15-859(B) Machine Learning Learning finite state environments

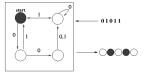
Avrim Blum 03/25/09

Consider the following setting

- Say we are a baby trying to figure out the effects our actions have on our environment...
 - Perform actions
 - Get observations
 - Try to make an internal model of what is happening.

<u>A model: learning a finite state</u> environment

- Let's model the world as a DFA. We perform actions, we get observations.
- Our actions can also change the state of the world. # states is finite.



Another way to put it

We have a box with buttons and lights.

- Can press the buttons, observe the lights.

 lights = f(current state)

 next state = g(button, current state)
- · Goal: learn predictive model of device.

Learning a DFA

In the language of our standard models...

- Asking if we can learn a DFA from Membership Queries.
 - Issue of whether we have counterexamples (Equivalence Queries) or not.

[for the moment, assume not]

- Also issue of whether or not we have a reset button.

[for today, assume yes]

Learning DFAs

This seems really hard. Can't tell for sure when world state has changed.

Let's look at an easier problem first: state = observation.

An example w/o hidden state

2 actions: a, b.

Generic algorithm for lights=state:

- ·Build a model.
- •While not done, find an unexplored edge and take it.

Now, let's try the harder problem!

Some examples

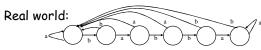
Example #1 (3 states)

Example #2 (3 states)

<u>Can we design a procedure to do this in general?</u>

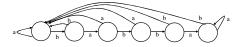
One problem: what if we always see the same thing? How do we know there isn't something else out there?

Our model:



Called "combination-lock automaton"

Can we design a procedure to do this in general?



Combination-lock automaton: basically simulating a conjunction.

This means we can't hope to efficiently come up with an exact model of the world from just our own experimentation. (I.e., MQs only).

How to get around this?

- Assume we can propose model and get counterexample. (MQ+EQ)
- Equivalently, goal is to be predictive. Any time we make a mistake, we think and perform experiments. (MQ+MB)
- Goal is not to have to do this too many times. For our algorithm, total # mistakes will be at most # states.

Algorithm by Dana Angluin

(with extensions by Rivest & Schapire)

- To simplify things, let's assume we have a RESET button. [Back to basic DFA problem]
- Can get rid of that using something called a "homing sequence" that you can also learn

The problem (recap)

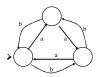
· We have a DFA:

- observation = f(current state)
- next state = g(button, prev state)
- Can feed in sequence of actions, get observations. Then resets to start.
- Can also propose/field-test model. Get counterexample.

Key Idea

Key idea is to represent the DFA using a state/experiment table.

		exp λ	verime a	n
	λ	П		-
states	a			
	b			
	aa			
trans-	ab			
itions	ba			
	hh			



Key Idea

Key idea is to represent the DFA using a state/experiment table.

		experiments		
		λ	a	
states	λ			_
	a			
	b			
_	aa			_
trans-	ab			
itions	ba			

bb 🗆 🗆

Guarantee will be: either this is correct, or else the world has > n states. In that case, need way of using counterexs to add new state to model.

The algorithm

We'll do it by example...

Algorithm (formally)

Begin with $S = \{\lambda\}, E = \{\lambda\}.$

- 1. Fill in transitions to make a hypothesis FSM.
- 2. While exists $s \in SA$ such that no $s' \in S$ has row(s') = row(s), add s into S, and go to 1.
- 3. Query for counterexample z.
- 4. Consider all splits of z into (p_i, s_i) , and replace p_i with its predicted equivalent $\alpha_i \in S$.
- 5. Find $\alpha_i r_i$ and $\alpha_{i+1} r_{i+1}$ that produce different observations.
- 6. Add r_{i+1} as a new experiment into E.go to 1.