
1

15-859(B) Machine Learning
Theory

Avrim Blum
01/20/14

Lecture 3: The Winnow Algorithm

Recap from end of last time

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

 Guarantee: do nearly as well as fixed row in hindsight

 Which implies doing nearly as well (or better)
than minimax optimal

 𝐸 𝑐𝑜𝑠𝑡 ≤ 𝑂𝑃𝑇 1 + 𝜖 +
1

𝜖
log 𝑛 ≤ 𝑂𝑃𝑇 + log 𝑛 + 𝑂 𝑇 ⋅ log 𝑛

A natural generalization
 A natural generalization of our regret goal (thinking of

driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

 And on Mondays, do nearly as well as best route for
Mondays.

 More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

 Can we get this?

A natural generalization
 This generalization is esp natural in machine learning for

combining multiple if-then rules.

 E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

 So, if 90% of documents with football are about sports,
we should have error · 11% on them.

“Specialists” or “sleeping experts” problem.

 Assume we have N rules.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)

 Start with all rules at weight 1.
 At each time step, of the rules i that fire,

select one with probability pi / wi.
 Update weights:

 If didn’t fire, leave weight alone.
 If did fire, raise or lower depending on performance

compared to weighted average:
 ri = [j pj cost(j)]/(1+e) – cost(i)
 wi Ã <- wi(1+e)ri

 So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+e)
factor. This ensures sum of weights doesn’t increase.

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N).

2

Application: adapting to change

 What if we want to adapt to change - do nearly as well
as best recent expert?

 For each expert, instantiate copy who wakes up on day t
for each 0 ≤ t ≤ T-1.

 Our cost in previous t days is at most (1+𝜖)(best expert
in last t days) + O(𝜖−1 log(NT)).

 (not best possible bound since extra log(T) but not bad).

Next topic: learning more
interesting classes in the mistake-

bound model

Equivalently: assuming some expert
(target function) is perfect, but

there are too many to list
explicitly.

Recap: disjunctions

• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.
– We saw this is optimal.

Recap: disjunctions

• But what if most features are irrelevant?
• Target is an OR of r out of n.
• In principle, what kind of mistake bound

could we hope to get?
• Ans: log 𝑛𝑟 = 𝑂 𝑟 log 𝑛 , using halving.

Can we get this efficiently?

Yes – using Winnow algorithm.

Winnow Algorithm

Winnow algorithm for learning a disjunction
of r out of n variables. eg f(x)= x3 v x9 v x12

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Theorem: Winnow makes at most
1 + 2𝑟 1 + lg 𝑛 = 𝑂 𝑟 log 𝑛 mistakes.

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: how many mistakes on positive exs?

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Ans:
- each such mistake doubles at least one relevant weight.

- Any such weight can be doubled at most ⌈lg 𝑛⌉ times.

- So, at most 𝑟 lg 𝑛 ≤ 𝑟 1 + lg 𝑛 such mistakes.

3

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Proof, step 2: how many mistakes on negatives?
- Total sum of weights is initially 𝑛.

- Each mistake on positives adds at most 𝑛 to the total.

- Each mistake on negatives removes at least 𝑛 from total.

- So, #(mistakes on negs) ≤ 1 + #(mistakes on positives).

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Proof, step 2: at most 1 + 𝑟(1 + lg 𝑛) mistakes on negs

Done.

Open question: efficient alg with mistake bound
poly(r, log(n)) for length-r decision lists?

Extensions

Winnow algorithm for learning a k-of-r
function: e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

Thm: Winnow makes O(rk log n) mistakes.

Idea: think of alg as adding/removing chips.

Extensions

• Winnow algorithm for learning a k-of-r function:
e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

Extensions
• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/2k.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

• Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most 𝜖𝑛 added in m.o.p., at
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative.

Extensions

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛.

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0.

• I.e.,
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔.

• Plug in to first equation and solve.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

• Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most 𝜖𝑛 added in m.o.p., at
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative.

4

Extensions

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛.

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0.

• I.e.,
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔.

• Plug in to first equation and solve.

𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 1 + 𝜖 𝑀𝑝𝑜𝑠 ≤
𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
.

We set 𝜖 =
1

2𝑘
 so 𝑘 − 1 1 + 𝜖 ≤ 𝑘 −

1

2
.

Get:
1

2
𝑀𝑝𝑜𝑠 ≤

𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
= 𝑂(𝑟𝑘 log 𝑛).

So, 𝑀𝑝𝑜𝑠, 𝑀𝑛𝑒𝑔 are both 𝑂(𝑟𝑘 log 𝑛).

 If don’t know k,r, can guess-&-double: get 𝑂(𝑟2 log 𝑛) .

How about learning general LTFs?

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

Will look at two algorithms (one today, one
next time) each with different types of
guarantees:

• Winnow (same as before)

• Perceptron

Winnow for general LTFs

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

• First, add variable x’i = 1 – xi so can assume
all weights positive.

E.g., 4x3 + 2x’9 + 5x10 + x12 ¸ 5.

• Also conceptually scale so that all weights
wi* of target are integers (not needed but
easier to think about)

Winnow for general LTFs

• Idea: suppose we made 𝑊 copies of each
variable, where 𝑊 = w1

∗ + … + wn
∗ .

E.g., 4x3 + 2x’9 + 5x10 + x12 ¸ 5.

• Then this is just a “w0
∗ out of 𝑊” function!

• So, Winnow makes O(W2 log(Wn)) mistakes.

• And here is a cool thing: this is equivalent
to just initializing each wi to W and using
threshold of nW. But that is same as
original Winnow!

Winnow for general LTFs

More generally, can show the following (will
do the analysis on hwk2):

Suppose 9 w* s.t.:

• w* ¢ x ¸ c on positive x,

• w* ¢ x · c - ° on negative x.

Then mistake bound is

• O((L1(w*)/°)2 log n)

Multiply by L1(X) if
examples not in 0,1 n

Perceptron algorithm

An even older and simpler algorithm, with a
bound of a different form.

Suppose 9 w* s.t.:

• w* ¢ x ¸ ° on positive x,

• w* ¢ x · -° on negative x.

Then mistake bound is

• O((L2(w*)L2(x)/°)2)

L2 margin of examples

