15-859(B) Machine Learning Theory

Homework # 4 Due: March 4, 2009

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. [VC-dimension] Show that if hypothesis class H has VC-dimension d, then the
class MAJy(H) has VC-dimension O(kdlogkd). Recall that MAJ,(H) is the class of
functions achievable by taking majority votes over k£ functions in H (let’s say that we
allow repetitions).

Problems:

2. [On the plausibility of boosting] Suppose we have a finite hypothesis class H, a
finite space of instances X (e.g., X = {0,1}"), and some unknown target function
f. Suppose that for any distribution D over X there exists an h € H with error at
most 1/2 — . Without going through the full boosting analysis, use the minimax
theorem plus Hoeffding bounds to prove that for any distribution D there must exist
a hypothesis in MAJ,(H) with error at most € for k = O(%2 log(1/¢)).

Note: our boosting results said something even stronger because they gave us a way
to efficiently produce the desired hypothesis, given a weak-learning oracle.

3. [On approximate Nash equilibria] A two-player general-sum game is like a two-
player zero-sum game except that the players do not necessarily have opposite payoffs
(it is really more an “interaction” than a “game”). A Nash Equilibrium is a pair of
distributions P and @) (one for each player) such that neither player has any incentive
to deviate from its distribution assuming that the other player doesn’t deviate from its
distribution either.! Formally, a pair of distributions P (for the row player) and Q (for
the column player) is a Nash equilibrium if the following holds: assuming the column
player plays at random from @, the expected payoff to the row player for each row r
with P(r) > 0 is equal to the maximum payoff out of all the rows; and assuming the
row player plays at random from P, the expected payoff to the column player for each
column ¢ with Q(c) > 0 is equal to the maximum payoff out of all the columns.

Now, assume we have a game in which all payoffs are in the range [0,1]. Define a
pair of distributions P, to be an “e-Nash” equilibrium if each player has at most €
incentive to deviate. That is, the expected payoff to the row player for each row r with

IFeel free to use the Web or ask your friends to learn more about general-sum games if you haven’t seen
them before. Or see, e.g., http://www.cs.cmu.edu/ avrim/451/lectures/lect1204.pdf.



P(r) > 0 is within € of the maximum payoff out of all the rows, and vice-versa for the
column player.

Using the fact that Nash equilibria must exist (proven by Nash in 1950), show that
there must exist an e-Nash equilibrium in which each player has positive probability
on at most O(% logn) actions (rows or columns), where n is the total number of rows
and columns.

Note: this fact immediately yields an nO(Z 108" _time algorithm for finding an e-Nash

equilibrium. No PTAS (algorithm running in time polynomial in n for any fixed ¢ > 0)
is known, however.



