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15-859(B) Machine Learning 
Theory 

More on why large margins are good 
for learning.  Kernels and  general 

similarity functions.  L1 – L2 connection. 

Avrim Blum 

02/19/14 

Margins 

If data is separable by large margin , then that’s a good 
thing.  Need sample size only Õ(1/2) to learn to 
constant error rate. 

 
 
 

Some ways to see it: 

1. The perceptron algorithm does well: makes only 
1/2 mistakes. 

2. Margin bounds: whp all consistent large-margin 
separators have low true error. 

3. Really-Simple-Learning + boosting… 

4. Random projection… 

|wx|  , 𝑤 = 1, 𝑥 = 1 
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Today: 3 & 4. 

A really simple learning algorithm 
Suppose data is separable by margin .  Here is 

another way to see why this is good for 
learning. 

 

Consider the following simple algorithm… 
1. Pick a random linear separator. 
2. See if it is any good.   
3. If it is a weak hypothesis (error rate  ½ - /4), 

plug into boosting.   Else don’t.  Repeat. 
 

Claim: if ∃ a large margin separator, then ≥ 𝑐𝛾 chance that 
random separator is weak hyp. 

Can pick random separators before seeing data, so can 
view as 𝑀𝐴𝐽𝑘(𝐻) for k = O 1/𝛾2 , 𝐻 = 𝑂(𝑘/𝛾) 

Proof: Consider random h s.t. ℎ ⋅ 𝑤∗ ≥ 0:  

 Pick a (positive) example x.  Consider the 2-d 
plane defined by x and target w*. 
 

 Prh(hx  0 | hw*  0) 
              (/2 - )/ = ½ - /. 

 So, Eh[err(h) | hw*  0]  ½ - /. 
 

 Since err(h) is bounded between 0 and 1, there 
must be an (𝛾) chance of success. 

A really simple learning algorithm 
Claim: if data has a separator of margin , there’s 

a reasonable chance a random linear separator 
will have error  ½ - /4. [all hyperplanes through origin] 

w* 
x 

QED 

Another way to see why large margin is good 

Johnson-Lindenstrauss Lemma: 
Given n points in Rn, if project randomly to Rk, for 

k = O(-2 log n), then whp all pairwise distances 
preserved up to 1   (after scaling by (n/k)1/2). 

Cleanest proofs: IndykMotwani98, DasguptaGupta99 

JL Lemma, cont 

Proof easiest for slightly different projection: 
 Pick k vectors u1, …, uk iid from n-diml gaussian. 

 Map p → 𝑝 ⋅ 𝑢1, … , 𝑝 ⋅ 𝑢𝑘 . 

 What happens to vij = pi – pj? 

 Becomes (vij ⋅ u1, … , vij ⋅ uk) 

 Each component is iid from 1-diml gaussian, scaled by 
|vij|. 

 For concentration on sum of squares, plug in version 
of Hoeffding for RVs that are squares of gaussians. 

 So, whp all lengths apx preserved, and in fact not hard 
to see that whp all angles are apx preserved too. 

Given n points in Rn, if project randomly to Rk, for k = O(-2 log n), then 
whp all pairwise distances preserved up to 1 (after scaling). 

Cleanest proofs: IM98, DG99 
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Random projection and margins 
Natural connection [ArriagaVempala99]: 

 Suppose we have a set S of points in Rn, separable by 
margin . 

 JL lemma says if project to random k-dimensional space 
for k=O(-2 log |S|), whp still separable (by margin /2). 

 Think of projecting points and target vector w. 

 Angles between pi and w change by at most /2. 

 Could have picked projection before sampling data.  

 So, it’s really just a k-dimensional problem after all.  Do 
all your learning in this k-diml space. 

 So, random projections can help us 
think about why margins are good for 
learning. [note: this argument does NOT imply 

uniform convergence in original space] 

OK, now to another way to 
view kernels… 

Kernel function recap 
 We have a lot of great algorithms for learning 

linear separators (perceptron, SVM, …).  But, a lot 
of time, data is not linearly separable. 
 One option: use a more complicated algorithm. 
 Another option: use a kernel function! 

 Many algorithms only interact with the data via 
dot-products. 
 So, let’s just re-define dot-product. 
 E.g., K(x,y) = (1 + x⋅y)d. 

- K(x,y) = (x) ⋅ (y), where () is implicit mapping into 
an nd-dimensional space. 

 Algorithm acts as if data is in “-space”. Allows it to 
produce non-linear curve in original space.   

 Don’t have to pay for high dimension if data is linearly 
separable there by a large margin. 

+ + 
+ 

+ 

- - - 
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Question: do we need the 
notion of an implicit space to 

understand what makes a 
kernel helpful for learning? 

• Match intuition that you are looking for a 
good measure of similarity for the problem 
at hand? 

 
• Get the power of the standard theory with 

less of “something for nothing” feel to it? 

Can we develop a more intuitive theory? 

And remove even need for existence of Φ? 

Can we develop a more intuitive theory? 

 

 

What would we intuitively want in a 
good measure of similarity for a  

given learning problem? 
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A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(    ,     )→[-1,1] is good for P if: 
most x are on average more similar to random 
pts of their own label than to random pts of 
the other label, by some gap . 

E.g., most images of men are on average -more 
similar to random images of men than random 
images of women, and vice-versa. 

(Scaling so all values in [-1,1]) 

A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(x,y)→[-1,1] is (,)-good for P if at 
least a 1- fraction of examples x satisfy: 

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

E.g., most images of men are on average -more 
similar to random images of men than random 
images of women, and vice-versa. 

(Scaling so all values in [-1,1]) 

A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(x,y)→[-1,1] is (,)-good for P if at 
least a 1- fraction of examples x satisfy: 

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

How can we use it? 

Just do “average nearest-nbr” 
At least a 1- fraction of x satisfy: 

  Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

 Draw S+ of O((1/2)ln 1/2) positive examples. 

 Draw S- of O((1/2)ln 1/2) negative examples 

 Classify x based on which gives better score. 
 Hoeffding: for any given “good x”, prob of error over 

draw of S+,S- at most 2. 

 So, at most  chance our draw is bad on more than  
fraction of “good x”.   

 With prob ≥ 1-, error rate ≤  + . 

But not broad enough 

 K(x,y)=x⋅y has good separator but doesn’t 
satisfy defn. (half of positives are more similar to 
negs that to typical pos) 

+ + 

_ 

30o 

30o 

These have avg 
similarity 0.5 to -, 

0.25 to + 

But not broad enough 

 Idea: would work if we didn’t pick y’s from top-left.   

 Broaden to say: OK if ∃ large region R s.t. most x are on 
average more similar to y∈R of same label than to y∈R of 
other label. (even if don’t know R in advance) 

+ + 

_ 
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Broader defn… 

 Ask that exists a set R of “reasonable” y 
(allow probabilistic) s.t. almost all x satisfy 

 Formally, say K is (’,,)-good if 𝐸𝑥[𝛾-hinge loss(𝑥)] 
≤ ’, and Pr(R+), Pr(R-) ≥ . 

 Thm 1: this is a legitimate way to think about good 
kernels: 
 If kernel has margin  in implicit space, then for 

any  is (,2,)-good in this sense. 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

Broader defn… 

 Ask that exists a set R of “reasonable” y 
(allow probabilistic) s.t. almost all x satisfy 

 Formally, say K is (’,,)-good if 𝐸𝑥[𝛾-hinge loss(𝑥)] 
≤ ’, and Pr(R+), Pr(R-) ≥ . 

 Thm 2: even if not a legal kernel, this is 
nonetheless sufficient for learning. 
 If K is (’,,)-good, ’<<, can learn to error  with 

𝑂
1

𝜖𝛾2 log
1

𝜖𝛾𝜏
 labeled examples. 

[and Õ(1/(2)) unlabeled examples] 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

How to use such a sim fn? 

 Assume ∃ R s.t. Pry[R+,R-] ≥ and almost all x 
satisfy 

 Draw S = {y1,…,yn},  n≈1/(2). 

 View as “landmarks”, use to map new data: 
F(x) = [K(x,y1), …,K(x,yn)]. 

 Whp, exists separator of good L1 margin in 
this space: w=[0,0,1/n+,1/n+,0,0,0,-1/n-,0] 

(n+ = # yi ∈ R+, n- = #y ∈ R-) 

 So, take new set of examples, project to 
this space, and run good L1 alg (Winnow). 

could be unlabeled 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

Other notes 
 So, large margin in implicit space  satisfy this defn (with 

potentially quadratic penalty in margin). 

 Can apply to similarity functions that are not legal kernels.  
E.g., 

 K(x,y)=1 if x,y within distance d, else 0. 

 K(s1, s2) = output of arbitrary dynamic-programming alg 
applied to s1, s2, scaled to [-1,1]. 

 Nice work on using this in the context of edit-distance 
similarity fns for string data [Bellet-Sebban-Habrard 11] 

 This def is really an L1 style margin, so has nice properties: 

 E.g., given k similarity fns with hope that some convex 
combination is good: only log(k) blowup in sample size. 


