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Topics in Machine Learning Theory 
 

Semi-Supervised Learning 
 

Avrim Blum 

Semi-Supervised Learning 
• The main models we have been studying (PAC, mistake-

bound) are for supervised learning. 

– Given labeled examples S = {(xi,yi)}, try to learn a good 
prediction rule. 

• Unfortunately, labeled data is often expensive.   

• On the other hand, unlabeled data is often plentiful and 
cheap. 

– Documents, images, OCR, web-pages, protein sequences, 
… 

Can we use unlabeled data to help? 

Semi-Supervised Learning 
• Two scenarios: active learning and semi-supervised 

learning. 

– Active learning: have ability to ask for labels of 
unlabeled points of interest. 
• Can you do better than just ask for labels on random 

subset? 

– Semi-supervised learning: no querying. Just have 
lots of additional unlabeled data. 
• Will look today at SSL.  This is the most puzzling one 

since unclear what unlabeled data can do for you. 

Semi-Supervised Learning 
Given a set 𝐿 of labeled data and set 𝑈 of unlabeled 

data.  Can we use 𝑈 to help? 

• What can the unlabeled data possibly do for us? 

• Abstract high-level answer we will get to is:  
– Going back to “Occam’s razor”, unlabeled data can help us 

improve our notion of what is simpler than what, by 
identifying regularities that appear in the data. 

• But first:  
– Discuss several methods that have been developed for 

using unlabeled data to help. 

– Then will give an extension of PAC model to make sense 
of what’s going on. 

 

Plan for today 

Methods: 
• Co-training 

• Transductive SVM 

• Graph-based methods 

Model: 
• Augmented PAC model for SSL. 

There’s also a book “Semi-supervised 
learning” on the topic. 

Co-training 
[B&Mitchell’98] motivated by [Yarowsky’95] 

Yarowsky’s Problem & Idea: 
• Some words have multiple meanings (e.g., “plant”).  Want to 

identify which meaning was intended in any given instance. 
 

• Standard approach: learn function from local context to 
desired meaning, using labeled data. “…nuclear power plant 
generated…” 
 

• Idea: use fact that in most documents, multiple uses have 
same meaning. Use to transfer confident predictions over. 
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Co-training 
Actually, many problems have a similar characteristic. 

• Examples x can be written in two parts (x1,x2). 
 

• Either part alone is in principle sufficient to 
produce a good classifer. 
 

• E.g., speech+video, image and context, web page 
contents and links. 
 

• So if confident about label for x1, can use to impute 
label for x2, and vice versa. Use each classifier to 
help train the other. 

Example: classifying webpages 
• Co-training: Agreement between two parts 

– examples contain two sets of features, i.e. an example is 
x=〈x1, x2〉 and the belief is that the two parts of the 
example are sufficient and consistent, i.e. ∃ c1, c2 such that 
c1(x1)=c2(x2)=c(x) 
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Example: intervals 
Suppose x1 ∈ R, x2 ∈ R.  c1 = [a1,b1], c2 = [a2,b2] 

+ 

+ 
+ 

+ + 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the label:    

D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if C is 
learnable from noisy data, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• Def: h is weakly-useful if  

Pr[h(x)=1|c(x)=1] > Pr[h(x)=1|c(x)=0] + . 
(same as weak hyp if target c is balanced) 

 

• E.g., say “syllabus” appears on 1/3 of course pages but only 
1/6 of non-course pages. 

• Idea: use as a noisy label of other view.  (helpful trick: 
balance data so observed labels are 50/50) 

 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the label:    

D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if C is 
learnable from noisy data, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• [BB] in some cases (e.g., LTFs), you can use this to 
learn from a single labeled example. 

– Pick random hyperplane and boost (using above). 

– Repeat process multiple times. 

– Get 4 kinds of hyps: {close to c, close to ¬c, 
close to 1, close to 0} 

– Just need one labeled example to choose right 
one. 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the label:    

D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if C is 
learnable from noisy data, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• [BB] in some cases (e.g., LTFs), you can use this to 
learn from a single labeled example. 

• [BBY] if don’t want to assume independence, and C 
is learnable from positive data only, then suffices 
for D+ to have expansion. 
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Co-Training and expansion 

  Text info Link info 

+ 

+ 

+ 

X1 
X2 

Want initial sample to expand to full set of positives 
after limited number of iterations. 

Transductive SVM [Joachims99] 

• Suppose we believe target separator goes through 
low density regions of the space/large margin. 

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

+ 

+ 

_ 

_ 

Labeled data only 

+ 

+ 

_ 

_ 

+ 

+ 

_ 

_ 

Transductive SVM 
SVM 

Transductive SVM [Joachims99] 

• Suppose we believe target separator goes through 
low density regions of the space/large margin. 

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization. 
– Start with large margin over labeled data. Induces 

labels on U. 

– Then try flipping labels in greedy fashion. 

 
+ 

+ 
_ 

_ 

+ 
+ 

_ 

_ 

+ 
+ 

_ 

_ 

Transductive SVM [Joachims99] 

• Suppose we believe target separator goes through 
low density regions of the space/large margin. 

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization. 
– Also, recent work on polynomial-time approximation 

algorithms. (“furthest hyperplane problem”) 

+ 

+ 
_ 

_ 

+ 
+ 

_ 

_ 

+ 
+ 

_ 

_ 

Graph-based methods 
• Suppose we believe that very similar examples 

probably have the same label. 

• If you have a lot of labeled data, this suggests a 
Nearest-Neighbor type of alg. 

• If you have a lot of unlabeled data, suggests a 
graph-based method. 

Graph-based methods 
• Transductive approach.  (Given L + U, output 

predictions on U). 

• Construct a graph with edges between very similar 
examples. 

• Solve for: 

– Minimum cut 

– Minimum “soft-cut” 
[ZhuGhahramaniLafferty] 

– Spectral partitioning 
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Graph-based methods 
• Suppose just two labels: 0 & 1.  

• Solve for labels f(x) for unlabeled examples 
x to minimize: 
–  e=(u,v)|f(u)-f(v)|   [soln = minimum cut] 

–  e=(u,v) (f(u)-f(v))2 [soln = electric potentials] 

• In case of min-cut, can use counting/VC-dim results 
to get confidence bounds. 

- 

- + 

+ 
– VC-dimension of class of cuts 

of size 𝑘 is 𝑂 𝑘/𝜆𝑚𝑖𝑛 , where 
𝜆𝑚𝑖𝑛 is the minimum nontrivial 
cut in the graph. [Kleinberg] 

How can we think about these 
approaches to using unlabeled 

data in a PAC-style model? 

PAC-SSL Model [BB] 

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• Express relationships that one hopes the target 
function and underlying distribution will possess. 
 

• Idea: use unlabeled data & the belief that the 
target is compatible to reduce C down to just {the 
highly compatible functions in C}. 
– Or, order the functions in C by compatibility. 

PAC-SSL Model [BB] 

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• To do this, need to be able to estimate 
compatibility of h with D from unlabeled data. 
 

• Require that the degree of compatibility be 
something that can be estimated from a finite 
sample. 

PAC-SSL Model [BB] 

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• Require  to be an expectation over individual 
examples: 

–  (h,D)=Ex~D[(h, x)] = compatibility of h with D, 

(h,x) ∈ [0,1] 

–   errunl(h)=1-(h, D) = incompatibility of h with D 

(unlabeled error rate of h) 

Margins, Compatibility 

• Margins: belief is that should exist a large margin separator. 

 

 

 

 

 
 

• Incompatibility of h and D (unlabeled error rate of h): the 
probability mass within distance  of h. 

• Can be written as an expectation over individual examples 
(h,D)=𝐸𝑥∼𝐷[(h,x)] where: 

•  (h,x)=0 if dist(x,h) < 

•  (h,x)=1 if dist(x,h) >  

Highly compatible + 

+ 

+ 

_ 

_ 

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = Pr
x∼𝐷
 [𝑑𝑖𝑠𝑡 𝑥, ℎ < 𝛾] 
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• Margins: belief is that should exist a large margin separator. 

 

 

 

 
 

 

• If do not want to commit to  in advance,  define (h,x) to be 
a smooth function of dist(x,h), e.g.:  

 

 

• Illegal notion of compatibility: the largest  s.t. D has 
probability mass exactly zero within distance  of h. 

 

Highly compatible + 

+ 

+ 

_ 

_ 

Margins, Compatibility 

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = 𝐸𝑥∼𝐷  𝑒
−
𝑑𝑖𝑠𝑡 𝑥,ℎ
2𝜎2      

Co-Training, Compatibility 

• Co-training: examples come as pairs <x1, x2> and the goal 
is to learn a pair of functions  <h1, h2> 

• Hope is that the two parts of the example are consistent. 

 

• Legal (and natural) notion of compatibility:   

– the compatibility of <h1, h2> and D:  

 

 

– can be written as an expectation over examples: 

 Sample Complexity - Uniform convergence bounds 
 

Finite Hypothesis Spaces, Doubly Realizable Case 

• Define CD,() = {h in C : errunl(h) < }. 

Theorem 

 

 

 

 

 
 

• Bound the # of labeled examples as a measure of the helpfulness of 

D with respect to  

– a helpful distribution is one in which CD,() is small 

 Example 

• Every variable is a positive indicator or negative 
indicator.  No example has both kinds. 

– Bad distribution: uniform over unit-vectors {𝑒𝑖}. 

– Good distribution:  

– Algorithm: create graph on variables.  Put an edge between 
two variables if any example has both of them. 

– Small number of connected components.  
– Both classes have good “expansion”. 

More Generally 

• Want algorithm that runs in poly time using samples 
poly in respective bounds. 

 
• E.g., can think of: 

–  ln|C| as # bits to describe target without knowing D,  

–  ln|CD,()| as number of bits to describe target knowing 
a good approx to D,  

    under assumption that target has low unlabeled error rate. 

• Can get analogous sample-complexity bounds when 
target is not perfectly compatible. 

Infinite hypothesis spaces / VC-dimension 

Infinite Hypothesis Spaces 

Assume (h,x) in {0,1} and (C) = {h : h in C} where h(x) = (h,x). 

Two issues: 

1. If we want uniform convergence of unlabeled error rates 
(all ℎ ∈ 𝐶 have 𝑒𝑟𝑟 𝑢𝑛𝑙 ℎ − 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤ 𝜖) then we need 
unlabeled sample size to be large as a function of VC-
dimension of 𝜒 𝐶 . 

2. For “size” of highly-compatible set, the max number of 
ways of splitting m points is not a good measure.   Instead: 

 
C[m,D]: expected # of splits of m points from D with 

concepts in C. 
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Infinite hypothesis spaces / VC-dimension 

Infinite Hypothesis Spaces 

Assume (h,x) in {0,1} and (C) = {h : h in C} where h(x) = (h,x). 

C[m,D] - expected # of splits of m points from D with concepts in C. 

 

-Cover-based bounds 
• For algorithms that behave in a specific way:  

– first use the unlabeled data to choose a 
representative set of compatible hypotheses 

– then use the labeled sample to choose among these 
Theorem 

 
 

 

 

 

 

 

 

 

 

 

  

• Can result in much better bound than uniform convergence. 

-Cover-based bounds 
• For algorithms that behave in a specific way:  

– first use the unlabeled data to choose a 
representative set of compatible hypotheses 

– then use the labeled sample to choose among these 
 

E.g., in case of co-training linear separators with 
independence assumption: 
–  -cover of compatible set  = {0, 1, c*, ¬c*} 

E.g., Transductive SVM when data is in two blobs. 

+ 

+ 

_ 

_ 

Ways unlabeled data can help in this model 

• If the target is highly compatible with D and have enough 
unlabeled data to estimate  over all h ∈ C, then can reduce 
the search space (from C down to just those h ∈ C whose 
estimated unlabeled error rate is low). 

 
• By providing an estimate of D, unlabeled data can allow a 

more refined distribution-specific notion of hypothesis 
space size  (such as Annealed VC-entropy or the size of the 
smallest -cover). 

 
• If D is nice so that the set of compatible h ∈ C has a small 

-cover and the elements of the cover are far apart, then 
can learn from even fewer labeled examples than the 1/ 
needed just to verify a good hypothesis. 
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