CS-598 Topics in Machine Learning Theory www.machinelearning.com

```
Avrim Blum
```

08/29/14

Lecture 2: Online learning I

Mistake-bound model:

- Basic results, connections to PAC, halving alg
- Connections to information theory

Combining "expert advice":
-(Randomized) Weighted Majority algorithm
-Regret-bounds and connections to game-theory

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions at all?
- Can no longer talk about past performance predicting future results.
- Can we hope to say anything interesting??

Idea: mistake bounds \& regret bounds.

Mistake-bound model

[^0]- Note: can no longer talk about "how much data do I need to converge?" Maybe see same examples over again and learn nothing new. But that's OK if don't make mistakes either...
- Want mistake bound poly (n, s), where n is size of example and s is size of smallest consistent $f \in C$. - C is learnable in MB model if exists alg with mistake bound and running time per stage poly (n, s).

Recap from last time

- Last time: PAC model and Occam's razor.
- If data set has $m \geq(1 / \varepsilon)[s \ln (2)+\ln (1 / \delta)]$ examples, then whp any consistent hypothesis with size (h) < s has $\operatorname{err}(h)<\varepsilon$.
- Equivalently, suffices to have $s \leq(\varepsilon m-\ln (1 / \delta)) / \ln (2)$
- "compression =learning"
- Occam bounds =any class is learnable if computation time is no object.

Mistake-bound model

- View learning as a sequence of stages.
- In each stage, algorithm is given x, asked to predict $f(x)$, and then is told correct value.
- Make no assumptions about order of examples.
- Goal is to bound total number of mistakes.

Alg \boldsymbol{A} learns class \boldsymbol{C} with mistake bound \boldsymbol{M} if \boldsymbol{A} makes $\leq M$ mistakes on any sequence of examples consistent with some $f \in C$.

Simple example: disjunctions

- Suppose features are boolean: $X=\{0,1\}^{n}$.
- Target is an OR function, like $x_{3} \vee x_{9} \vee x_{12}$.
- Can we find an on-line strategy that makes at most n mistakes?
Sure.
- Start with $\mathrm{h}(\mathrm{x})=\mathrm{x}_{1} \mathrm{v} \mathrm{x}_{2} \mathrm{v} \ldots \mathrm{v} \mathrm{x}_{\mathrm{n}}$
- Invariant: \{vars in h$\} \supseteq\{$ vars in f$\}$
- Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases $|\mathrm{h}|$ by 1.
- No mistakes on positives. So at most n mistakes total.

Simple example: disjunctions

- Algorithm makes at most n mistakes.
- No deterministic alg can do better:

$$
\begin{array}{r}
1000000 \\
0100000 \\
+ \text { + or }-? \\
0010000 \\
0001000 \\
00 \\
\hline
\end{array} \text { + or }-?
$$

MB model properties

An alg A is "conservative" if it only changes its state when it makes a mistake.
Claim: if C is learnable by a deterministic alg with mistake-bound M, then it is learnable by a conservative alg with mistake bound M.
Why?

- Take generic alg A. Create new conservative A^{\prime} by running A, but rewinding state if no mistake is made.
- Still $\leq M$ mistakes because A still sees a legal sequence of examples.

MB learnable \Rightarrow PAC learnable

Say alg A learns C with mistake-bound M.
Transformation 1:

- Run (conservative) A until it produces a hyp h that survives $\geq(1 / \varepsilon) \ln (M / \delta)$ examples.
- $\operatorname{Pr}($ fooled by any given bad $h) \leq \delta / M$.
- $\operatorname{Pr}($ fooled ever $) \leq \delta$.

Uses at most $\frac{M}{\epsilon} \ln \left(\frac{M}{\delta}\right)$ examples total.

- Fancier method gets $O\left(\frac{1}{\epsilon}\left[M+\ln \left(\frac{1}{\delta}\right)\right]\right)$.

What can we do with

unbounded computation time?

- "Halving algorithm": take majority vote over all consistent $h \in C$. Makes at most $\lg (|C|)$ mistakes.
- What if C has functions of different sizes?
- For any (prefix-free) representation, can make at most 1 mistake per bit of target.
- give each h a weight of $\left(\frac{1}{2}\right)^{\text {size(h) }}$
- Total sum of weights ≤ 1.
- Take weighted vote. Each mistake removes at least $\frac{1}{2}$ of total weight left.

One more example...

- Say we view each example as an integer between 0 and $2^{n}-1$.
- $C=\left\{[0, a]: a<2^{n}\right\}$. (device fails if gets too hot)
- In PAC model we could just pick any consistent hypothesis. Does this work in MB model?
- What would work?

What can we do with unbounded computation time?

- "Halving algorithm": take majority vote over all consistent $h \in C$. Makes at most $\lg (|C|)$ mistakes.
- What if we had a "prior" p over fns in C?
- Weight the vote according to p. Make at most $\lg \left(1 / p_{f}\right)$ mistakes, where f is target f.
- What if f was really chosen according to p ?
- Expected number of mistakes $\leq \sum_{f}\left[p_{f} \lg \left(1 / p_{f}\right)\right]$
= entropy of distribution p.

What if there is no perfect function?

Think of as $h \in C$ as "experts" giving advice to you. Want to do nearly as well as best of them in hindsight.

These are called "regret bounds". >Show that our algorithm does nearly as well as best predictor in some class.

We'll look at a strategy whose running time is $O(|C|)$. So, only computationally efficient when C is small.

Using "expert" advice

Say we want to predict the stock market

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down
\ldots	\ldots	\ldots	\ldots	\ldots

Can we do nearly as well as best in hindsight?
["expert" someone with an opinion. Not necessarily someone who knows anything.]

Using "expert" advice

If one expert is perfect, can get $\leq \lg (n)$ mistakes with halving alg.
But what if none is perfect? Can we do nearly as well as the best one in hindsight?
Strategy \#1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most $\lg (\mathrm{n})[\mathrm{OPT}+1]$ mistakes, where OPT is \#mistakes of the best expert in hindsight.
Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half

Weights: $1 \begin{array}{llll}1 & 1 & 1\end{array}$
Predictions: $U \cup \cup D$ We predict: U Truth: D Weights: $\quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 1$

Randomized Weighted Majority

$2.4(m+\lg n)$ not so good if the best expert makes a mistake 20\% of the time. Can we do better? Yes.
$M=\#$ mistakes we've made so far.
$m=\#$ mistakes best expert has made so far.
$W=$ total weight (starts at n).
After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most $n(3 / 4)^{M}$.
Weight of best expert is $(1 / 2)^{\mathrm{m}}$. So,

Analysis: do nearly as well as best

 expert in hindsight- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, generalize $\frac{1}{2}$ to $1-\varepsilon$.

Solves to: $M \leq \frac{-m \ln (1-\varepsilon)+\ln (n)}{\varepsilon} \approx(1+\varepsilon / 2) m+\frac{1}{\varepsilon} \ln (n)$

| $M=$ expected | $M \leq 1.39 m+2 \ln n \leftarrow \varepsilon=1 / 2$ |
| :---: | :---: | \#mistakes

unlike most
worst-case
bounds, numbers bounds, numbers

Analysis

- Say at time t we have fraction F_{t} of

Summarizing

- $E[\#$ mistakes $] \leq(1+\varepsilon) O P T+\varepsilon^{-1} \log (n)$
$=O P T+\left(\varepsilon O P T+\varepsilon^{-1} \log (n)\right)$
Assuming here that
OPT $\geq \log (n)$
- If set $\varepsilon=(\log (n) / O P T)^{1 / 2}$ to balance the two terms out (or use guess-and-double), get bound of $M \leq O P T+2(O P T \cdot \log n)^{1 / 2} \leq O P T+2(T \log n)^{1 / 2}$

$$
\frac{M}{T} \leq \frac{O P T}{T}+O\left(\sqrt{\frac{\log (\mathrm{n})}{\mathrm{T}}}\right)
$$

Regret term goes to 0 or better as $T \rightarrow \infty=$ "no-regret" algorithm.

Extensions

- What if experts are actions? (rows in a matrix game, ways to drive to work,...)
- At each time t, each has a loss (cost) in $\{0,1\}$.
- Can still run the algorithm
- Rather than viewing as "pick a prediction with prob proportional to its weight" ,
- View as "pick an expert with probability proportional to its weight"
- Alg pays expected cost $\overrightarrow{p_{t}} \cdot \overrightarrow{c_{t}}=F_{t}$.
- Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions

- What if losses (costs) in [0,1]?
- Just modify alg update rule: $w_{i} \leftarrow w_{i}\left(1-\epsilon c_{i}\right)$.
- Fraction of wt removed from system is:
$\left(\sum_{i} w_{i} \in c_{i}\right) /\left(\sum_{j} w_{j}\right)=\epsilon \sum_{i} p_{i} c_{i}=\epsilon[$ our expected cost $]$
- Analysis very similar to case of $\{0,1\}$.

RWM (multiplicative weights alg)

Guarantee: do nearly as well as fixed row in hindsight
Which implies doing nearly as well (or better) than minimax optimal

(or better)
\qquad

Connections to minimax optimality

If play RWM against a best-response oracle, \vec{p} will approach minimax optimality.
(If if didn't, wouldn't be getting promised guarantee)

Connections to minimax optimality

If play two RWM against each other, then empirical distributions must be near-minimax-optimal.
(Else, one or the other could \& would take advantage)

[^0]: Alg \boldsymbol{A} learns class \boldsymbol{C} with mistake bound \boldsymbol{M} if \mathbf{A} makes $\leq M$ mistakes on any sequence of examples consistent with some $f \in C$.

