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15-859(B) Machine Learning 
Theory 

Avrim Blum 
01/20/14 

Lecture 3: The Winnow Algorithm 

Recap from end of last time 

World – life - opponent 

RWM (multiplicative weights alg) 
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 Guarantee: do nearly as well as fixed row in hindsight 

 Which implies doing nearly as well (or better) 
than minimax optimal 

 𝐸 𝑐𝑜𝑠𝑡  ≤  𝑂𝑃𝑇 1 + 𝜖 +
1

𝜖
log 𝑛  ≤  𝑂𝑃𝑇 + log 𝑛 + 𝑂 𝑇 ⋅ log 𝑛  

A natural generalization 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

A natural generalization 
 This generalization is esp natural in machine learning for 

combining multiple if-then rules. 

 E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports. 

 So, if 90% of documents with football are about sports, 
we should have error · 11% on them. 

“Specialists” or “sleeping experts” problem. 

 Assume we have N rules. 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

A simple algorithm and analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, 

select one with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+e) – cost(i) 
 wi Ã  <-  wi(1+e)ri 

 So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+e) 
factor.  This ensures sum of weights doesn’t increase. 

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.  
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
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Application: adapting to change 

 What if we want to adapt to change - do nearly as well 
as best recent expert? 

 For each expert, instantiate copy who wakes up on day t 
for each 0 ≤ t ≤ T-1. 

 Our cost in previous t days is at most (1+𝜖)(best expert 
in last t days) + O(𝜖−1 log(NT)). 

 (not best possible bound since extra log(T) but not bad). 

Next topic: learning more 
interesting classes in the mistake-

bound model 
 
 

Equivalently: assuming some expert 
(target function) is perfect, but 

there are too many to list 
explicitly.   

Recap: disjunctions 

• Suppose features are boolean: X = {0,1}n. 

• Target is an OR function, like x3 v x9 v x12.  
• Can we find an on-line strategy that makes 

at most n mistakes? 
• Sure. 

– Start with h(x) = x1 v x2 v ... v xn 

– Invariant: {vars in h} ⊇ {vars in f } 
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1. 
– No mistakes on positives.  So at most n mistakes 

total. 
– We saw this is optimal. 

Recap: disjunctions 

• But what if most features are irrelevant? 
• Target is an OR of r out of n.  
• In principle, what kind of mistake bound 

could we hope to get? 
• Ans: log 𝑛𝑟 = 𝑂 𝑟 log 𝑛 , using halving. 

 
Can we get this efficiently? 

 
Yes – using Winnow algorithm. 

Winnow Algorithm 

Winnow algorithm for learning a disjunction 
of r out of n variables. eg f(x)= x3 v x9 v x12 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Theorem: Winnow makes at most 
1 + 2𝑟 1 + lg 𝑛 = 𝑂 𝑟 log 𝑛  mistakes. 

Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: how many mistakes on positive exs?  

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Ans:  
- each such mistake doubles at least one relevant weight. 

- Any such weight can be doubled at most ⌈lg 𝑛⌉ times. 

- So, at most 𝑟 lg 𝑛 ≤ 𝑟 1 + lg 𝑛  such mistakes. 
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Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Proof, step 2: how many mistakes on negatives?  
- Total sum of weights is initially 𝑛. 

- Each mistake on positives adds at most 𝑛 to the total. 

- Each mistake on negatives removes at least 𝑛 from total. 

- So, #(mistakes on negs) ≤ 1 + #(mistakes on positives). 

Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Proof, step 2: at most 1 + 𝑟(1 + lg 𝑛) mistakes on negs 

Done. 

Open question: efficient alg with mistake bound 
poly(r, log(n)) for length-r decision lists? 

Extensions 

Winnow algorithm for learning a k-of-r 
function: e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

Thm: Winnow makes O(rk log n) mistakes. 

Idea: think of alg as adding/removing chips. 

Extensions 

• Winnow algorithm for learning a k-of-r function: 
e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

Extensions 
• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/2k. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

• Each m.o.n. removes almost as much total weight as 
each m.o.p. adds.  At most 𝜖𝑛 added in m.o.p., at 
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative. 

Extensions 

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛. 

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0. 

• I.e., 
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔. 

• Plug in to first equation and solve. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

• Each m.o.n. removes almost as much total weight as 
each m.o.p. adds.  At most 𝜖𝑛 added in m.o.p., at 
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative. 
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Extensions 

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛. 

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0. 

• I.e., 
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔. 

• Plug in to first equation and solve. 

𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 1 + 𝜖 𝑀𝑝𝑜𝑠  ≤  
𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
. 

We set 𝜖 =
1

2𝑘
 so 𝑘 − 1 1 + 𝜖 ≤ 𝑘 −

1

2
. 

Get: 
1

2
𝑀𝑝𝑜𝑠 ≤ 

𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
= 𝑂(𝑟𝑘 log 𝑛). 

So, 𝑀𝑝𝑜𝑠, 𝑀𝑛𝑒𝑔 are both 𝑂(𝑟𝑘 log 𝑛). 

 If don’t know k,r, can guess-&-double: get 𝑂(𝑟2 log 𝑛) . 

How about learning general LTFs? 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

Will look at two algorithms (one today, one 
next time) each with different types of 
guarantees: 

• Winnow (same as before) 

• Perceptron 

Winnow for general LTFs 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

• First, add variable x’i = 1 – xi so can assume 
all weights positive. 

E.g.,  4x3 + 2x’9 + 5x10 + x12 ¸ 5. 

• Also conceptually scale so that all weights 
wi* of target are integers (not needed but 
easier to think about) 

Winnow for general LTFs 

• Idea: suppose we made 𝑊 copies of each 
variable, where 𝑊 = w1

∗ +  … + wn
∗ . 

E.g.,  4x3 + 2x’9 + 5x10 + x12 ¸ 5. 

• Then this is just a “w0
∗ out of 𝑊” function!  

• So, Winnow makes O(W2 log(Wn)) mistakes. 

• And here is a cool thing: this is equivalent 
to just initializing each wi to W and using 
threshold of nW.  But that is same as 
original Winnow! 

Winnow for general LTFs 

More generally, can show the following (will 
do the analysis on hwk2):  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ c on positive x, 

• w* ¢ x · c - ° on negative x. 

Then mistake bound is 

• O((L1(w*)/°)2 log n) 

Multiply by L1(X) if 
examples not in 0,1 n 

Perceptron algorithm 

An even older and simpler algorithm, with a 
bound of a different form.  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ ° on positive x, 

• w* ¢ x · -° on negative x. 

Then mistake bound is 

• O((L2(w*)L2(x)/°)2) 

L2 margin of examples 


