
1

15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and
issues

Avrim Blum
01/13/14

Admin
• Course web page. Textbook covers about

1/2 of course material.

• 5-6 hwk assignments. Exercises/problems.

• Small project: explore a theoretical
question, try some experiments, or read a
paper and explain the idea. Short writeup
and possibly presentation. Small groups ok.

• Take-home exam (worth roughly 2 hwks).

• “volunteers” for hwk grading.

OK, let’s get to it…

http://www.cs.cmu.edu/~avrim/ML14/

Machine learning can be used to…
• recognize speech, faces,
• play games, steer cars,
• adapt programs to users,
• classify documents, protein sequences,...

Goals of machine learning theory:
develop and analyze models to understand:
• what kinds of tasks we can hope to learn,

and from what kind of data,
• what types of guarantees might we hope to

achieve,
• other common issues that arise.

Influences

Goals of machine learning theory:
develop and analyze models to understand:
• what kinds of tasks we can hope to learn,

and from what kind of data,
• what types of guarantees might we hope to

achieve,
• other common issues that arise.

Machine Learning
Theory Statistics

Machine Learning
Practice

A typical setting
• Imagine you want a computer program to

help you decide which email messages are
spam and which are important.

• Might represent each message by n features.
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far
produce good prediction rule (a “hypothesis”)
h(x) for future data.

The concept learning setting
E.g.,

Given data, some reasonable rules might be:
•Predict SPAM if :known AND ($$ OR meds)

•Predict SPAM if $$ + meds – known > 0.

•...

2

Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how
much data do we need...

Power of basic paradigm

• E.g., document classification
– convert to bag-of-words

– Linear separators do well

• E.g., driving a car
– convert image into

features.

– Use neural net with
several outputs.

Many problems solved by converting to basic
“concept learning from structured data” setting.

Natural formalization (PAC)

• We are given sample S = {(x,y)}.
– View labels y as being produced by some target

function f.

• Alg does optimization over S to produce
some hypothesis (prediction rule) h.

• Assume S is a random sample from some
probability distribution D. Goal is for h to
do well on new examples also from D.

I.e., PrD[h(x)f(x)] < e.

Email msg Spam or not?

err(h)

Example of analysis: Decision Lists

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > e] < d.

3. This means that A is a good algorithm to use if
f is, in fact, a DL.

If S is of reasonable size, then A produces a
hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data.
 (and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off
examples covered. Repeat until no examples remain.

If this fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data?

3

Confidence/sample-complexity

• Consider some DL h with err(h)>e, that we’re
worried might fool us.

• Chance that h is consistent with S is at
most (1-e)|S|.

• Let |H| = number of DLs over n Boolean
features. |H| < n!4n. (for each feature there are 4
possible rules, and no feature will appear more than once)

 So, Pr[some DL h with err(h)>e is consistent]
 · |H|(1-e)|S| · |H|e-²|S|.

• This is < d for |S| > (1/e)[ln(|H|) + ln(1/d)]

 or about (1/e)[n ln n + ln(1/d)]

Example of analysis: Decision Lists

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then
Pr[exists consistent DL h with err(h) > e] < d.

3. So, if f is in fact a DL, then whp A’s hypothesis
will be approximately correct. “PAC model”

PAC model more formally:
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability distribution D over
instance space.

– View labels y as being produced by some target function f.

• Alg does optimization over S to produce some hypothesis
(prediction rule) h. Goal is for h to do well on new
examples also from D. I.e., PrD[h(x)f(x)] < e.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n (size of examples), size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n (size of examples), size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

PAC model more formally:

Some notes:
• Can either view alg as requesting examples (button/oracle

model) or just as function of S, with guarantee if S is
suff. lg.

• “size(f)” term comes in when you are looking at classes
where some fns could take > poly(n) bits to write down.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n (size of examples), size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

(e.g., decision trees, DNF formulas)

Confidence/sample-complexity

• What’s great is there was nothing special
about DLs in our argument.

• All we said was: “if there are not too many
rules to choose from, then it’s unlikely one
will have fooled us just by chance.”

• And in particular, the number of examples
needs to only be proportional to log(|C|).

(notice big difference between |C| and log(|C|).)

4

Occam’s razor
William of Occam (~1320 AD):

 “entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer
simpler explanations”.

Why? Is this a good policy? What if we
have different notions of what’s simpler?

Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

 |S| > (1/e)[s ln(2) + ln(1/d)]

 Then it’s unlikely a bad simple explanation
will fool you just by chance.

Think of as

10x #bits to

write down h.

Occam’s razor (contd)2

• Even if we have different notions of what’s
simpler (e.g., different representation
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will be
a short explanation for the data. That
depends on your representation.

Nice interpretation:

Decision trees
• Decision trees over {0,1}n not

known to be PAC-learnable.

x3

x5 x2

+ + - -

• Given any data set S, it’s easy to find a
consistent DT if one exists. How?

• Where does the DL argument break down?

• Simple heuristics used in practice (ID3 etc.)
don’t work for all c2C even for uniform D.

• Would suffice to find the (apx) smallest DT
consistent with any dataset S, but that’s NP-
hard.

More examples
Other classes we can PAC-learn: (how?)
• Monomials [conjunctions, AND-functions]

– x1 Æ x4 Æ x6 Æ x9

• 3-CNF formulas (3-SAT formulas)
• OR-functions, 3-DNF formulas
• k-Decision lists (each if-condition is a

conjunction of size k), k is constant.
Given a data set S, deciding if there is a

consistent 2-term DNF formula is NP-
complete. Does that mean 2-term DNF is
hard to learn?

More examples

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-
complete. Does that mean 2-term DNF is
hard to learn?

Hard to learn C by C, but easy to learn C by
H, where H = {2-CNF}.

5

If computation-time is no object,
then any class is PAC-learnable

• Occam bounds) any class is learnable if
computation time is no object:
– Let s1=10, d1 = d/2. For i=1,2,… do:

• Request (1/e)[si + ln(1/di)] examples Si.

• Check if there is a function of size at most si
consistent with Si. If so, output it and halt.

• si+1 = 2si, di+1 = di/2.

– At most d1 + d2 + … · d chance of failure.

– Total data used: O((1/e)[size(f)+ln(1/d)ln(size(f))]).

1st terms sum to 𝑂(𝑠𝑖𝑧𝑒 𝑓) by telescoping. 2nd terms sum to:

ln
2

𝛿
+ ln

4

𝛿
+ … + ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
≤ ln (𝑠𝑖𝑧𝑒 𝑓 ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
= ln2 𝑠𝑖𝑧𝑒 𝑓 + ln (𝑠𝑖𝑧𝑒 𝑓) ln

1

𝛿

More about the PAC model

• What if your alg only worked for d = ½, what would
you do?

• What if it only worked for e = ¼, or even e = ½-1/n?
This is called weak-learning. Will get back to later.

• Agnostic learning model: Don’t assume anything
about f. Try to reach error opt(H) + e.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

More about the PAC model

Drawbacks of model:
• In the real world, labeled examples are much more

expensive than running time. Poly(size(f)) not enough.
• “Prior knowledge/beliefs” might be not just over form of

target but other relations to data.
• Doesn’t address other kinds of info (cheap unlabeled data,

pairwise similarity information).
• Only considers “one shot” learning.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

Extensions we’ll get at later:
• Replace log(|H|) with “effective number of

degrees of freedom”.

+

+

+

+

-
-

-

-

– There are infinitely many linear separators, but
not that many really different ones.

• Other more refined analyses.

Some classic open problems
Can one efficiently PAC-learn…
• an intersection of 2 halfspaces? (2-term

DNF trick doesn’t work)

• C={fns with only O(log n) relevant
variables}? (or even O(loglog n) or (1)
relevant variables)? This is a special case
of DTs, DNFs.

• Monotone DNF over uniform D?

• Weak agnostic learning of monomials.

