15-859(B) Machine Learning Theory

Lecture 11: More on why large margins are good for learning. Kernels and general similarity functions. L₁ - L₂ connection.

Avrim Blum 02/18/09

Basic setting

- w Examples are points x in instance space, like Rⁿ.
- w Labeled + or -.
- w Assume drawn from some probability distribution:
 - Distribution D over x, labeled by target function c.
 - $_{n}$ Or distribution P over (x, l)
 - Mill call P (or (c,D)) our "learning problem".
- w Given labeled training data, want algorithm to do well on new data.

Margins

If data is separable by large margin γ , then that's a good thing. Need sample size only $\tilde{O}(1/\gamma^2)$.

$$|w \cdot x|/|x| \ge \gamma$$
, $|w|=1$

Some ways to see it:

- 1. The perceptron algorithm does well: makes only $1/\gamma^2$ mistakes.
- 2. Margin bounds: whp all consistent large-margin separators have low true error.
- 3. Really-Simple-Learning + boosting...

4. Random projection... Will do 3 then 4 then 2.

A really simple learning algorithm

Suppose our problem has the property that whp a sufficiently large sample 5 would be separable by margin γ . Here is another way to see why this is good for learning.

Consider the following simple algorithm...

- 1. Pick a random hyperplane.
- 2. See if it is any good.
- 3. If it is a weak-learner (error rate $\leq \frac{1}{2} \gamma/4$), plug into boosting. Else don't. Repeat.

Claim: if data has a large margin separator, there's a reasonable chance a random hyperplane will be a weak-learner.

A really simple learning algorithm

Claim: if data has a separator of margin γ , there's a reasonable chance a random hyperplane will have error $\leq \frac{1}{2}$ - $\gamma/4$. [all hyperplanes through origin]

- W Pick a (positive) example x. Consider the 2-d plane defined by x and target w*.
- w $Pr_h(h \cdot x \leq 0 \mid h \cdot w^* \geq 0)$ $\leq (\pi/2 - \gamma)/\pi = \frac{1}{2} - \gamma/\pi.$
- w So, $E_h[err(h) \mid h \cdot w^* \ge 0] \le \frac{1}{2} \gamma/\pi$.
- Since err(h) is bounded between 0 and 1, there must be a reasonable chance of success. QED

Another wa<u>y to see why large margin is good</u>

Johnson-Lindenstrauss Lemma:

Given n points in Rⁿ, if project randomly to R^k, for $k = O(\varepsilon^{-2} \log n)$, then whp all pairwise distances preserved up to $1 \pm \varepsilon$ (after scaling by $(n/k)^{1/2}$).

Cleanest proofs: IM98, DG99

JL Lemma

Given n points in Rⁿ, if project randomly to R^k, for k = O(e⁻² log n), then whp all pairwise distances preserved up to 1±e (after scaling).

Cleanest proofs: IM98, D699

Proof intuition:

- W Consider a random unit-length vector $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. What does x_1 coordinate look like?
- w $E[x_1^2]=1/n$. Usually $\leq c/n$.
- If indep, $\Pr[|(x_1^2 + ... + x_k^2) k/n| \ge \varepsilon k/n] \le e^{-O(k\varepsilon^2)}$.
- w So, at k = $O(\epsilon^2 \log n)$, with prob 1 1/poly(n), projection to 1st k coordinates has length (k/n)1/2 (1 $\pm \epsilon$).
- w Now, apply this to vector $\mathbf{v}_{ij} = \mathbf{p}_i \mathbf{p}_j$, projecting onto random k-diml space.

Whp all v_{ij} project to length $(k/n)^{1/2}(1\pm\epsilon)|v_{ij}|$

JL Lemma, cont

Proof easiest for slightly different projection:

- w Pick k vectors $u_1, ..., u_k$ iid from n-diml gaussian.
- w Map $p \rightarrow (p \cdot u_1, ..., p \cdot u_k)$.
- w What happens to $v_{ij} = p_i p_j$?
 - Becomes $(v_{ij} \cdot u_1, ..., v_{ij} \cdot u_k)$
 - Each component is iid from 1-diml gaussian, scaled by $|\nu_{ij}|.$
- For concentration on sum of squares, plug in version of Hoeffding for RVs that are squares of gaussians.
- W So, whp all lengths apx preserved, and in fact not hard to see that whp all <u>angles</u> are apx preserved too.

Random projection and margins

Natural connection [AV99]:

- w Suppose we have a set S of points in Rⁿ, separable by margin γ.
- w JL lemma says if project to random k-dimensional space for $k=O(\gamma^2 \log |S|)$, whp still separable (by margin $\gamma/2$).
 - . Think of projecting points and target vector w.
 - ⁿ Angles between p_i and w change by at most $\pm \gamma/2$.
- w Could have picked projection before sampling data.
- w So, it's really just a k-dimensional problem after all. Do all your learning in this k-diml space.

So, random projections can help us think about why margins are good for learning. [note: this argument does NOT imply uniform convergence in original space]

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- What is the maximum number of points that can be shattered by separators of margin at least γ? (aka "fatshattering dimension")
 - Ans: $O(1/\gamma^2)$.
 - Proof: corollary to Perceptron mistake bound (why?) (if dimension is d, can force Perceptron to make ≥ d mistakes)
- Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...
 - Draw 2m points from D, split into S_1 , S_2 as before.
 - Argue whp no separator gets S_1 correct by margin γ , but makes $\geq \epsilon m$ mistakes on S_2 .
 - To do this, tempting to do union bound over all separators that have no points in S within margin γ (which we can count using Sauer)
 - But this is undercounting...

Uniform convergence bounds for large margins

Claim: Whp, any linear separator that gets training data correct by margin γ has true error $\leq \epsilon$ so long as $|S| \gg (1/\epsilon)[(1/\gamma^2)\log^2(1/(\gamma\epsilon)) + \log(1/\delta)]$

Proof in two steps:

- 2. Now want to use like in VC-dim analysis. Sauer's lemma analog still applies, but there's a complication we'll need to address...
 - Let $h(x) = h \cdot x$, but truncated at $\pm \gamma$.
 - Define dist (h_1,h_2) =max_{x∈S} $|h_1(x)-h_2(x)|$.
 - Define H to be a " $\gamma/2$ cover": for all separators, exists $h \in H$ within distance $\gamma/2$.
 - For h∈H, define "correct" as "correct by margin at least γ/2", else call it a "mistake". Now, run usual union-bound argument on these.
 - Finally, apply bound of [Alon et al] on cover-sizes.

OK, now on to kernels...

Kernel functions

- We have a lot of great algorithms for learning linear separators (perceptron, SVM, ...). But, a lot of time, data is not linearly separable.
 - "Old" answer: use a multi-layer neural network.
 - "New" answer: use a kernel function!
- Many algorithms only interact with the data via dot-products.
 - So, let's just re-define dot-product.
 - E.g., $K(x,y) = (1 + x \cdot y)^d$.
 - K(x,y) = $\phi(x)$ · $\phi(y)$, where $\phi()$ is implicit mapping into an n^d -dimensional space.
 - Algorithm acts as if data is in "\$-space". Allows it to produce non-linear curve in original space.
 - Don't have to pay for high dimension if data is linearly separable there by a large margin.

Question: do we need the notion of an implicit space to understand what makes a kernel helpful for learning?

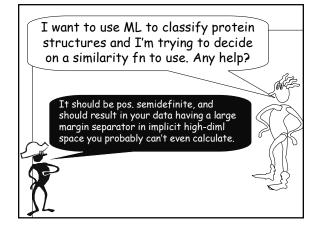
[BB'06][BBS'08]

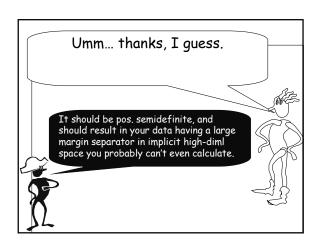
Kernel fns have become very popular

..but there's something a little funny:

w On the one hand, operationally a kernel is just a similarity function: $K(x,y) \in [-1,1]$, with some extra requirements. [here I'm scaling to $|\Phi(x)| = 1$]

- w And in practice, people think of a good kernel as a good measure of similarity between data points.
- w But <u>Theory</u> talks about margins in implicit highdimensional Φ -space. $K(x,y) = \Phi(x) \cdot \Phi(y)$.





Can we develop a more intuitive theory?

- w Match intuition that you are looking for a good measure of similarity for the problem at hand?
- w Get the power of the standard theory with less of "something for nothing" feel to it?

Can we develop a more intuitive theory?

What would we intuitively want in a good measure of similarity?

<u>A reasonable idea:</u>

- w Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn K:(\P , \Rightarrow) \rightarrow [-1,1] is good for P if: most x are on average more similar to random pts of their own label than to random pts of the other label, by some gap γ .
 - E.g., most images of men are on average γ -more similar to random images of men than random images of women, and vice-versa.

A reasonable idea:

- w Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn K: $(x,y)\rightarrow$ [-1,1] is (ϵ,γ) -good for P if at least a 1- ϵ fraction of examples x satisfy:

 $\mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{=} \ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x}, \mathsf{y}) | \ell(\mathsf{y}) \text{\neq} \ell(\mathsf{x})] \text{+} \gamma$

E.g., most images of men are on average γ -more similar to random images of men than random images of women, and vice-versa.

A reasonable idea:

- Say have a learning problem P (distribution D over examples labeled by unknown target f).
- Sim fn K: $(x,y)\rightarrow$ [-1,1] is (ϵ,γ) -good for P if at least a 1- ϵ fraction of examples x satisfy:

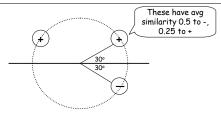
 $\mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x},\!\mathsf{y})|\ell(\mathsf{y})\!\!=\!\!\ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y} \sim \mathsf{D}}[\mathsf{K}(\mathsf{x},\!\mathsf{y})|\ell(\mathsf{y})\!\!\neq\!\!\ell(\mathsf{x})]\!\!+\!\!\gamma$

How can we use it?

Just do "average nearest-nbr"

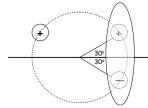
- At least a 1- ϵ fraction of x satisfy: $\mathsf{E}_{\mathsf{y}\sim\mathsf{D}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{y})\text{=}\ell(\mathsf{x})] \geq \mathsf{E}_{\mathsf{y}\sim\mathsf{D}}[\mathsf{K}(\mathsf{x},\mathsf{y})|\ell(\mathsf{y})\text{\neq}\ell(\mathsf{x})]\text{+}\gamma$
- $_{\rm W}$ Draw S+ of O((1/ γ^2)ln 1/ δ^2) positive examples.
- w Draw 5- of $O((1/\gamma^2) \ln 1/\delta^2)$ negative examples
- w Classify x based on which gives better score.
 - . Hoeffding: for any given "good x", prob of error over draw of S^+, S^- at most δ^2 .
 - $_{\rm n}$ So, at most δ chance our draw is bad on more than δ fraction of "good x".
- w With prob $\geq 1-\delta$, error rate $\leq \epsilon + \delta$.

But not broad enough



w K(x,y)=x·y has good separator but doesn't satisfy defn. (half of positives are more similar to negs that to typical pos)

But not broad enough



- w Idea: would work if we didn't pick y's from top-left.
- w Broaden to say: OK if ∃ large region R s.t. most x are on average more similar to y∈R of same label than to y∈R of other label. (even if don't know R in advance)

Broader defn...

W Ask that exists a set R of "reasonable" y (allow probabilistic) s.t. almost all x satisfy

$$\mathsf{E}_{\mathsf{y}}[\ell(\mathsf{x})\ell(\mathsf{y})\mathsf{K}(\mathsf{x},\mathsf{y})|\mathsf{y}\in\mathsf{R}] \geq \gamma$$

- Formally, say K is $(\epsilon', \gamma, \tau)$ -good if have hingeloss ϵ' , and $Pr(R) \geq \tau$.
- Thm 1: this is a legitimate way to think about good kernels:
 - If kernel has margin γ in implicit space, then for any τ is (τ, γ^2, τ) -good in this sense. [BBS'08]

Broader defn...

W Ask that exists a set R of "reasonable" y (allow probabilistic) s.t. almost all x satisfy

$$\mathsf{E}_{\mathsf{y}}[\ell(\mathsf{x})\ell(\mathsf{y})\mathsf{K}(\mathsf{x},\!\mathsf{y})|\mathsf{y}\in\mathsf{R}]\!\geq\gamma$$

- Formally, say K is $(\epsilon', \gamma, \tau)$ -good if have hingeloss ϵ' , and $Pr(R) \geq \tau$.
- Thm 2: even if not a legal kernel, this is nonetheless sufficient for learning.
 - If K is $(\varepsilon', \gamma, \tau)$ -good, $\varepsilon' < \varepsilon$, can learn to error ε with $O((1/\varepsilon\gamma^2)\log(1/\varepsilon\gamma\tau))$ labeled examples. [and $\tilde{O}(1/(\gamma^2\tau))$ unlabeled examples]

How to use such a sim fn?

- Assume exists R s.t. $\Pr_{y}[R] \ge \tau$ and almost all x satisfy $\boxed{\mathbb{E}_{y}[\ell(x)\ell(y)K(x,y)|y \in R] \ge \gamma}$
 - n Draw S = $\{y_1,...,y_n\}$, $n\approx 1/(\gamma^2\tau)$. could be unlabeled

 - Whp, exists separator of good L_1 margin in this space: $w=[0,0,1/n_R,1/n_R,0,0,0,0,-1/n_R,0]$ $\binom{n_R}{n_R}=\#y_1\in\mathbb{R}$
 - ⁿ So, take new set of examples, project to this space, and run good L₁ alg (Winnow).

Other notes

- So, large margin in implicit space ⇒ satisfy this defn (with potentially quadratic penalty in margin).
- This def is really an L₁ style margin, so can also potentially get exponential improvement.
 - n Much like Winnow versus Perceptron.
 - ... Can construct class C s.t. for any kernel K, some $f \in C$ has L_2 margin only $O(1/|C|^{1/2})$ but there exists a similarity fn satisfying above def with γ -1 and τ -1/|C|.
- w Interesting to consider other natural properties of similarity functions that motivate other algs.