,
if the customer wants exactly one item i from VL then his
valuation is given to the associated online auction algorithm.
Let OPTi denote the optimal profit achievable using a fixed
price for item i from customers whose bundles contain item
i but no other item in VL. Using the results of [3], the
expected profit of the online auction for item i will therefore
be at least (1−ε)OPTi−O(h

ε
log 1

ε
), where ε > 0 is an input

to the online algorithm and h is the maximum valuation of
any customer seen so far. Thus, overall, we achieve profit at
least (1−ε)

P

i∈VL

OPTi−O(nh
ε

log 1
ε
), where

P

i∈VL

OPTi is the

profit of the offline approximation algorithm. In particular,
so long as the offline algorithm’s profit is Ω(nh

ε2
log 1

ε
), we lose

only a (1 + O(ε)) factor in conversion to the online setting.
Note that we need the assumption of an oblivious adversary
for the approximation ratios proved in Sections 3 and 4 to
apply.

In the posted-price setting, we can also apply the associ-
ated posted-price algorithms of [3, 4]. The only tricky issue
is that a customer who chooses not to buy anything must
be fed in as a non-buyer to all of the online algorithms, in
order to ensure that the sequence of customers fed into al-
gorithm i is a superset of the true customers for that item.



In addition, the algorithms for the posted-price scenario re-
quire that the upper-bound h on the maximum valuation be
known in advance.

7.3 The Online Highway Problem
For the highway problem, we cannot decompose our solu-

tion into a collection of independent digital-good auctions,
so the reduction in Section 7.2 does not go through. How-
ever, for the case that all path requests have a common end-
point (for which Guruswami et al. [11] give an efficient exact
algorithm using dynamic programming), we can convert to
the online setting by placing this problem in the framework
of online geometric optimization studied by Kalai and Vem-
pala [13]. In particular, [13] gives a method to convert any
efficient exact algorithm for offline optimization into an ef-
ficient near-optimal algorithm for online optimization, for
any problem of the following type:

1. There is a set S ⊆ R
d of feasible points. At each time

step t we must pick some point pt ∈ S, we are then
given an objective function vt ∈ R

d, and we obtain
profit pt · vt.

2. Our goal is to perform nearly as well as the best point
p ∈ S in hindsight. That is, we want

P

t pt · vt to be
nearly as large as maxp∈S

P

t p · vt.

3. We have an efficient algorithm for the offline optimiza-
tion problem: given objective function v ∈ R

d, find the
point p ∈ S that maximizes p · v.

Kalai and Vempala [13] give a procedure for choosing
points pt online for any problem of the above type such
that the total profit obtained,

P

t p
t · vt, is within a 1 − ε

factor of the profit of the best p ∈ S in hindsight, minus an
additive term that is polynomial in the diameter of S and
the maximum L1 magnitude of any vt.

We can place the highway problem in which all path re-
quests are of the form {1, . . . , i} into the above setting as
follows. First, let d = nh, where we assume all bidders have
integral valuations between 0 and h. Now, let S be the set
of all possible item prices represented in the following way.
Given a pricing (p1, . . . , pn) of the n items, represent pi as
a vector of length h consisting of qi − 1 zeros followed by
h − qi + 1 entries at value qi, where qi = p1 + . . . + pi is
the price of the i-th bundle. Then concatenate these n vec-
tors together to create a point in R

d. A bidder who desires
bundle {1, . . . , i} at value w is represented as a vector of all
zero entries except for a 1 in the w-th coordinate of the i-th
block. By design, the dot product of this vector with a vec-
tor p ∈ S is exactly the profit that would be obtained from
this bidder by the item-pricing corresponding to p. Finally,
we can use the optimization algorithm from [11] as our of-
fline optimization oracle. Since in our case the diameter of S
is at most 2nh2, and the maximum L1 magnitude of any vt

is at most 1, the total profit obtained will be within a 1 − ε
factor of the profit of the best p ∈ S in hindsight, minus an
additive term which is Õ

`

nh2
´

.
One somewhat subtle issue is that the Kalai-Vempala al-

gorithm requires running the offline algorithm on objective
functions v that correspond to perturbed versions of the ac-
tual history v1 + . . . +vt−1 and so one must be careful that
this might not actually correspond to a legal problem input
to our offline optimization algorithm. However, because we

have represented each bidder as a coordinate basis vector,
we can decompose any vector v into a set of legal bidders,
and so this is not a problem.

Note that for the posted-price version, we just need to
apply known extensions of the Kalai-Vempala algorithm to
the bandit setting [1, 15, 6] in which only the profit pt · vt

and not the actual vector vt is revealed to the algorithm.
Unfortunately, we do not know how to perform these re-

ductions for the general highway problem, because for that
problem we do not have an exact offline algorithm. How-
ever, it may be possible to view our approximation algorithm
as an exact optimizer for a related problem that can itself
be fit into the Kalai-Vempala framework, solving the online
problem in that way.

8. CONCLUSIONS
We present approximation and online algorithms for a

number of problems of pricing items to consumers so as
to maximize seller’s revenue in an unlimited supply setting.
We achieve an O(k)-approximation algorithm for the case of
single-minded bidders where each consumer wants at most k
items, an O(log n) approximation for the highway problem
from [11], and a constant factor approximation to the high-
way problem when all bidders want approximately (up to a
constant factor) the same number of items. We also show
how some of our approximation algorithms can be adapted
to the more demanding online setting in which customers
arrive one at a time, in both the full-information and posted-
price settings.

8.1 Open Questions
There are several natural open problems left by this work.
First, can one improve on the factor of 4 for the graph

vertex problem? Any method able to reduce the factor of
2 for the bipartite case would immediately result in an im-
proved bound. Alternatively, perhaps the reduction to the
bipartite case can be improved. Also, for the general hyper-
graph vertex pricing problem it would be good to close the
gap between the upper bound we present in this paper and
the lower bound of [7].

Second, is it possible to possible to perform the reduction
in Section 7.3 for the general online highway problem? Or,
more generally, can one convert approximation algorithms
for these problems into online algorithms without using spe-
cial properties of the algorithms themselves as done in Sec-
tion 7.2?

Finally, an intriguing question related to this work is:
what kind of approximation guarantees are achievable if one
allows the seller to price some items below cost (i.e., to have
“loss leaders”)? For the case of digital goods, it may not
make sense to allow negative prices (customers might pur-
chase infinitely many such items), but in the case of prod-
ucts of fixed marginal cast, a retailer might wish to price
some products below cost in order to induce more purchases
of bundles containing both those and other more expensive
products. For example, consider four items A, B, C, and D,
and three customers: one who values {A, B} at $10 above
their combined cost, one who values {B, C} at $40 above
their cost, and one who values {C, D} at $10 above their
cost. If no item can be priced at a loss, then it is not pos-
sible to have all three customers buy at their valuations.
On the other hand, by pricing A and D at $10 below cost,



and B and C at $20 above cost, the seller can extract full
profit. More generally, we can construct a (bipartite) graph
in which there is an Ω(log n) gap between the optimal profit
achievable without any items priced at a loss and the opti-
mal profit if such pricing is allowed.4 However, this does not
necessarily mean that no o(log n) approximation is possible,
only that our current approaches do not succeed. In partic-
ular, we do not know of any constant-factor approximation
for the graph vertex pricing problem when negative profit
margins on some items are allowed.
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