Machine learning can be used to...

- recognize speech, faces,
- play games, steer cars,
- adapt programs to users,
- classify documents, protein sequences, ...

Goals of machine learning theory:

develop and analyze models to understand:
- what kinds of tasks we can hope to learn, and from what kind of data,
- what types of guarantees might we hope to achieve,
- other common issues that arise.

A typical setting

- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by n features.
 (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a “hypothesis”) $h(x)$ for future data.

The concept learning setting

E.g.,

<table>
<thead>
<tr>
<th>S</th>
<th>meds</th>
<th>Mr.</th>
<th>bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Given data, some reasonable rules might be:
- Predict SPAM if ¬known AND ($$ OR meds)
- Predict SPAM if $$ + meds − known > 0.
 "...

Big questions

(A) How might we automatically generate rules that do well on observed data?
 [algorithm design]

(B) What kind of confidence do we have that they will do well in the future?
 [confidence bound / sample complexity]
Power of basic paradigm

Many problems solved by converting to basic “concept learning from structured data” setting.

- E.g., document classification
 - convert to bag-of-words
 - Linear separators do well
- E.g., driving a car
 - convert image into features.
 - Use neural net with several outputs.

Natural formalization (PAC)

- We are given sample \(S = \{(x,y)\} \).
- View labels \(y \) as being produced by some target function \(f \).
- Alg does optimization over \(S \) to produce some hypothesis (prediction rule) \(h \).
- Assume \(S \) is a random sample from some probability distribution \(D \). Goal is for \(h \) to do well on new examples also from \(D \).

 \[\text{i.e., } \Pr_D[h(x) \neq f(x)] < \varepsilon. \]

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm \(A \) that will find a consistent DL if one exists.
2. Show that if \(S \) is of reasonable size, then \(\Pr[\exists \text{consistent DL } h \text{ with } \text{err}(h) > \varepsilon] < \delta \).
3. This means that \(A \) is a good algorithm to use if \(f \) is, in fact, a DL.

 If \(S \) is of reasonable size, then \(A \) produces a hypothesis that is Probably Approximately Correct.

Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:
- No DL consistent with remaining data.
- So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

How can we find a consistent DL?

\[\begin{array}{cccccc|c}
 x_1 & x_2 & x_3 & x_4 & x_5 & \text{label} \\
 1 & 0 & 0 & 1 & 1 & + \\
 0 & 1 & 1 & 0 & 0 & - \\
 1 & 1 & 1 & 0 & 0 & + \\
 0 & 0 & 0 & 1 & 0 & - \\
 1 & 1 & 0 & 1 & 1 & + \\
 1 & 0 & 0 & 0 & 1 & - \\
\end{array} \]

if \((x_1=0)\text{ then } -, \text{ else }\)
if \((x_1=1)\text{ then } +, \text{ else }\)
if \((x_1=1)\text{ then } +, \text{ else } -

Confidence/sample-complexity

- Consider some DL \(h \) with \(\text{err}(h) > \varepsilon \), that we’re worried might fool us.
- Chance that \(h \) is consistent with \(S \) is at most \((1-\varepsilon)^{|S|}\).
- Let \(|H| \) = number of DLs over \(n \) Boolean features. \(|H| < n4^n \). (for each feature there are 4 possible rules, and no feature will appear more than once)

So, \(\Pr[\text{some DL } h \text{ with } \text{err}(h) > \varepsilon \text{ is consistent}] < |H|(1-\varepsilon)^{|S|} < n\ln4^n(1-\varepsilon)^{|S|} \).

- This is \(\leq \delta\) for \(|S| > \left(\frac{1}{\varepsilon}\right)[\ln(|H|) + \ln(1/\delta)] \)
or about \(\left(\frac{1}{\varepsilon}\right)\ln n + \ln(1/\delta) \)
Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm A that will find a consistent DL if one exists.

2. Show that if $|S|$ is of reasonable size, then $\Pr[\exists$ consistent DL h with err$(h) > \epsilon] < \delta$.

3. So, if f is in fact a DL, then whp A’s hypothesis will be approximately correct. "PAC model"

PAC model more formally:

- We are given sample $S = \{(x,y)\}$.
 - Assume x’s come from some fixed probability distribution D over instance space.
 - View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h. Goal is for h to do well on new examples also from D. I.e., $Pr_D[h(x) \neq f(x)] < \epsilon$.

Algorithm PAC-learns a class of functions C if:
- For any given $\epsilon > 0$, $\delta > 0$, any target $f \in C$, any dist. D, the algorithm produces h of err$(h) < \epsilon$ with prob. at least $1-\delta$.
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n (size of examples), size(f).
- Require h to be poly-time evaluable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Algorithm PAC-learns a class of functions C if:
- For any given $\epsilon > 0$, $\delta > 0$, any target $f \in C$, any dist. D, the algorithm produces h of err$(h) < \epsilon$ with prob. at least $1-\delta$.
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n (size of examples), size(f).
- Require h to be poly-time evaluable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".

Some notes:
- Can either view alg as requesting examples (button/oracle model) or just as function of S, with guarantee if S is suff. lg.
- "size(f)" term comes in when you are looking at classes where some fns could take \times poly(n) bits to write down.
 (e.g., decision trees, DNF formulas)

Confidence/sample-complexity

- What’s great is there was nothing special about DLs in our argument.

- All we said was: “if there are not too many rules to choose from, then it’s unlikely one will have fooled us just by chance.”

- And in particular, the number of examples needs to only be proportional to log$(|C|)$.
 (notice big difference between $|C|$ and log$(|C|)$.)

Occam’s razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what’s simpler?
Octam's razor (contd)
A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- At most 2^s explanations can be $< s$ bits long.
- So, if the number of examples satisfies:

$$|S| > \frac{1}{\epsilon} s \ln(2) + \ln(1/\delta)$$

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Decision trees

- Decision trees over $\{0,1\}$ not known to be PAC-learnable.
- Given any data set S, it's easy to find a consistent DT if one exists. How?
- Where does the DL argument break down?
- Simple heuristics used in practice (ID3 etc.) don't work for all $c \in C$ even for uniform D.
- Would suffice to find the (apx) smallest DT consistent with any dataset S, but that's NP-hard.

If computation-time is no object, then any class is PAC-learnable

- Occam bounds \Rightarrow any class is learnable if computation time is no object:

 - Let $s_0 = 10$, $\delta_0 = \delta/2$. For $i = 1, 2, \ldots$ do:
 - Request $(1/\epsilon)[s_i + \ln(1/\delta_i)]$ examples S_i.
 - Check if there is a function of size at most s_i consistent with S_i. If so, output it and halt.
 - $s_{i+1} = 2s_i$, $\delta_{i+1} = \delta_i/2$.
 - At most $\delta_1 + \delta_2 + \ldots \leq \delta$ chance of failure.
 - Total data used: $O((1/\epsilon)[\text{size}(f) + \ln(1/\delta) \ln(\text{size}(f))]).$

More examples

Other classes we can PAC-learn: (how?)

- Monomials [conjunctions, AND-functions]
 - $x_1 \land x_2 \land x_3 \land \ldots$
- 3-CNF formulas (3-SAT formulas)
- OR-functions, 3-DNF formulas
- k-Decision lists (each if-condition is a conjunction of size k), k is constant.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

More examples

Hard to learn C by C, but easy to learn C by H, where $H = \{2$-CNF$\}$.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?
More about the PAC model

Algorithm PAC-learns a class of functions \(C \) if:
- For any given \(\varepsilon > 0, \delta > 0 \), any target \(f \in C \), any dist. \(D \), the algorithm produces \(h \) of \(\text{err}(h) < \varepsilon \) with prob. at least \(1-\delta \).
- Running time and sample sizes polynomial in relevant parameters: \(1/\varepsilon, 1/\delta, n, \text{size}(f) \).
- Require \(h \) to be poly-time evaluable. Learning is called "proper" if \(h \in C \). Can also talk about "learning \(C \) by \(H \)."

- What if your alg only worked for \(\delta = \frac{1}{2} \), what would you do?
- What if it only worked for \(\varepsilon = \frac{1}{4} \), or even \(\varepsilon = \frac{1}{2-1/n} \)? This is called weak-learning. Will get back to later.
- Agnostic learning model: Don’t assume anything about \(f \). Try to reach error \(\text{opt}(H) + \varepsilon \).

More about the PAC model

Drawbacks of model:
- In the real world, labeled examples are much more expensive than running time. Poly(size(f)) not enough.
- "Prior knowledge/beliefs" might be not just over form of target but other relations to data.
- Doesn’t address other kinds of info (cheap unlabeled data, pairwise similarity information).
- Only considers “one shot” learning.

Extensions we’ll get at later:
- Replace \(\log(|H|) \) with "effective number of degrees of freedom".

- There are infinitely many linear separators, but not that many really different ones.
- Other more refined analyses.

Some open problems

Can one efficiently PAC-learn...
- an intersection of 2 halfspaces? (2-term DNF trick doesn’t work)
- \(C=\{\text{fns with only } O(\log n) \text{ relevant variables}\} \) (or even \(O(\log \log n) \text{ or } \omega(1) \text{ relevant variables}\)? This is a special case of DTs, DNFs.
- Monotone DNF over uniform \(D \)?
- Weak agnostic learning of monomials.