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15-859(B) Machine Learning Theory

Lecture 14: Learning from noisy data, 
intro to SQ model

Avrim Blum
03/02/09

Learning when there is no perfect 
hypothesis

• Hoeffding/Chernoff bounds: minimizing training 
error will approximately minimize true error: just 
need O(1/ε2) samples versus O(1/ε).

• What about polynomial-time algorithms?  Seems 
harder.
– Given data set S, finding apx best conjunction is NP-hard. 

– Can do other things, like minimize hinge-loss, maxent type 
loss, but not directly connected to error rate.

• One way to make progress: make assumptions on 
the “noise” in the data.  E.g., Random Classification 
Noise model.

Learning from Random Classification Noise
• PAC model, target f ∈ C, but assume labels 
from noisy channel.

• “noisy” Oracle EXη(f,D). η is the noise rate.
– Example x is drawn from D.

– With probability 1-η see label l(x) = f(x).

– With probability η see label l(x) = 1-f(x).

• E.g., if h has non-noisy error p, what is the 
noisy error rate?
– p(1-η) + (1-p)η = η + p(1-2η).
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Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification
noise if for any f∈C, any distrib D, any η < 1/2, any 
ε, δ > 0, given access to EXη(f,D), A finds a hyp h 
that is ε-close to f, with probability ≥ 1-δ.  

Allowed time poly(1/ε, 1/δ, 1/(1-2η), n , size(f))

• Q: is this a plausible goal? We are asking the 
learner to get closer to f than the data is.

• A: OK because noisy error rate is linear in 
true error rate (squashed by 1-2η)
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Notation

• Use “Pr[…]” for probability with respect to 
non-noisy distribution.

• Use “Prη[…]” for probability with respect to 
noisy distribution.

Learning OR-functions (assume monotone)

• Let’s assume noise rate η is known. Any ideas?

• Say pi = Pr[f(x)=0 ∧ xi=1]

• Any h that includes all xi such that pi=0 and
no xi such that pi > ε/n is good.

• So, just need to estimate pi to ± ε/2n.
– Rewrite as pi = Pr[f(x)=0|xi=1] × Pr[xi=1].

– 2nd part unaffected by noise (and if tiny, can 
ignore xi). Define qi as 1st part.  

– Then Prη[l(x)=0|xi=1] = qi(1-η)+(1-qi)η = η+qi(1-2η).

– So, enough to approx LHS to O((ε/n)(1-2η)).
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Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with 
smallest value of Prη[l(x)=0|xi=1].

Generalizing the algorithm

Basic idea of algorithm was:

• See how can learn in non-noisy model by 
asking about probabilities of certain events 
with some “slop”. 

• Try to learn in noisy model by breaking 
events into:
– Parts predictably affected by noise.

– Parts unaffected by noise.

Let’s formalize this in notion of “statistical 
query” (SQ) algorithm.  Will see how to 
convert any SQ alg to work with noise.

The Statistical Query Model
• No noise.

• Algorithm asks: “what is the probability a 
labeled example will have property χ? Please 
tell me up to additive error τ.”
– Formally, χ:X × {0,1} → {0,1}. Must be poly-time 
computable. τ ≥ 1/poly(…).

– Let Pχ = Pr[χ(x,f(x))=1].

– World responds with P’χ ∈ [Pχ-τ, Pχ+τ].

[can extend to [0,1]-valued or vector-valued χ]

• May repeat poly(…) times.  Can also ask for 
unlabeled data.  Must output h of error � ε. 
No δ in this model.

The Statistical Query Model
• Examples of queries:
– What is the probability that xi=1 and label is 
negative?

– What is the error rate of my current hypothesis 
h? [χ(x,l)=1 iff h(x) ≠ l]

• Get back answer to ±τ.  Can simulate from   
≈ 1/τ2 examples. [That’s why need τ ≥ 1/poly(…).]

• To learnOR-functions, ask for Pr[xi=1∧f(x)=0] 
with τ = ε/(2n).  Produce OR of all xi such 
that P’χ � ε/(2n).

The Statistical Query Model
• Many algorithms can be simulated with 
statistical queries:
– Perceptron: ask for E[f(x)x : h(x)≠f(x)]  (formally 
define vector-valued χ = x if h(x)≠f(x), and 0 otherwise.  
Then divide by Pr[h(x)≠f(x)].)

– Hill-climbing type algorithms: what is error rate 
of h? What would it be if I made this tweak?

• Properties of SQ model:
– Can automatically convert to work in presence of 
classification noise.

– Can give a nice characterization of what can and 
cannot be learned in it.

SQ-learnable ⇒ (PAC+Noise)-learnable
• Given query χ, need to estimate from noisy 
data.  Idea:
– Break into part predictably affected by noise, 
and part unaffected.

– Estimate these parts separately.

– Can draw fresh examples for each query or 
estimate many queries from same sample if 
VCDim of query space is small.

• Running example: χ(x,l)=1 iff xi=1 ∧ l=0.
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How to estimate Pr[χ(x,f(x))=1]?

• Let CLEAN = {x : χ(x,0) = χ(x,1)}

• Let NOISY = {x : χ(x,0) ≠ χ(x,1)}
– What are these for χ(x,l)=1 iff xi=1 ∧ l=0 ?

• Now we can write:
– Pr[χ(x,f(x))=1] = Pr[χ(x,f(x))=1 ∧ x∈CLEAN] +

Pr[χ(x,f(x))=1 ∧ x∈NOISY].

• Step 1: first part is easy to estimate from 
noisy data (easy to tell if x ∈ CLEAN).

• What about the 2nd part?

How to estimate Pr[χ(x,f(x))=1]?

• Let CLEAN = {x : χ(x,0) = χ(x,1)}
• Let NOISY= {x : χ(x,0) ≠ χ(x,1)}

– What are these for χ(x,l)=1 iff xi=1 ∧ l=0 ?

• Now we can write:
– Pr[χ(x,f(x))=1] = Pr[χ(x,f(x))=1 ∧ x∈CLEAN] +

Pr[χ(x,f(x))=1 ∧ x∈NOISY].

• Can estimate Pr[x∈NOISY].
• Also estimate Pη ≡ Prη[χ(x,l)=1 | x∈NOISY].
• Want P ≡ Pr[χ(x,f(x))=1 | x∈NOISY].
• Write Pη = P(1-η) + (1-P)η = η + P(1-2η).
• So, P = (Pη - η)/(1-2η).

– Just need to estimate Pη to additive error τ(1-2η).
– If don’t know η, can have “guess and check” wrapper 
around entire algorithm.

Characterizing what’s learnable 
using SQ algorithms

• Key tool: Fourier analysis of boolean
functions.

• Sounds scary but it’s a cool idea!

• Let’s think of functions from {0,1}n→{-1,1}.

• View function f as a vector of 2n entries:

(D[000]1/2f(000),D[001]1/2f(001),…,D[x]1/2f(x),…)

• What is 〈f, f〉? What is 〈f, g〉? 

• What is an orthonormal basis?  Will see 
connection to SQ algs next time…


