Course Plan

- Course web page: http://www.machinelearning.com
- First half of lectures (roughly): I will present some classic material [PAC bounds, Regret guarantees, VC-dimension, Boosting, Kernels, ...]
- Second half (roughly): you will present some recent papers, e.g., from COLT 2014.
- Need a volunteer to create a signup sheet. Reward: you get to sign up first!
- I will be away for a couple weeks in the term. Will post assignments to do as a group in-class.

OK, let's get to it...

Machine learning can be used to...

- recognize speech, faces,
- play games, steer cars,
- adapt programs to users,
- classify documents, protein sequences,...

Goals of machine learning theory:
Develop and analyze models to understand:
- what kinds of tasks we can hope to learn, and from what kind of data,
- what types of guarantees might we hope to achieve,
- other common issues that arise.

A typical setting

- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by \(n \) features. (e.g., return address, keywords, spelling, etc.)
- Take sample \(S \) of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") \(h(x) \) for future data.
The concept learning setting

E.g.,

<table>
<thead>
<tr>
<th>$$, meds</th>
<th>Mr. bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Given data, some reasonable rules might be:
• Predict SPAM if ~known AND ($$ OR meds)
• Predict SPAM if $$ + meds - known > 0.
• ...

Big questions

(A) How might we automatically generate rules that do well on observed data? [algorithm design]
(B) What kind of confidence do we have that they will do well in the future? [confidence bound / sample complexity]

for a given learning alg, how much data do we need...

Power of basic paradigm

Many problems solved by converting to basic "concept learning from structured data" setting.

• E.g., document classification
 - convert to bag-of-words
 - Linear separators do well
• E.g., driving a car
 - convert image into features.
 - Use neural net with several outputs.

Natural formalization (PAC)

• We are given sample $S = \{(x,y)\}$.
 - View labels y as being produced by some target function f.
• Alg does optimization over S to produce some hypothesis (prediction rule) h.
• Assume S is a random sample from some probability distribution D. Goal is for h to do well on new examples also from D.
 I.e., $Pr_D[h(x) = f(x)] < \epsilon$.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.
1. Design an efficient algorithm A that will find a consistent DL if one exists.
2. Show that if S is of reasonable size, then $Pr[\exists \text{consistent DL } h \text{ with } err(h) > \epsilon] < \delta$.
3. This means that A is a good algorithm to use if f is, in fact, a DL.
 If S is of reasonable size, then A produces a hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

if ($x_1 = 0$) then -, else
if ($x_2 = 1$) then +, else
if ($x_3 = 1$) then +, else -
Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data. (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:
- No DL consistent with remaining data.
- So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with $\text{err}(h) > \varepsilon$, that we're worried might fool us.
- Chance that h is consistent with S is at most $(1-\varepsilon)^{|\text{S}|}$.
- Let $|\text{H}|$ = number of DLs over n Boolean features. $|\text{H}| < n!4^n$. (for each feature there are 4 possible rules, and no feature will appear more than once)

So, $\text{Pr}\{\text{some DL with } \text{err}(h) > \varepsilon \text{ is consistent}\} \leq |\text{H}|(1-\varepsilon)^{|\text{S}|} \leq |\text{H}|e^{-|\text{S}|}$.

- This is $< \delta$ for $|\text{S}| > (1/\delta)(\ln(|\text{H}|) + \ln(1/\delta))$ or about $(1/\delta)[n \ln n + \ln(1/\delta)]$.

Example of analysis: Decision Lists

\[\begin{array}{c|c|c|c|c} x_1 & x_2 & \cdots & x_n \\hline 0 & 0 & \ldots & 0 \\hline 0 & 0 & \ldots & 1 \\hline 1 & 1 & \ldots & 1 \end{array} \]

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm A that will find a consistent DL if one exists. **DONE**
2. Show that if $|\text{S}|$ is of reasonable size, then $\text{Pr}[\text{exists consistent DL } h \text{ with } \text{err}(h) > \varepsilon] < \delta$. **DONE**
3. So, if f is in fact a DL, then whp A's hypothesis will be approximately correct. "PAC model"

PAC model more formally:

- We are given sample $\text{S} = \{(x,y)\}$.
- Assume x's come from some fixed probability distribution D over instance space.
- View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h. Goal is for h to do well on new examples also from D. I.e., $\text{Pr}_D[h(x) \neq f(x)] < \varepsilon$.

Algorithm PAC-learns a class of functions C if:

- For any given $\varepsilon, \delta > 0$, any target $f \in C$, any dist. D, the algorithm produces h of $\text{err}(h) < \varepsilon$ with prob. at least $1-\delta$.
- Running time and sample sizes polynomial in relevant parameters: $1/\varepsilon, 1/\delta, n$ (size of examples), size(f).
- Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".

We just gave a proper alg to PAC-learn decision lists.

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.

- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."

- And in particular, the number of examples needs to only be proportional to $\log(|\text{H}|)$.
 (notice big difference between $|\text{H}|$ and $\log(|\text{H}|)$.)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?
Occam’s razor (contd)

A computer-science-ish way of looking at it:

• Say “simple” = “short description”.
• At most 2^s explanations can be < s bits long.
• So, if the number of examples satisfies:

$$|S| > \left(\frac{1}{e}\right)[s \ln(2) + \ln(1/\delta)]$$

Then it’s unlikely a bad simple explanation will fool you just by chance.

Occam’s razor (contd)

Nice interpretation:

• Even if we have different notions of what’s simpler (e.g., different representation languages), we can both use Occam’s razor.
• Of course, there’s no guarantee there will be a short explanation for the data. That depends on your representation.

Decision trees

• Decision trees over \{0,1\}n not known to be PAC-learnable.
• Given any data set S, it’s easy to find a consistent DT if one exists. How?
• Where does the DL argument break down?
• Simple heuristics used in practice (ID3 etc.) don’t work for all $c \in C$ even for uniform D.
• Would suffice to find the (apx) smallest DT consistent with any dataset S, but that’s NP-hard.

More examples

Other classes we can PAC-learn: (how?)

• 3-CNF formulas (3-SAT formulas)
• AND-functions, OR-functions, 3-DNF formulas
• k-Decision lists (each if-condition is a conjunction of size k), k is constant.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

More examples

Hard to learn C by C, but easy to learn C by H, where $H = \{2$-CNF$\}$.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

If computation-time is no object, then any class is PAC-learnable

• Occam bounds \Rightarrow any class is learnable if computation time is no object:

 - Let $s_i = 10$, $\delta_i = \delta/2$. For $i=1,2,\ldots$ do:
 - Request $\left(\frac{1}{e}\right)[s_i + \ln(1/\delta_i)]$ examples S_i.
 - Check if there is a function of size at most s_i consistent with S_i. If so, output it and halt.
 - $s_{i+1} = 2s_i$, $\delta_{i+1} = \delta/2$.
 - At most $\delta_1 + \delta_2 + \ldots \leq \delta$ chance of failure.
 - Total data used: $O\left(\left(\frac{1}{e}\right)[\ln(size(f)) + \ln(1/\delta)]\right)$.

(1st terms sum to $O(size(f))$ by telescoping. 2nd terms sum to:

$$\ln\left(\frac{2}{\delta}\right) + \ln\left(\frac{2}{\delta^2}\right) + \ldots \leq \ln(size(f)) + \ln\left(\frac{1}{\delta}\right) = \ln(size(f)) + \ln\left(\frac{1}{\delta}\right)$$

1st terms sum to $O(size(f))$ by telescoping. 2nd terms sum to:

$$\ln\left(\frac{2}{\delta}\right) + \ln\left(\frac{2}{\delta^2}\right) + \ldots \leq \ln(size(f)) + \ln\left(\frac{1}{\delta}\right) = \ln(size(f)) + \ln\left(\frac{1}{\delta}\right)$$

1st terms sum to $O(size(f))$ by telescoping. 2nd terms sum to:

$$\ln\left(\frac{2}{\delta}\right) + \ln\left(\frac{2}{\delta^2}\right) + \ldots \leq \ln(size(f)) + \ln\left(\frac{1}{\delta}\right) = \ln(size(f)) + \ln\left(\frac{1}{\delta}\right)$$
More about the PAC model

Algorithm PAC-learns a class of functions C if:
- For any given $\delta > 0$, $\epsilon > 0$, any target $f \in C$, any dist. D, the algorithm produces h of $\text{err}(h) < \epsilon$ with prob. at least $1-\delta$.
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n, size(f).
- Require h to be poly-time evaluable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".

- What if your alg only worked for $\delta = \frac{1}{2}$, what would you do?
- What if it only worked for $\epsilon = \frac{1}{8}$, or even $\epsilon = \frac{1}{8} - 1/n$? This is called weak-learning. Will get back to later.
- Agnostic learning model: Don’t assume anything about f. Try to reach error $\text{opt}(C) + \epsilon$.

More about the PAC model

Algorithm PAC-learns a class of functions C if:
- For any given $\delta > 0$, $\epsilon > 0$, any target $f \in C$, any dist. D, the algorithm produces h of $\text{err}(h) < \epsilon$ with prob. at least $1-\delta$.
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n, size(f).
- Require h to be poly-time evaluable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".

Drawbacks of model:
- In the real world, labeled examples are much more expensive than running time.
- "Prior knowledge/beliefs" might be not just over form of target but other relations to data.
- Doesn’t address other kinds of info (cheap unlabeled data, pairwise similarity information).
- Only considers "one shot" learning.

Extensions we’ll get at later:

- Replace $\log(|H|)$ with “effective number of degrees of freedom”.

![Linear separators](image)

- There are infinitely many linear separators, but not that many really different ones.
- Other more refined analyses.

Some classic open problems

Can one efficiently PAC-learn...
- an intersection of 2 halfspaces? (2-term DNF trick doesn’t work)
- $C=\{fns \text{ with only } O(\log n) \text{ relevant variables}\}$? (or even $O(\log\log n)$ or $\omega(1)$ relevant variables)? This is a special case of DTs, DNFs.
- Monotone DNF over uniform D?
- Weak agnostic learning of monomials.