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15-859(B) Machine Learning 
Theory

Bandit Problems, Game Theory, 
Connections between online learning 

and GT

Avrim Blum

Start with recap

Consider the following setting…
w Each morning, you need to pick 
one of N possible routes to drive 
to work.

w But traffic is different each day.
n Not clear a priori which will be best.

n When you get there you find out how 
long your route took.  (And maybe 
others too or maybe not.)

CMU

32 min

w Want a strategy for picking routes so that in the long 
run, whatever the sequence of traffic patterns has 
been, you’ve done nearly as well as the best fixed 
route in hindsight. (In expectation, over internal 
randomness in the algorithm)

“No-regret” algorithms for repeated decisions

General framework:

w Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols)

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in 
the “bandit” model).

n Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1.
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“No-regret” algorithms for repeated decisions

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in 
the “bandit” model).

n Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1.

Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best 

fixed row in hindsight).
We want this to go to 0 or better as T gets large.          
[called a “no-regret” algorithm]

To be clear…

w View of world/life/fate: unknown sequence LRLLRLRR...

w Goal: do well (in expectation) no matter what the 
sequence is.

w Note: Not trying to compete with best adaptive 
strategy – just best fixed choice in hindsight.

w Algorithms must be randomized or else it’s hopeless.

w No-regret algorithms can do much better than playing 
minimax optimal, and never much worse.
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History and development (abridged)
w [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2).

n Re-phrasing, need only T = O(N/ε
2) steps to get time-

average regret down to ε.  (will call this quantity T
ε
)

n Optimal dependence on T (or ε).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done.
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w Learning-theory 80s-90s: “combining expert advice”.  
Imagine large class C of N prediction rules.
n Perform (nearly) as well as best f∈C.
n [LittlestoneWarmuth’89]: Weighted-majority algorithm

l E[cost] � OPT(1+ε) + (log N)/ε.
l Regret O((log N)/T)1/2.  T

ε
= O((log N)/ε

2).

n Optimal as fn of N too, plus lots of work on exact 
constants, 2nd order terms, etc. [CFHHSW93]…

w Extensions to bandit model (adds extra factor of N).

w Bounds have only log dependence on # choices N.

w So, conceivably can do well when N is exponential 
in natural problem size, if only could implement 
efficiently.

w E.g., case of paths…

w nxn grid has N = (2n choose n) possible paths.

w Recent years: series of results giving efficient 
implementation/alternatives in various settings, 
plus extensions to bandit model.

Efficient implicit implementation for large N…

dest

n [HelmboldSchapire97]: best pruning of given DT.

n [BChawlaKalai02]: list-update problem.

n [TakimotoWarmuth02]: online shortest path in DAGs.

n [KalaiVempala03]: elegant setting generalizing all above
l Online linear optimization

n [Zinkevich03]: elegant setting generalizing all above
l Online convex optimization

n [AwerbuchKleinberg04][McMahanB04]:[KV]→bandit model

n [Kleinberg,FlaxmanKalaiMcMahan05]: [Z03] → bandit model

n [DaniHayes06]: improve bandit convergence rate

n [GolovinStreeter08]: online submodular fn maximization

More…

w Recent years: series of results giving efficient 
implementation/alternatives in various settings:

Efficient implicit implementation for large N…

[Kalai-Vempala’03] and [Zinkevich’03] settings

[Z] setting:

w Assume S is convex.  

w Allow c(x) to be a convex function over S.

w Assume given any y not in S, can algorithmically find 
nearest x ∈ S.

[KV] setting:

w Implicit set S of feasible points in Rm. (E.g., m=#edges, 
S={indicator vectors 011010010 for possible paths})

w Assume have oracle for offline problem: given vector c, 
find x ∈ S to minimize c·x. (E.g., shortest path algorithm)

w Use to solve online problem: on day t, must pick x
t
∈ S 

before c
t
is given.

w (c1·x1+…+cT·xT)/T → minx∈Sx·(c1+…+cT)/T.

x

Plan for today and next time

w Bandit algorithms

w Sleeping experts

w Game theory

w Connections between online learning and game theory

w But first, a quick discussion of [0,1] vs {0,1} costs for 
RWM algorithm
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[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all 
costs in {0,1} (correct or mistake).

Here is a simple way to extend to [0,1].

w Given cost vector c, view ci as bias of coin.  Flip to create 
boolean vector c’, s.t. E[c’i] = ci.  Feed c’ to alg A.

w For any sequence of vectors c’, we have:

n EA[cost’(A)] � mini cost’(i) + [regret term]

w So, E$[EA[cost’(A)]] � E$[mini cost’(i)] + [regret term]

w LHS is EA[cost(A)].

w RHS � mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.]

In other words, costs between 0 and 1 just make the 
problem easier…

c
$

c’
world A

Cost’ = cost 
on c’ vectors

Experts → Bandit setting

w In the bandit setting, only get feedback for the action 
we choose.  Still want to compete with best action in 
hindsight.

w [ACFS02] give algorithm with cumulative regret            
O( (TN log N)1/2 ).  [average regret O( ((N log N)/T)1/2 ).]

w Here, will give more generic, simpler approach but with 
worse bounds (T1/2 → T2/3) .

Experts → Bandit setting

Given: algorithm A for full-info setting with regret � R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

w First, suppose we break our T time steps into K blocks of 
size T/K each. 

w Use same distrib throughout block and update based on 
average cost vector cτ for block τ.

w Then, will get regret � R(K) × T/K.

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

B1 B2 Bτ BK

T/K

Because really paying 
T/K × cτ per block 

B1 B2 Bτ
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Experts → Bandit setting

Given: algorithm A for full-info setting with regret � R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

w First, suppose                                                  blocks of 
size T/K each. 

w Do at least as well by {0,1}→[0,1] argument.  Still get 
regret bound R(K) × T/K.

w How does this help us for bandit problem?

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?
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world A

BK

T/K

Experts → Bandit setting

w For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”.

w Define c’ only wrt these exploration steps.

w Just have to pay an extra at most NK for cost of this 
exploration.

w Do at least as well by {0,1}→[0,1] argument.  Still get 
regret bound R(K) × T/K.

w How does this help us for bandit problem?

w What if we instead update on cost vector c’ ∈ [0,1]N

that’s a random variable whose expectation is correct?

B1 B2 Bτ BK

T/K
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Experts → Bandit setting

w For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”.

w Define c’ only wrt these exploration steps.

w Just have to pay an extra at most NK for cost of this 
exploration.

w Final bound: R(K) × T/K + NK.

w Using K = (T/N)2/3 and bound from RWM, get cumulative 
regret bound of O(T2/3N1/3 log N) .

B1 B2 Bτ BK

T/K

A natural generalization
w A natural generalization of our regret goal is: what if we 
also want that on rainy days, we do nearly as well as the 
best route for rainy days.

w And on Mondays, do nearly as well as best route for 
Mondays.

w More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

w Can we get this? (Going back to full-info setting)

A natural generalization
w This generalization is esp natural in machine learning for 
combining multiple if-then rules.

w E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports.

w So, if 90% of documents with football are about sports, 
we should have error � 11% on them.

“Specialists” or “sleeping experts” problem.

w Assume we have N rules, explicitly given.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)
w Start with all rules at weight 1.
w At each time step, of the rules i that fire, 
select one with probability pi ∝ wi.

w Update weights:
n If didn’t fire, leave weight alone.
n If did fire, raise or lower depending on performance 
compared to weighted average:
l ri = [∑j pj cost(j)]/(1+ε) – cost(i)
l wi← wi(1+ε)ri

n So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+ε) 
factor.  This ensures sum of weights doesn’t increase.

w Final wi = (1+ε)E[costi(alg)]/(1+ε)-costi(i). So, exponent � ε
-1log N. 

w So, E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).

Next Topic: Game 
Theory

2-Player Zero-Sum games
• Two players R and C.  Zero-sum means that what’s 
good for one is bad for the other.

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much.

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x.

• E.g., penalty shot:

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!
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Game Theory terminolgy
• Rows and columns are called pure strategies.

• Randomized algs called mixed strategies.

• “Zero sum” means that game is purely 
competitive. (x,y) satisfies x+y=0. (Game 
doesn’t have to be fair).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Minimax optimal strategy is a (randomized) 
strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum]

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Can solve for minimax-optimal strategies 
using Linear programming

• No-regret strategies will do nearly as well or 
better.

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique 
value V.

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V.

Existence of no-regret strategies gives one 
way of proving the theorem.

Can use notion of minimax 
optimality to explain bluffing 

in poker

Simplified Poker (Kuhn 1950)

• Two players A and B.  

• Deck of 3 cards: 1,2,3.

• Players ante $1.

• Each player gets one card. 

• A goes first.  Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

• High card wins (if no folding). Max pot $2.
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• Two players A and B.  3 cards: 1,2,3.

• Players ante $1. Each player gets one card. 

• A goes first.  Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

Writing as a Matrix Game
• For a given card, A can decide to

• Pass but fold if B bets. [PassFold]
• Pass but call if B bets. [PassCall]
• Bet. [Bet]

• Similar set of choices for B.

Can look at all strategies as a 
big matrix…

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB]

[PF,PF,PC]
[PF,PF,B]
[PF,PC,PC]
[PF,PC,B]
[B,PF,PC]
[B,PF,B]
[B,PC,PC]
[B,PC,B]

0             0             -1/6             -1/6
0            1/6           -1/3             -1/6

-1/6           0                0                1/6
-1/6        –1/6             1/6              1/6
-1/6           0                0                1/6
1/6        –1/3              0               –1/2
1/6        –1/6           –1/6             –1/2
0         –1/2             1/3             –1/6
0         –1/3             1/6             –1/6

And the minimax optimal 
strategies are…• A: 

– If hold 1, then 5/6 PassFold and 1/6 Bet.
– If hold 2, then ½ PassFold and ½ PassCall.
– If hold 3, then ½ PassCall and ½ Bet.

Has both bluffing and underbidding…
• B:

– If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
– If hold 2, then 2/3 FoldPass and 1/3 CallPass.
– If hold 3, then CallBet

Minimax value of game is –1/18 to A.

Now, to General-Sum games…

General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “what side of sidewalk to walk on?”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right person 
walking 

towards you

you

General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “which movie should we go to?”:

(8,2)  (0,0)

(0,0)  (2,8)

Adventureland

Monsters

Adventureland Monsters

No longer a unique “value” to the game.
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Nash Equilibrium
• A Nash Equilibrium is a stable pair of 
strategies  (could be randomized).

• Stable means that neither player has 
incentive to deviate on their own.

• E.g., “what side of sidewalk to walk on”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right

NE are: both left, both right, or both 50/50.

Uses
• Economists use games and equilibria as 
models of interaction.

• E.g., pollution / prisoner’s dilemma:
– (imagine pollution controls cost $4 but improve 
everyone’s environment by $3)

(2,2)  (-1,3)

(3,-1)  (0,0)

don’t pollute

pollute

don’t pollute   pollute

Need to add extra incentives to get good overall behavior.

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Fine.  NE is 50/50.  Travel time = 1.5

s

x

1

1

t

x
travel time = 1, 
indep of traffic

travel time 
t(x)=x. 

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Add new superhighway.  NE: everyone 
uses zig-zag path.  Travel time = 2.

s

x

1

1

t

x
travel time = 1, 
indep of traffic

travel time 
t(x)=x. 

0

Existence of NE
• Nash (1950) proved: any general-sum game 
must have at least one such equilibrium.
– Might require randomized strategies (called 
“mixed strategies”)

• This also yields minimax thm as a corollary.
– Pick some NE and let V = value to row player in 
that equilibrium. 

– Since it’s a NE, neither player can do better 
even knowing the (randomized)  strategy their 
opponent is playing.

– So, they’re each playing minimax optimal.

Existence of NE
• Proof will be non-constructive.
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n × n general-sum 
games. [known to be “PPAD-hard”]

• Notation:
– Assume an nxn matrix.
– Use (p1,...,pn) to denote mixed strategy for row 
player, and (q1,...,qn) to denote mixed strategy 
for column player.
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Proof

• We’ll start with Brouwer’s fixed point 
theorem.
– Let S be a compact convex region in Rn and let 
f:S → S be a continuous function.

– Then there must exist x ∈ S such that f(x)=x.

– x is called a “fixed point” of f.

• Simple case: S is the interval [0,1].

• We will care about:
– S = {(p,q): p,q are legal probability distributions 
on 1,...,n}.   I.e.,  S =  simplexn × simplexn

Proof (cont)

• S = {(p,q): p,q are mixed strategies}.

• Want to define f(p,q) = (p’,q’) such that:
– f is continuous.  This means that changing p 
or q a little bit shouldn’t cause p’ or q’ to 
change a lot.

– Any fixed point of f is a Nash Equilibrium.

• Then Brouwer will imply existence of NE.

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: not necessarily well-defined:
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 
be anything.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: also not continuous:
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 
(0.49,0.51) then q’ = (0,1).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p  p’

Note: quadratic + linear = quadratic.

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p

Note: quadratic + linear = quadratic.

p’



9

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little.

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit).

• So, that’s it!

One more interesting game
“Ultimatum game”:

• Two players “Splitter” and “Chooser”

• 3rd party puts $10 on table.

• Splitter gets to decide how to split 
between himself and Chooser.

• Chooser can accept or reject.

• If reject, money is burned.

One more interesting game
“Ultimatum game”:  E.g., with $4

(1,3) (2,2)  (3,1)

(0,0) (2,2)  (3,1)

(0,0) (0,0)  (3,1)

1

2

3

1      2      3 

Splitter: how much 
to offer chooser

Chooser: 
how 

much to 
accept

Internal regret and 
correlated equilibria  

What if everyone started using no-regret algs?

w What if changing cost function is due to other 
players in the system optimizing for themselves?

w In zero-sum games, empirical frequencies quickly 
approaches minimax optimal.

w In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?  (after all, a 
Nash Eq is exactly a set of distributions that 
are no-regret wrt each other).

w Well, unfortunately, no.  

A bad example for general-sum games
w Augmented Shapley game from [Z04]: “RPSF”

n First 3 rows/cols are Shapley game (rock / paper / 
scissors but if both do same action then both lose).

n 4th action “play foosball” has slight negative if other 
player is still doing r/p/s but positive if other player 
does 4th action too.

n NR algs will cycle among first 3 and have no regret, 
but do worse than only Nash Equilibrium of both 
playing foosball.

w We didn’t really expect this to work given how 
hard NE can be to find…
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What can we say?
w If algorithms minimize “internal” or “swap”
regret, then empirical distribution of play 
approaches correlated equilibrium.
n Foster & Vohra, Hart & Mas-Colell,…

n Though doesn’t imply play is stabilizing.

What are internal regret and 
correlated equilibria?

More general forms of regret
1. “best expert” or “external” regret:

– Given n strategies.  Compete with best of them in 
hindsight.

2. “sleeping expert” or “regret with time-intervals”:
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si.

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i.

Internal/swap-regret
• E.g., each day we pick one stock to buy 

shares in.
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”.

• Formally, regret is wrt optimal function 
f:{1,…,N}→{1,…,N} such that every time you 
played action j, it plays f(j).

• Motivation: connection to correlated 
equilibria.

Internal/swap-regret
“Correlated equilibrium”

– Distribution over entries in matrix, such that if 
a trusted party chooses one at random and tells 
you your part, you have no incentive to deviate.

– E.g., Shapley game.

-1,-1  -1,1   1,-1

1,-1 -1,-1  -1,1

-1,1   1,-1   -1,-1

R

P

S

R       P       S

Internal/swap-regret
• If all parties run a low internal/swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium.
– Correlator chooses random time t ∈ {1,2,…,T}.  

Tells each player to play the action j they 
played in time t (but does not reveal value of t).

– Expected incentive to deviate:∑jPr(j)(Regret|j)
= swap-regret of algorithm

– So, this says that correlated equilibria are a 
natural thing to see in multi-agent systems 
where individuals are optimizing for themselves

Internal/swap-regret, contd
Algorithms for achieving low regret of this 

form:
– Foster & Vohra, Hart & Mas-Colell, Fudenberg

& Levine.

– Can also convert any “best expert” algorithm 
into one achieving low swap regret.

– Unfortunately, time to achieve low regret is 
linear in n rather than log(n)….
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Internal/swap-regret, contd
Can convert any “best expert” algorithm A into one 

achieving low swap regret.  Idea:

– Instantiate one copy Ai responsible for 
expected regret over times we play i.

– Each time step, if we play p=(p1,…,pn) and get 
cost vector c=(c1,…,cn), then Ai gets cost-vector 
pic.

– If each Ai proposed to play qi, so all together 
we have matrix Q, then define p = pQ.

– Allows us to view pi as prob we chose action i or
prob we chose algorithm Ai.


