15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and
issues

Avrim Blum
01/13/14

http://www.cs.cmu.edu/~avrim/ML14/ A d .
(IS A i

+ Course web page. Textbook covers about
1/2 of course material.

+ B-6 hwk assignments. Exercises/problems.

+ Small project: explore a theoretical
question, Try some experiments, or read a
paper and explain the idea. Short writeup
and possibly presentation. Small groups ok.

* Take-home exam (worth roughly 2 hwks).
"volunteers” for hwk grading.

OK, let's geft to it...

Machine learning can be used fo...
* recognize speech, faces,
* play games, steer cars,
+ adapt programs to users,

+ classify documents, protein sequences...
Goals of machine learning theory:
develop and analyze models to understand:

+ what kinds of tasks we can hope to learn,
and from what kind of data,

* what types of guarantees might we hope to
achieve,

+ other common issues that arise.

- Influences
G
Plx Theor
— Machine Learning Machine Learning
Statistics > €= Theory - Practice
e
wo‘“’m

Goals of machine learning theory:

develop and analyze models fo understand:

+ what kinds of tasks we can hope to learn,
and from what kind of data,

* what types of guarantees might we hope to
achieve,

- other common issues that arise.

A typical setting

+ Imagine you want a computer program to
help you decide which email messages are
spam and which are important.

* Might represent each message by n features.

+ Take sample S of data, labeled according to
whether they were/weren't spam.
* Goal of algorithm is to use data seen so far

produce good prediction rule
h(x) for future data.

The concept learning setting
Eg.

3

-<2222-<22g
0

Mr. bad spelling known-sender | spam?

zz<z<zz<8

<Z2LzZz2Z22<<
Z2ZZ<X<X2<X2
<z2<z2zz2<2<

Y
N
N
N
Y
N
Y
N

Given data, some reasonable rules might be:
*Predict SPAM if —known AND ($$ OR meds)

‘Predict SPAM if $$ + meds - known > O.

Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]
(B)What kind of confidence do we have
that they will do well in the future?
[confidence bound / sample complexity]

Power of basic paradigm

Many problems solved by converting to basic
“concept learning from structured data” setting.

- E.g., document classification
- convert to bag-of-words
- Linear separators do well
- E.g., driving a car =
- convert image into
features.

- Use neural net with
several outputs.

Natural formalization (PAC)
Email msg Spam or not?
* We are given sample S = {ix,y)}.

- View labels y as being produced by some target
function f.

- Alg does optimization over S to produce
some hypothesis (prediction rule) h.

* Assume S is a random sample from some
probability distribution D. Goal is for h to
do well on new examples also from D.

TLe., Pro[h(x)=f(x)] < .

Example of analysis: Decision Lists
| al=17 ‘—“—{ =17 |—m-{ B3=07 ‘—'“Ln
I T

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < §.

3. This means that A is a good algorithm to use if
f is, in fact, a DL.

If Sis of reasonable size, then A produces a
hypothesis that is Probably Approximately Correct.

1

How can we find a consistent DL?

1 Tp T3 T4 ITs label
1 0 0 1 1 +
O— 1T —1—0 O =
T T T—0 O +
—06—=0 T © =
1 1 Q 1 1 -+
1 0 0 O 1 -

if (x,=0) then -, else
if (x,=1) then +, else
if (x4=1) then +, else -

Decision List algorithm

+ Start with empty list.
+ Find if-then rule consistent with data.

(and satisfied by at least one example)

+ Put rule at bottom of list so far, and cross of f

examples covered. Repeat until no examples remain.

If this fails, then:
*No DL consistent with remaining data.
S0, ho DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>¢, that we're
worried might fool us.

- Chance that h is consistent with S is at
most (1-¢)!S!.

+ Let |H| = number of DLs over n Boolean
features. |H| < Nl4N_ (for each feature there are 4

possible rules, and no feature will appear more than once)
So, Pr[some DL h with err(h)>c is consistent]
< [HI(1-e)'s! < |H]e-Is!.
+ This is < & for |S| > (1/e)[In(|H|) + In(1/8)]
or about (1/g)[n In n + In(1/5)]

Example of analysis: Decision Lists
lq xafl? |4"i{ mfm' %

Say we suspect there might be a good prediction
rule of this form.
.¢ Design an efficient algorithm A that will find a
o9 consistent DL if one exists.
\Qgshow that if |S| is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < 8.

3. So,if fisin fact a DL, then whp A's hypothesis
will be approximately correct. "PAC model”

xL=17

PAC model more formally:

+ We are given sample S = {(x,y)}.
- Assume x's come from some fixed probability distribution D over
instance space.
- View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis
(prediction rule) h. Goal is for h to do well on new
examples also from D. I.e., Pro[h(x)=f(x)]« ¢.

Algorithm PAC-learns a class of functions C if:

-+ For any given £0, 80, any target f € C, any dist. D, the
algorithm produces h of err(h)<c with prob. at least 1-5.

+ Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/5, n (size of examples), size(f).

+ Require h to be poly-time evaluatable. Learning is called
“proper"” if h € C. Can also talk about "learning C by H".

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Algorlfhm PAC-learns a class of functions C if:
For any given ¢>0, 50, any target f € C, any dist. D, the
algorithm produces h of err(h)< with pr‘ob at least 1-5.

+ Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n (size of examples), size(f).

+ Regquire h to be poly-time evaluatable. Learning is called
“proper” if h € C. Can also talk about “learning C by H".

PAC model more formally:

AIgomThm PAC-learns a class of functions C if:

For any given >0, 50, any target f € C, any dist. D, the
algorithm produces h of err(h)e with prob at least 1-5.

* Running time and sample sizes polynomial in relevant

parameters: 1/¢, 1/5, n (size of examples), size(f).

* Require h to be poly-time evaluatable. Learning is called

"proper” if h € C. Can also talk about “learning C by H".

Some notes:

+ Can either view alg as requesting examples (button/oracle
model) or just as function of S, with guarantee if S is
suff. Ig.

+ “size(f)" ferm comes in when you are looking at classes
where some fns could take > poly(n) bits to write down.

(e.g., decision trees, DNF formulas)

Confidence/sample-complexity

+ What's great is there was nothing special
about DLs in our argument.

- All we said was: "if there are not foo many
rules to choose from, then it's unlikely one
will have fooled us just by chance.”

* And in particular, the number of examples
needs to only be proportional to log(|C|).
(notice big difference between |C| and log(|C|).)

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer
simpler explanations”.

Why? TIs this a good policy? What if we
have different notions of what's simpler?

Occam'’s razor (contd)
A computer-science-ish way of looking at it:

* Say "simple” = "short description”.
+ At most 25 explanations can be < s bits long.
- So, if the number of examples satisfies:

|S| > (1/e)[s In(2) + In(1/8)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

+ Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will be
a short explanation for the data. That
depends on your representation.

Decision trees (%)

known to be PAC-learnable.

- Decision trees over {0,1}" not @ e

- Given any data set S, it's easy to find a

consistent DT if one exists. How?

* Where does the DL argument break down?
- Simple heuristics used in practice (ID3 etc.)

don't work for all ceC even for uniform D.

-+ Would suffice to find the (apx) smallest DT

consistent with any dataset S, but that's NP-
hard.

More examples

Other classes we can PAC-learn: (how?)

* Monomials [conjunctions, AND-functions]
= X; A Xgq A Xg A Xg

+ 3-CNF formulas (3-SAT formulas)

+ OR-functions, 3-DNF formulas

- k-Decision lists (each if-condition is a
conjunction of size k), k is constant.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-
complete. Does that mean 2-term DNF is
hard to learn?

More examples

Hard to learn C by C, but easy to learn C by
H, where H = {2-CNF}.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-
complete. Does that mean 2-term DNF is
hard to learn?

If computation-time is no object,
then any class is PAC-learnable

* Occam bounds = any class is learnable if
computation time is no object:
- Let 54=10, 5, = 8/2. Fori=1.2,.. do:
+ Request (1/¢)[s; + In(1/3;)] examples S,.

+ Check if there is a function of size at most s;
consistent with S, If so, output it and halt.

* Sy = 25, 84y = 8/2.
- At most &, + §, + ... < & chance of failure.

- Total data used: O((1/¢)[size(f)+In(1/8)In(size(f))]).

1st terms sum to O(size(f)) by telescoping. 2" terms sum to:
In G) +In (%) + ..t+ln (Sl e(f)) < In(size(f) In (S' e(f)) In?(size(f)) + In(size(f)) ln()

)

More about the PAC model

Algorn‘hm PAC-learns a class of functions C if:
For any given >0, 5>0, any target f € C, any dist. D, the
algorithm produces h of err(h)e with prob at least 1-5.

* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/8, n, size(f).

+ Require h to beCPoly time evaluatable. Learning is called
“proper"” if h € C. Can also talk about “learning C by H".

* What if your alg only worked for & = 3, what would

you do?

+ What if it only worked for € = %, or even & = 3-1/n?

This is called weak-learning. Will get back to later.

* Agnostic learning model: Don't assume anything

about f. Try to reach error opt(H) + &.

More about the PAC model

Algorn‘hm PAC-learns a class of functions C if:
For any given £0, 5>0, any target f € C, any dist. D, the
algorithm pr‘oduces hof err(h)e with pr'ob at least 1-5.
* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n, size(f).

* Require| h to be poly-time evaluatable. Learning is called
“proper” if h € C. Can also talk about “learning C by H".

Drawbacks of model:

+ Inthe real world, labeled examples are much more
expensive than running time. Poly(size(f)) not enough.
“Prior knowledge/beliefs” might be not just over form of
target but other relations to data.

+ Doesn't address other kinds of info (cheap unlabeled data,
pairwise similarity information).

+ Only considers “one shot" learning.

Extensions we'll get at later:

- Replace log(|H|) with “effective number of

degrees of freedom".

- There are infinitely many linear separators, but
not that many really different ones.

* Other more refined analyses.

Some classic open problems
Can one efficiently PAC-learn...

* an intersection of 2 halfspaces? (2-term
DNF trick doesn't work)

+ C={fns with only O(log n) relevant
variables}? (or even O(loglog n) or w(1)
relevant variables)? This is a special case
of DTs, DNFs.

* Monotone DNF over uniform D?

+ Weak aghostic learning of monomials.

