Topics in Machine Learning Theory

Semi-Supervised Learning

Avrim Blum

Semi-Supervised Learning

- The main models we have been studying (PAC, mistakebound) are for supervised learning.
 - Given labeled examples S = {(x_i,y_i)}, try to learn a good prediction rule.
- · Unfortunately, labeled data is often expensive.
- On the other hand, unlabeled data is often plentiful and cheap.
 - Documents, images, OCR, web-pages, protein sequences,

Can we use unlabeled data to help?

Semi-Supervised Learning

- Two scenarios: active learning and semi-supervised learning.
 - Active learning: have ability to ask for labels of unlabeled points of interest.
 - Can you do better than just ask for labels on random subset?
 - Semi-supervised learning: no querying. Just have lots of additional unlabeled data.
 - Will look today at SSL. This is the most puzzling one since unclear what unlabeled data can do for you.

Semi-Supervised Learning

Given a set L of labeled data and set U of unlabeled data. Can we use U to help?

- What can the unlabeled data possibly do for us?
- Abstract high-level answer we will get to is:
- Going back to "Occam's razor", unlabeled data can help us improve our notion of what is simpler than what, by identifying regularities that appear in the data.
- But first:
 - Discuss several methods that have been developed for using unlabeled data to help.
 - Then will give an extension of PAC model to make sense of what's going on.

Plan for today

Methods:

- Co-training
- Transductive SVM
- Graph-based methods

Model:

Augmented PAC model for SSL.

There's also a book "Semi-supervised learning" on the topic.

<u>Co-training</u>

[B&Mitchell'98] motivated by [Yarowsky'95]

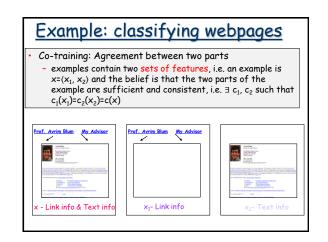
Yarowsky's Problem & Idea:

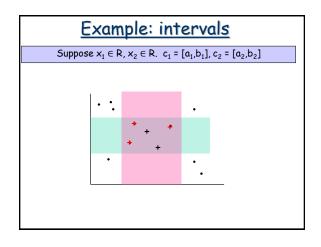
- Some words have multiple meanings (e.g., "plant"). Want to identify which meaning was intended in any given instance.
- Standard approach: learn function from local context to desired meaning, using labeled data. "...nuclear power plant generated..."
- Idea: use fact that in most documents, multiple uses have same meaning. Use to transfer confident predictions over.

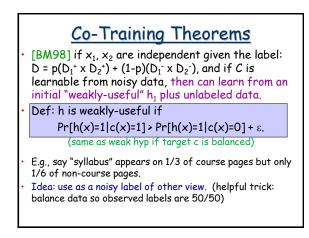
Co-training

Actually, many problems have a similar characteristic.

- Examples x can be written in two parts (x₁,x₂).
- Either part alone is in principle sufficient to produce a good classifer.
- E.g., speech+video, image and context, web page contents and links.
- So if confident about label for x₁, can use to impute label for x₂, and vice versa. Use each classifier to help train the other.





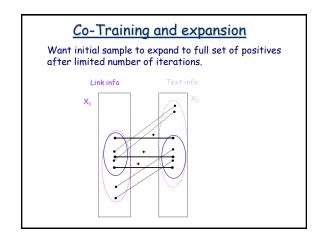


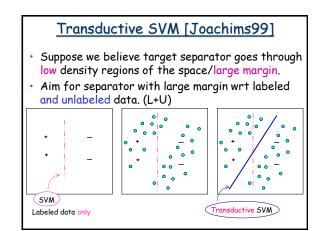
Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: D = p(D₁⁺ x D₂⁺) + (1-p)(D₁⁻ x D₂⁻), and if C is learnable from noisy data, then can learn from an initial "weakly-useful" h_1 plus unlabeled data.
- [BB] in some cases (e.g., LTFs), you can use this to learn from a single labeled example.
 - Pick random hyperplane and boost (using above).
 - Repeat process multiple times.
 - Get 4 kinds of hyps: {close to c, close to $\neg c$, close to 1, close to 0}
 - Just need one labeled example to choose right one.

Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: D = p(D₁⁺ x D₂⁺) + (1-p)(D₁⁻ x D₂⁻), and if C is learnable from noisy data, then can learn from an initial "weakly-useful" h_1 plus unlabeled data.
- [BB] in some cases (e.g., LTFs), you can use this to learn from a single labeled example.
- [BBY] if don't want to assume independence, and C is learnable from positive data only, then suffices for D⁺ to have expansion.





Transductive SVM [Joachims99]

- Suppose we believe target separator goes through low density regions of the space/large margin.
- Aim for separator with large margin wrt labeled and unlabeled data. (L+U)
- Unfortunately, optimization problem is now NPhard. Algorithm instead does local optimization.
 - Start with large margin over labeled data. Induces labels on U.
 - Then try flipping labels in greedy fashion.

Transductive SVM [Joachims99]

- Suppose we believe target separator goes through low density regions of the space/large margin.
- Aim for separator with large margin wrt labeled and unlabeled data. (L+U)
- Unfortunately, optimization problem is now NPhard. Algorithm instead does local optimization.
 - Also, recent work on polynomial-time approximation algorithms. ("furthest hyperplane problem")

Graph-based methods

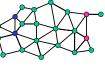
- Suppose we believe that very similar examples probably have the same label.
- If you have a lot of labeled data, this suggests a Nearest-Neighbor type of alg.
- If you have a lot of unlabeled data, suggests a graph-based method.

<u>Graph-based methods</u>

- Transductive approach. (Given L + U, output predictions on U).
- Construct a graph with edges between very similar examples.
- Solve for:
 - Minimum cut
 - Minimum "soft-cut" [ZhuGhahramaniLafferty]
 - Spectral partitioning

Graph-based methods

- Suppose just two labels: 0 & 1.
- Solve for labels f(x) for unlabeled examples x to minimize:
 - $\sum_{e=(u,v)} |f(u)-f(v)|$ [soln = minimum cut]
 - $\sum_{e=(u,v)} (f(u)-f(v))^2 [soln = electric potentials]$
- In case of min-cut, can use counting/VC-dim results to get confidence bounds.
 - VC-dimension of class of cuts of size k is $O(k/\lambda_{min})$, where λ_{min} is the minimum nontrivial cut in the graph. [Kleinberg]



How can we think about these approaches to using unlabeled data in a PAC-style model?

PAC-SSL Model [BB]

- Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.
 - "learn C" becomes "learn (C,χ) " (i.e. learn class C under compatibility notion χ)
- Express relationships that one hopes the target function and underlying distribution will possess.
- Idea: use unlabeled data & the belief that the target is compatible to reduce C down to just {the highly compatible functions in C}.
 - Or, order the functions in C by compatibility.

PAC-SSL Model [BB]

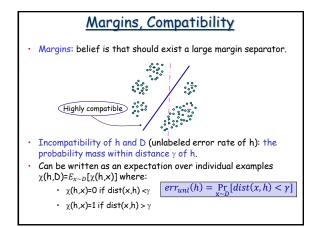
• Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.

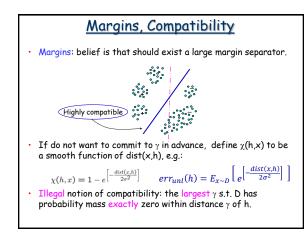
• "learn C" becomes "learn (C,χ) " (i.e. learn class C <u>under</u> compatibility notion χ)

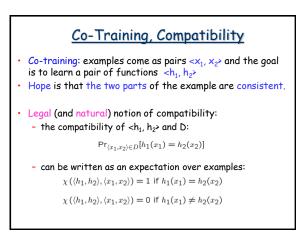
- To do this, need to be able to estimate compatibility of h with D from unlabeled data.
- Require that the degree of compatibility be something that can be estimated from a finite sample.

PAC-SSL Model [BB]

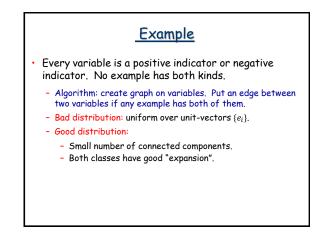
- Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.
 - "learn C" becomes "learn (C,χ) " (i.e. learn class C <u>under</u> compatibility notion χ)
- Require χ to be an expectation over individual examples:
 - $\chi(h,D)=E_{x\sim D}[\chi(h, x)]$ = compatibility of h with D, $\chi(h,x) \in [0,1]$
 - $err_{unl}(h)=1-\chi(h, D) =$ incompatibility of h with D (unlabeled error rate of h)







Sample Complexity - Uniform convergence bounds
Finite Hypothesis Spaces, Doubly Realizable Case
• Define $C_{D,\chi}(\varepsilon) = \{h \text{ in } C : err_{unl}(h) < \varepsilon\}.$
Theorem If we see
$m_u \ge rac{1}{arepsilon} \left[\ln C + \ln rac{2}{\delta} ight]$
unlabeled examples and
$m_l \geq \frac{1}{\varepsilon} \left[\ln C_{D,\chi}(\varepsilon) + \ln \frac{2}{\delta} \right]$
labeled examples, then with probability $\geq 1-\delta$, all $h \in C$ with $\hat{err}(h) = 0$ and $\hat{err}_{unl}(h) = 0$ have $err(h) \leq \varepsilon$.
 Bound the # of labeled examples as a measure of the helpfulness of D with respect to χ a helpful distribution is one in which C_{D,x}(ε) is small



More Generally

- Want algorithm that runs in poly time using samples poly in respective bounds.
- E.g., can think of:
 - In |C| as # bits to describe target without knowing D,
 - $|n|\mathcal{C}_{D,\chi}(\epsilon)|$ as number of bits to describe target knowing a good approx to D,

under assumption that target has low unlabeled error rate.

• Can get analogous sample-complexity bounds when target is not perfectly compatible.

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume $\chi(h,x)$ in {0,1} and $\chi(C) = {\chi_h : h \text{ in } C}$ where $\chi_h(x) = \chi(h,x)$.

Two issues:

- 1. If we want uniform convergence of unlabeled error rates (all $h \in C$ have $|\hat{err}_{unl}(h) - err_{unl}(h)| \leq \epsilon$) then we need unlabeled sample size to be large as a function of VCdimension of $\chi(C)$.
- For "size" of highly-compatible set, the max number of ways of splitting m points is not a good measure. Instead:

C[m,D]: expected # of splits of m points from D with concepts in C.

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume $\chi(h,x)$ in {0,1} and $\chi(C) = {\chi_h : h \text{ in } C}$ where $\chi_h(x) = \chi(h,x)$. C[m,D] - expected # of splits of m points from D with concepts in C. Theorem

 $m_u = O\left(\frac{VCdim\left(\chi(C)\right)}{\varepsilon^2}\log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{2}{\delta}\right)$ unlabeled examples and

 $m_l > \frac{2}{\epsilon} \left[\log(2s) + \log \frac{2}{\delta} \right]$

labeled examples, where

 $s = C_{D,\chi}(t+2\varepsilon)[2m_l,D]$ are sufficient so that with probability at least $1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h)\leq t+\varepsilon$ have $err(h)\leq \varepsilon$, and furthermore all $h\in C$ have

$$|err_{unl}(h) - \widehat{err}_{unl}(h)| \le \varepsilon$$

Implication: If $err_{unl}(e^*) \leq t$, then with probab. $\geq 1 - \delta$, the $h \in C$ that optimizes both $\widehat{err}(h)$ and $\widehat{err}_{unl}(h)$ has $err(h) \leq \varepsilon$.



<u>e-Cover-based bounds</u>

- For algorithms that behave in a specific way:
 - first use the unlabeled data to choose a representative set of compatible hypotheses
 - then use the labeled sample to choose among these

E.g., in case of co-training linear separators with independence assumption:

- ϵ -cover of compatible set = {0, 1, c*, $\neg c^*$ }
- E.g., Transductive SVM when data is in two blobs.

Ways unlabeled data can help in this model

- If the target is highly compatible with D and have enough unlabeled data to estimate χ over all h ∈ C, then can reduce the search space (from C down to just those h ∈ C whose estimated unlabeled error rate is low).
- By providing an estimate of D, unlabeled data can allow a more refined distribution-specific notion of hypothesis space size (such as Annealed VC-entropy or the size of the smallest *e*-cover).
- If D is nice so that the set of compatible $h \in C$ has a small ϵ -cover and the elements of the cover are far apart, then can learn from even fewer labeled examples than the $1/\epsilon$ needed just to verify a good hypothesis.

References

- Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. COLT 1998.
- Joachims, T. (1999). Transductive inference for text classification using support vector machines. *ICML* 1999 (Vol. 99, pp. 200-209).
- Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. *ICML* 2003 (Vol. 3, pp. 912-919).
- Balcan, M. F., Blum, A., & Yang, K. (2004). Co-training and expansion: Towards bridging theory and practice. NIPS 2004 (pp. 89-96).
- Chapelle et al., eds. Semi-supervised learning. Vol. 2. Cambridge: MIT press, 2006.
- Balcan, M. F., & Blum, A. (2010). A discriminative model for semisupervised learning. *Journal of the ACM*, 57(3), 19.
- Karnin, Z., Liberty, E., Lovett, S., Schwartz, R., & Weinstein, O. (2012). Unsupervised SVMs: On the complexity of the Furthest Hyperplane Problem. *COLT 2012*.