
1

15-859(B) Machine Learning
Theory

Bandit Problems, Game Theory,
Connections between online learning

and GT

Avrim Blum

Start with recap

Consider the following setting…
w Each morning, you need to pick
one of N possible routes to drive
to work.

w But traffic is different each day.
n Not clear a priori which will be best.

n When you get there you find out how
long your route took. (And maybe
others too or maybe not.)

CMU

32 min

w Want a strategy for picking routes so that in the long
run, whatever the sequence of traffic patterns has
been, you’ve done nearly as well as the best fixed
route in hindsight. (In expectation, over internal
randomness in the algorithm)

“No-regret” algorithms for repeated decisions

General framework:

w Algorithm has N options. World chooses cost vector.
Can view as matrix like this (maybe infinite # cols)

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in
the “bandit” model).

n Need to assume some bound on max cost. Let’s say all
costs between 0 and 1.

A
lg

o
ri

th
m

World – life - fate

“No-regret” algorithms for repeated decisions

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in
the “bandit” model).

n Need to assume some bound on max cost. Let’s say all
costs between 0 and 1.

Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best

fixed row in hindsight).
We want this to go to 0 or better as T gets large.
[called a “no-regret” algorithm]

To be clear…

w View of world/life/fate: unknown sequence LRLLRLRR...

w Goal: do well (in expectation) no matter what the
sequence is.

w Note: Not trying to compete with best adaptive
strategy – just best fixed choice in hindsight.

w Algorithms must be randomized or else it’s hopeless.

w No-regret algorithms can do much better than playing
minimax optimal, and never much worse.

A
lg

o
ri

th
m

World – life - fate

1 0

0 1
dest

2

History and development (abridged)
w [Hannan’57, Blackwell’56]: Alg. with regret O((N/T)1/2).

n Re-phrasing, need only T = O(N/ε
2) steps to get time-

average regret down to ε. (will call this quantity T
ε
)

n Optimal dependence on T (or ε). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.

History and development (abridged)
w [Hannan’57, Blackwell’56]: Alg. with regret O((N/T)1/2).

n Re-phrasing, need only T = O(N/ε
2) steps to get time-

average regret down to ε. (will call this quantity T
ε
)

n Optimal dependence on T (or ε). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.

w Learning-theory 80s-90s: “combining expert advice”.
Imagine large class C of N prediction rules.
n Perform (nearly) as well as best f∈C.
n [LittlestoneWarmuth’89]: Weighted-majority algorithm

l E[cost] � OPT(1+ε) + (log N)/ε.
l Regret O((log N)/T)1/2. T

ε
= O((log N)/ε

2).

n Optimal as fn of N too, plus lots of work on exact
constants, 2nd order terms, etc. [CFHHSW93]…

w Extensions to bandit model (adds extra factor of N).

w Bounds have only log dependence on # choices N.

w So, conceivably can do well when N is exponential
in natural problem size, if only could implement
efficiently.

w E.g., case of paths…

w nxn grid has N = (2n choose n) possible paths.

w Recent years: series of results giving efficient
implementation/alternatives in various settings,
plus extensions to bandit model.

Efficient implicit implementation for large N…

dest

n [HelmboldSchapire97]: best pruning of given DT.

n [BChawlaKalai02]: list-update problem.

n [TakimotoWarmuth02]: online shortest path in DAGs.

n [KalaiVempala03]: elegant setting generalizing all above
l Online linear optimization

n [Zinkevich03]: elegant setting generalizing all above
l Online convex optimization

n [AwerbuchKleinberg04][McMahanB04]:[KV]→bandit model

n [Kleinberg,FlaxmanKalaiMcMahan05]: [Z03] → bandit model

n [DaniHayes06]: improve bandit convergence rate

n [GolovinStreeter08]: online submodular fn maximization

More…

w Recent years: series of results giving efficient
implementation/alternatives in various settings:

Efficient implicit implementation for large N…

[Kalai-Vempala’03] and [Zinkevich’03] settings

[Z] setting:

w Assume S is convex.

w Allow c(x) to be a convex function over S.

w Assume given any y not in S, can algorithmically find
nearest x ∈ S.

[KV] setting:

w Implicit set S of feasible points in Rm. (E.g., m=#edges,
S={indicator vectors 011010010 for possible paths})

w Assume have oracle for offline problem: given vector c,
find x ∈ S to minimize c·x. (E.g., shortest path algorithm)

w Use to solve online problem: on day t, must pick x
t
∈ S

before c
t
is given.

w (c1·x1+…+cT·xT)/T → minx∈Sx·(c1+…+cT)/T.

x

Plan for today and next time

w Bandit algorithms

w Sleeping experts

w Game theory

w Connections between online learning and game theory

w But first, a quick discussion of [0,1] vs {0,1} costs for
RWM algorithm

3

[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all
costs in {0,1} (correct or mistake).

Here is a simple way to extend to [0,1].

w Given cost vector c, view ci as bias of coin. Flip to create
boolean vector c’, s.t. E[c’i] = ci. Feed c’ to alg A.

w For any sequence of vectors c’, we have:

n EA[cost’(A)] � mini cost’(i) + [regret term]

w So, E$[EA[cost’(A)]] � E$[mini cost’(i)] + [regret term]

w LHS is EA[cost(A)].

w RHS � mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.]

In other words, costs between 0 and 1 just make the
problem easier…

c
$

c’
world A

Cost’ = cost
on c’ vectors

Experts → Bandit setting

w In the bandit setting, only get feedback for the action
we choose. Still want to compete with best action in
hindsight.

w [ACFS02] give algorithm with cumulative regret
O((TN log N)1/2). [average regret O(((N log N)/T)1/2).]

w Here, will give more generic, simpler approach but with
worse bounds (T1/2 → T2/3) .

Experts → Bandit setting

Given: algorithm A for full-info setting with regret � R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

w First, suppose we break our T time steps into K blocks of
size T/K each.

w Use same distrib throughout block and update based on
average cost vector cτ for block τ.

w Then, will get regret � R(K) × T/K.

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

B1 B2 Bτ BK

T/K

Because really paying
T/K × cτ per block

B1 B2 Bτ

Experts → Bandit setting

Given: algorithm A for full-info setting with regret � R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

w First, suppose blocks of
size T/K each.

w Use same distrib throughout block and update based on
average cost vector cτ for block τ.

w Then, will get regret � R(K) × T/K.

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

c
$

c’
world A

BK

T/K

Because really paying
T/K × cτ per block

B1 B2 Bτ

Experts → Bandit setting

Given: algorithm A for full-info setting with regret � R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

w First, suppose blocks of
size T/K each.

w Do at least as well by {0,1}→[0,1] argument. Still get
regret bound R(K) × T/K.

w How does this help us for bandit problem?

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

c
$

c’
world A

BK

T/K

Experts → Bandit setting

w For bandit problem, for each action, pick random time
step in each block to try it as “exploration”.

w Define c’ only wrt these exploration steps.

w Just have to pay an extra at most NK for cost of this
exploration.

w Do at least as well by {0,1}→[0,1] argument. Still get
regret bound R(K) × T/K.

w How does this help us for bandit problem?

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

B1 B2 Bτ BK

T/K

4

Experts → Bandit setting

w For bandit problem, for each action, pick random time
step in each block to try it as “exploration”.

w Define c’ only wrt these exploration steps.

w Just have to pay an extra at most NK for cost of this
exploration.

w Final bound: R(K) × T/K + NK.

w Using K = (T/N)2/3 and bound from RWM, get cumulative
regret bound of O(T2/3N1/3 log N) .

B1 B2 Bτ BK

T/K

A natural generalization
w A natural generalization of our regret goal is: what if we
also want that on rainy days, we do nearly as well as the
best route for rainy days.

w And on Mondays, do nearly as well as best route for
Mondays.

w More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

w Can we get this? (Going back to full-info setting)

A natural generalization
w This generalization is esp natural in machine learning for
combining multiple if-then rules.

w E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

w So, if 90% of documents with football are about sports,
we should have error � 11% on them.

“Specialists” or “sleeping experts” problem.

w Assume we have N rules, explicitly given.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)
w Start with all rules at weight 1.
w At each time step, of the rules i that fire,
select one with probability pi ∝ wi.

w Update weights:
n If didn’t fire, leave weight alone.
n If did fire, raise or lower depending on performance
compared to weighted average:
l ri = [∑j pj cost(j)]/(1+ε) – cost(i)
l wi← wi(1+ε)ri

n So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+ε)
factor. This ensures sum of weights doesn’t increase.

w Final wi = (1+ε)E[costi(alg)]/(1+ε)-costi(i). So, exponent � ε
-1log N.

w So, E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).

Next Topic: Game
Theory

2-Player Zero-Sum games
• Two players R and C. Zero-sum means that what’s
good for one is bad for the other.

• Game defined by matrix with a row for each of R’s
options and a column for each of C’s options.
Matrix tells who wins how much.

• an entry (x,y) means: x = payoff to row player, y = payoff to
column player. “Zero sum” means that y = -x.

• E.g., penalty shot:

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

shooter

goalie

No goal

GOAALLL!!!

5

Game Theory terminolgy
• Rows and columns are called pure strategies.

• Randomized algs called mixed strategies.

• “Zero sum” means that game is purely
competitive. (x,y) satisfies x+y=0. (Game
doesn’t have to be fair).

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Minimax optimal strategy is a (randomized)
strategy that has the best guarantee on its
expected gain, over choices of the opponent.
[maximizes the minimum]

• I.e., the thing to play if your opponent knows
you well.

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Can solve for minimax-optimal strategies
using Linear programming

• No-regret strategies will do nearly as well or
better.

• I.e., the thing to play if your opponent knows
you well.

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

shooter

goalie

No goal

GOAALLL!!!

Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique
value V.

• Minimax optimal strategy for R guarantees
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees
C’s expected loss at most V.

Existence of no-regret strategies gives one
way of proving the theorem.

Can use notion of minimax
optimality to explain bluffing

in poker

Simplified Poker (Kuhn 1950)

• Two players A and B.

• Deck of 3 cards: 1,2,3.

• Players ante $1.

• Each player gets one card.

• A goes first. Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

• High card wins (if no folding). Max pot $2.

6

• Two players A and B. 3 cards: 1,2,3.

• Players ante $1. Each player gets one card.

• A goes first. Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

Writing as a Matrix Game
• For a given card, A can decide to

• Pass but fold if B bets. [PassFold]
• Pass but call if B bets. [PassCall]
• Bet. [Bet]

• Similar set of choices for B.

Can look at all strategies as a
big matrix…

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB]

[PF,PF,PC]
[PF,PF,B]
[PF,PC,PC]
[PF,PC,B]
[B,PF,PC]
[B,PF,B]
[B,PC,PC]
[B,PC,B]

0 0 -1/6 -1/6
0 1/6 -1/3 -1/6

-1/6 0 0 1/6
-1/6 –1/6 1/6 1/6
-1/6 0 0 1/6
1/6 –1/3 0 –1/2
1/6 –1/6 –1/6 –1/2
0 –1/2 1/3 –1/6
0 –1/3 1/6 –1/6

And the minimax optimal
strategies are…• A:

– If hold 1, then 5/6 PassFold and 1/6 Bet.
– If hold 2, then ½ PassFold and ½ PassCall.
– If hold 3, then ½ PassCall and ½ Bet.

Has both bluffing and underbidding…
• B:

– If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
– If hold 2, then 2/3 FoldPass and 1/3 CallPass.
– If hold 3, then CallBet

Minimax value of game is –1/18 to A.

Now, to General-Sum games…

General-sum games

• In general-sum games, can get win-win
and lose-lose situations.

• E.g., “what side of sidewalk to walk on?”:

(1,1) (-1,-1)

(-1,-1) (1,1)

Left

Right

Left Right person
walking

towards you

you

General-sum games

• In general-sum games, can get win-win
and lose-lose situations.

• E.g., “which movie should we go to?”:

(8,2) (0,0)

(0,0) (2,8)

Adventureland

Monsters

Adventureland Monsters

No longer a unique “value” to the game.

7

Nash Equilibrium
• A Nash Equilibrium is a stable pair of
strategies (could be randomized).

• Stable means that neither player has
incentive to deviate on their own.

• E.g., “what side of sidewalk to walk on”:

(1,1) (-1,-1)

(-1,-1) (1,1)

Left

Right

Left Right

NE are: both left, both right, or both 50/50.

Uses
• Economists use games and equilibria as
models of interaction.

• E.g., pollution / prisoner’s dilemma:
– (imagine pollution controls cost $4 but improve
everyone’s environment by $3)

(2,2) (-1,3)

(3,-1) (0,0)

don’t pollute

pollute

don’t pollute pollute

Need to add extra incentives to get good overall behavior.

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of
traffic on a given edge.

Fine. NE is 50/50. Travel time = 1.5

s

x

1

1

t

x
travel time = 1,
indep of traffic

travel time
t(x)=x.

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of
traffic on a given edge.

Add new superhighway. NE: everyone
uses zig-zag path. Travel time = 2.

s

x

1

1

t

x
travel time = 1,
indep of traffic

travel time
t(x)=x.

0

Existence of NE
• Nash (1950) proved: any general-sum game
must have at least one such equilibrium.
– Might require randomized strategies (called
“mixed strategies”)

• This also yields minimax thm as a corollary.
– Pick some NE and let V = value to row player in
that equilibrium.

– Since it’s a NE, neither player can do better
even knowing the (randomized) strategy their
opponent is playing.

– So, they’re each playing minimax optimal.

Existence of NE
• Proof will be non-constructive.
• Unlike case of zero-sum games, we do not
know any polynomial-time algorithm for
finding Nash Equilibria in n × n general-sum
games. [known to be “PPAD-hard”]

• Notation:
– Assume an nxn matrix.
– Use (p1,...,pn) to denote mixed strategy for row
player, and (q1,...,qn) to denote mixed strategy
for column player.

8

Proof

• We’ll start with Brouwer’s fixed point
theorem.
– Let S be a compact convex region in Rn and let
f:S → S be a continuous function.

– Then there must exist x ∈ S such that f(x)=x.

– x is called a “fixed point” of f.

• Simple case: S is the interval [0,1].

• We will care about:
– S = {(p,q): p,q are legal probability distributions
on 1,...,n}. I.e., S = simplexn × simplexn

Proof (cont)

• S = {(p,q): p,q are mixed strategies}.

• Want to define f(p,q) = (p’,q’) such that:
– f is continuous. This means that changing p
or q a little bit shouldn’t cause p’ or q’ to
change a lot.

– Any fixed point of f is a Nash Equilibrium.

• Then Brouwer will imply existence of NE.

Try #1

• What about f(p,q) = (p’,q’) where p’ is best
response to q, and q’ is best response to p?

• Problem: not necessarily well-defined:
– E.g., penalty shot: if p = (0.5,0.5) then q’ could
be anything.

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

Try #1

• What about f(p,q) = (p’,q’) where p’ is best
response to q, and q’ is best response to p?

• Problem: also not continuous:
– E.g., if p = (0.51, 0.49) then q’ = (1,0). If p =
(0.49,0.51) then q’ = (0,1).

(0,0) (1,-1)

(1,-1) (0,0)

Left

Right

Left Right

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p p’

Note: quadratic + linear = quadratic.

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p

Note: quadratic + linear = quadratic.

p’

9

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

• f is well-defined and continuous since
quadratic has unique maximum and small
change to p,q only moves this a little.

• Also fixed point = NE. (even if tiny
incentive to move, will move little bit).

• So, that’s it!

One more interesting game
“Ultimatum game”:

• Two players “Splitter” and “Chooser”

• 3rd party puts $10 on table.

• Splitter gets to decide how to split
between himself and Chooser.

• Chooser can accept or reject.

• If reject, money is burned.

One more interesting game
“Ultimatum game”: E.g., with $4

(1,3) (2,2) (3,1)

(0,0) (2,2) (3,1)

(0,0) (0,0) (3,1)

1

2

3

1 2 3

Splitter: how much
to offer chooser

Chooser:
how

much to
accept

Internal regret and
correlated equilibria

What if everyone started using no-regret algs?

w What if changing cost function is due to other
players in the system optimizing for themselves?

w In zero-sum games, empirical frequencies quickly
approaches minimax optimal.

w In general-sum games, does behavior quickly (or
at all) approach a Nash equilibrium? (after all, a
Nash Eq is exactly a set of distributions that
are no-regret wrt each other).

w Well, unfortunately, no.

A bad example for general-sum games
w Augmented Shapley game from [Z04]: “RPSF”

n First 3 rows/cols are Shapley game (rock / paper /
scissors but if both do same action then both lose).

n 4th action “play foosball” has slight negative if other
player is still doing r/p/s but positive if other player
does 4th action too.

n NR algs will cycle among first 3 and have no regret,
but do worse than only Nash Equilibrium of both
playing foosball.

w We didn’t really expect this to work given how
hard NE can be to find…

10

What can we say?
w If algorithms minimize “internal” or “swap”
regret, then empirical distribution of play
approaches correlated equilibrium.
n Foster & Vohra, Hart & Mas-Colell,…

n Though doesn’t imply play is stabilizing.

What are internal regret and
correlated equilibria?

More general forms of regret
1. “best expert” or “external” regret:

– Given n strategies. Compete with best of them in
hindsight.

2. “sleeping expert” or “regret with time-intervals”:
– Given n strategies, k properties. Let Si be set of days

satisfying property i (might overlap). Want to
simultaneously achieve low regret over each Si.

3. “internal” or “swap” regret: like (2), except that
Si = set of days in which we chose strategy i.

Internal/swap-regret
• E.g., each day we pick one stock to buy

shares in.
– Don’t want to have regret of the form “every

time I bought IBM, I should have bought
Microsoft instead”.

• Formally, regret is wrt optimal function
f:{1,…,N}→{1,…,N} such that every time you
played action j, it plays f(j).

• Motivation: connection to correlated
equilibria.

Internal/swap-regret
“Correlated equilibrium”

– Distribution over entries in matrix, such that if
a trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

– E.g., Shapley game.

-1,-1 -1,1 1,-1

1,-1 -1,-1 -1,1

-1,1 1,-1 -1,-1

R

P

S

R P S

Internal/swap-regret
• If all parties run a low internal/swap regret

algorithm, then empirical distribution of
play is an apx correlated equilibrium.
– Correlator chooses random time t ∈ {1,2,…,T}.

Tells each player to play the action j they
played in time t (but does not reveal value of t).

– Expected incentive to deviate:∑jPr(j)(Regret|j)
= swap-regret of algorithm

– So, this says that correlated equilibria are a
natural thing to see in multi-agent systems
where individuals are optimizing for themselves

Internal/swap-regret, contd
Algorithms for achieving low regret of this

form:
– Foster & Vohra, Hart & Mas-Colell, Fudenberg

& Levine.

– Can also convert any “best expert” algorithm
into one achieving low swap regret.

– Unfortunately, time to achieve low regret is
linear in n rather than log(n)….

11

Internal/swap-regret, contd
Can convert any “best expert” algorithm A into one

achieving low swap regret. Idea:

– Instantiate one copy Ai responsible for
expected regret over times we play i.

– Each time step, if we play p=(p1,…,pn) and get
cost vector c=(c1,…,cn), then Ai gets cost-vector
pic.

– If each Ai proposed to play qi, so all together
we have matrix Q, then define p = pQ.

– Allows us to view pi as prob we chose action i or
prob we chose algorithm Ai.

