15-859(B) Machine Learning
Theory

Lecture 3: The Winnow Algorithm

RWM (multiplicative weights alg)

World - life - opponent

(1-sc?)(1-ec,)1
(1-sc,2)(1-ec,)1
(1-ec5?)(1-ec5h)1

. o1

scaling
sSo costs

. in[0,1]

(-s¢,2)(1-ec,)1

ct c?

Guarantee: do nearly as well as fixed row in hindsight

1
E[cost] < 0PT(1+6)+;logn < OPT +logn + O({/T - logn)

Which implies doing nearly as well (or better)
than minimax optimal

A natural generalization

This generalization is esp natural in machine learning for
combining multiple if-then rules.

E.g., document classification. Rule: “if <word-X> appears
then predict <¥>". E.g., if has football then classify as
sports.

So, if 90% of documents with football are about sports,
we should have error < 11% on them.

"Specialists” or “sleeping experts” problem.

Assume we have N rules.
For all i, want E[cost;(alg)] < (1+&)costi(i) + O(elog N).

(costi(X) = cost of X on time steps where rule i fires.)

Recap from end of last time

A natural generalization

A natural generalization of our regret goal (thinking of
driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

And on Mondays, do nearly as well as best route for
Mondays.

More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

For all i, want E[cost;(alg)] < (1+€)cost;(i) + O(elog N).

(costi(X) = cost of X on time steps where rule i fires.)

Can we geft this?

A S|mpl€ C(Igor‘”’hm and GnGIYSiS (all on one slide)

+ Start with all rules at weight 1.

* At each time step, of the rules i that fire,
select one with probability p; o wi.
¢ Update weights:
= If didn't fire, leave weight alone.
« If did fire, raise or lower depending on performance
compared to weighted average:
o r; = [Z; p; cost(j)]/(1+€) - cost(i)
o Wi <- wi(l+e)ri
= So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+¢)
factor. This ensures sum of weights doesn't increase.
¢ Final w; = (1+¢)Elcostilalg)l/(t+e)-costilh So, exponent < ¢llog N.
* So, E[costi(alg)] < (1+€)cost(i) + O(etlog N).

Application: adapting to change
What if we want to adapt to change - do nearly as well
as best recent expert?

For each expert, instantiate copy who wakes up on day t
foreachO<t<T-1

Our cost in previous t days is at most (1+¢)(best expert
in last t days) + O(e~* log(NT)).

(not best possible bound since extra log(T) but not bad).

Recap: disjunctions

+ Suppose features are boolean: X = {0,1}".
* Target is an OR function, like x5 v Xg v X;5.
* Can we find an on-line strategy that makes
at most n mistakes?
* Sure.
- Start with h(x) =x; vx, V... v x,
- Invariant: {vars in h} 2 {vars in {'}

- Mistake on negative: throw out vars in h set to 1
in X. Maintains invariant and decreases |h| by 1.

- No mistakes on positives. So at most n mistakes
total.

- We saw this is optimal.

Winnow Algorithm

Winnow algorithm for learning a disjunction
of r out of nvariables. eg f(x)= x5 v Xg v Xy,

* h(x): predict pos iff wix; + .. + w.x, > n.
« Initialize w; = 1 for all i.

- Mistake on pos: w; < 2w; for all x;=1.

- Mistake on neg: w; + O for all x;=1.

Winnow makes at most
1+ 2r(1 +1gn) = 0(rlogn) mistakes.

Next topic: learning more
interesting classes in the mistake-
bound model

Equivalently: assuming some expert
(target function) is perfect, but
there are too many to list
explicitly.

Recap: disjunctions

+ But what if most features are irrelevant?
+ Target is an OR of r out of n.

+ In principle, what kind of mistake bound
could we hope to get?

- Ans: log(n") = 0(rlogn), using halving.
Can we get this efficiently?

Yes - using Winnow algorithm.

Proof
Thm: Winnow makes < 1 + 2r(1 + Ign) mistakes.
* h(x): predict pos iff wix; + ... + w,X, > n.
+ Initialize w; = 1 for all i.
- Mistake on pos: w; + 2w; for all x;=1.
- Mistake on neg: w; + O for all x;=1.

Proof, step 1: how many mistakes on positive exs?
Ans:
each such mistake doubles at least one relevant weight.
Any such weight can be doubled at most [Ign] times.
So, at most r[lgn] < r(1 +Ign) such mistakes.

Proof

Thm: Winnow makes < 1 + 2r(1 + Ign) mistakes.

* h(x): predict pos iff wix; + .. + w.x, > n.
+ Initialize w; = 1 for all i.

- Mistake on pos: w; + 2w; for all x;=1.

- Mistake on neg: w; + O for all x;=1.

Proof, step 1: at most r(1 + 1gn) mistakes on positives

Proof, step 2: how many mistakes on negatives?
Total sum of weights is initially n.
Each mistake on positives adds at most n to the total.
Each mistake on negatives removes at least n from total.
So, #(mistakes on negs) < 1 + #(mistakes on positives).

Extensions
Winnow algorithm for learning a k-of-r
function: e.g., X3+ Xg+ Xg+ Xqp > 2.
* h(x): predict pos iff wix; + ... + w,x, > n.
» Initialize w; = 1 for all i.
- Mistake on pos: w; < w;(1+¢) for all x;=1.

- Mistake on neg: w; < w;/(1+¢) for all x;=1.
- Use e=1/2k.

Thm: Winnow makes O(rk log n) mistakes.
Idea: think of alg as adding/removing chips.

Extensions

* h(x): predict pos iff wix; + .. + w,x, > n.
+ Initialize w; = 1 for all i.

- Mistake on pos: w; < w;(1+¢) for all x;=1.

- Mistake on neg: w; < w;/(1+¢) for all x;=1.

- Use e = 1/2k.

Analysis:

+ Each m.op. adds at least k relevant chips, and each
m.o.n removes at most k-1 relevant chips. At most
r(1/e)log n relevant chips total.

+ Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most en added in m.o.p., at
least en/(1 + €) removed in m.o.n. Can't be negative.

Proof
Thm: Winnow makes < 1 + 2r(1 + lgn) mistakes.
* h(x): predict pos iff wix; + .. + wyx, > n.
+ Initialize w; = 1 for all i.
- Mistake on pos: w; + 2w; for all x;=1.
- Mistake on neg: w; + O for all x;=1.

Proof, step 1: at most r(1 + lgn) mistakes on positives
Proof, step 2: at most 1 + (1 + Ign) mistakes on negs
Done.

Open question: efficient alg with mistake bound
poly(r, log(n)) for length-r decision lists?

Extensions

* Winnow algorithm for learning a k-of-r function:
e.g., X3+ Xg+Xig+ Xpp > 2.
* h(x): predict pos iff wix; + ... + w,X, > n.
+ Initialize w; = 1 for all i.
- Mistake on pos: w; < w;(1+¢) for all x;=1.
- Mistake on neg: w; < w;/(1+¢) for all x;=1.
- Use e = 1/2k.

Analysis:
- Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/¢)log n relevant chips total.

Extensions

. k-Mpos—(k—l)-MnegS(E)logn.
* N+ My - €n —Mneg-ﬁzo.

* Le, 54 (1+ ©)Myos = Mg,
+ Plug in to first equation and solve.

Analysis:

+ Each m.op. adds at least k relevant chips, and each
m.o.n removes at most k-1 relevant chips. At most
r(1/€)log n relevant chips total.

+ Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most en added in m.o.p., at
least en/(1 + €) removed in m.o.n. Can't be negative.

Extensions

ok Myos — (k= 1) - Myeq < (%) logn.
en

o N+ Mpyos-€n — Myey Tre

= 0.
1+
- ILe, TE+ (1 + ©Mpps = Myey.
* Plug in fo first equation and solve.

e Mo — (= D1+ OMpos < () logn + (ke — 1) ().
We set e=ﬁso (k=1 +e) < k—%_

1+€

Get: %Mpus < (1;) logn+ (k—1) (T) = O(rklogn).

50, Mpos, Myeq are both O(rklogn).

If don't know k,r, can guess-&-double: get 0(r%logn).

Winnow for general LTFs

E.g., 4X3 - 2Xg+ BXyg+ Xqp > 3.

+ First, add variable x'; = 1 - x; so can assume

all weights positive.
E.g., 4x3+2X'g + Bxyg+ Xgp > 5.

+ Also conceptually scale so that all weights
w;* of target are integers (not needed but
easier to think about)

Winnow for general LTFs

More generally, can show the following (will
do the analysis on hwk2):

Suppose I w* s.t.:

* w* - X > con positive X,

* w* - x < ¢ - 7 on hegative Xx.
Then mistake bound is

* O((L1(w*)/7)? log n)

‘ examples not in {0,1}"

How about learning general LTFs?
E.g., 4X3 - 2X9 + 5X10 + X12 = 3

Will look at two algorithms (one today, one
next time) each with different types of
guarantees:

+ Winnow (same as before)
* Perceptron

Winnow for general LTFs

+ Idea: suppose we made W copies of each
variable, where W = w; + ...+ wy,.

+ Then this is just a "wg out of W" function!
E.g., 4X3 + 2X'9 + 5X10 + X = 5

+ So, Winnow makes O(W? log(Wn)) mistakes.

+ And here is a cool thing: this is equivalent
to just initializing each w; to W and using
threshold of nW.

Perceptron algorithm
An even older and simpler algorithm, with a
bound of a different form.
Suppose 3 w* s.t.:
* w* . x> ~on positive x,
* w* . x < -y on negative x.
Then mistake bound is
* O((La(w™)La(x)/7)?)

| L, margin of examples |

