
1

15-859(B) Machine Learning 
Theory

Lecture 04/14/08 & 04/16/08: 
Online Learning and Game Theory

Avrim Blum

[Slides from MLSS’08, so will be skipping a 
lot we’ve already covered]

Consider the following setting…
w Each morning, you need to pick 

one of N possible routes to drive 
to work.

w But traffic is different each day.
n Not clear a priori which will be best.

n When you get there you find out how 
long your route took.  (And maybe 
others too or maybe not.)

CMU

32 min

w Is there a strategy for picking routes so that in the 
long run, whatever the sequence of traffic patterns 
has been, you’ve done nearly as well as the best fixed 
route in hindsight? (In expectation, over internal 
randomness in the algorithm)

w Yes.

“No-regret” algorithms for repeated decisions

A bit more generally:

w Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols)

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in 
the “bandit” model).

n Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1.

A
lg

o
ri

th
m

World – life - fate

“No-regret” algorithms for repeated decisions

w At each time step, algorithm picks row, life picks column.

n Alg pays cost for action chosen.

n Alg gets column as feedback (or just its own cost in 
the “bandit” model).

n Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1.

Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best 

fixed row in hindsight).
We want this to go to 0 or better as T gets large.          
[called a “no-regret” algorithm]

Some intuition & properties of no-regret algs.

w Let’s look at a small example:

w Note: Not trying to compete with best 
adaptive strategy – just best fixed 
path in hindsight.

w No-regret algorithms can do much 
better than playing minimax optimal, 
and never much worse.

w Existence of no-regret algs yields 
immediate proof of minimax thm!

A
lg

o
ri

th
m

World – life - fate

1          0

0          1
dest

Will define this 
later

This too

Some intuition & properties of no-regret algs.

w Let’s look at a small example:

w View of world/life/fate: unknown sequence LRLLRLRR...

w Goal: do well (in expectation) no matter what the 
sequence is.

w Algorithms must be randomized or else it’s hopeless.

w Viewing as game: algorithm against the world.

A
lg

o
ri

th
m

World – life - fate

1          0

0          1
dest



2

History and development (abridged)
w [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2).

n Re-phrasing, need only T = O(N/ε2) steps to get time-
average regret down to ε.  (will call this quantity Tε)

n Optimal dependence on T (or ε).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done.

Why optimal in T?

•Say world flips fair coin each day.
•Any alg, in T days, has expected cost T/2.
•But E[min(# heads,#tails)] = T/2 – O(T1/2).
•So, per-day gap is O(1/T1/2).

A
lg

o
ri

th
m

World – life - fate

1          0

0          1
dest

History and development (abridged)
w [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2).

n Re-phrasing, need only T = O(N/ε2) steps to get time-
average regret down to ε.  (will call this quantity Tε)

n Optimal dependence on T (or ε).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done.

w Learning-theory 80s-90s: “combining expert advice”.  
Imagine large class C of N prediction rules.
n Perform (nearly) as well as best f∈C.
n [LittlestoneWarmuth’89]: Weighted-majority algorithm

l E[cost] � OPT(1+ε) + (log N)/ε.
l Regret O((log N)/T)1/2.  Tε = O((log N)/ε2).

n Optimal as fn of N too, plus lots of work on exact 
constants, 2nd order terms, etc. [CFHHSW93]…

w Extensions to bandit model (adds extra factor of N).

To think about this, let’s look at 
the problem of “combining expert 

advice”.

[Skipping WM, RWM alg and 
analysis]

Summarizing

• E[# mistakes] � (1+ε)m + ε-1log(N).

• If set ε=(log(N)/m)1/2 to balance the two 
terms out (or use guess-and-double), get 
bound of E[mistakes]�m+2(m·log N)1/2

• Since m � T, this is at most m + 2(Tlog N)1/2.

• So, regret → 0.

What if we have N options, 
not N predictors? 

• We’re not combining N experts, we’re 
choosing one.  Can we still do it?

• Nice feature of RWM: can still apply.
– Choose expert i with probability pi = wi/W. 

– Still the same algorithm!

– Can apply to choosing N options, so long as costs 
are {0,1}.  

– What about costs in [0,1]?

What if we have N options, 
not N predictors? 

What about costs in [0,1]?

• If expert i has cost ci, do: wi ← wi(1-ciε).

• Our expected cost = ∑i ciwi/W.

• Amount of weight removed = ε ∑i wici.

• So, fraction removed = ε · (our cost).

• Rest of proof continues as before…

• So, now we can drive to work!  (assuming full 
feedback)



3

w Bounds have only log dependence on # choices N.

w So, conceivably can do well when N is exponential 
in natural problem size, if only could implement 
efficiently.

w E.g., case of paths…

w nxn grid has N = (2n choose n) possible paths.

w Recent years: series of results giving efficient 
implementation/alternatives in various settings, 
plus extensions to bandit model.

Efficient implicit implementation for large N…

dest

n [HelmboldSchapire97]: best pruning of given DT.

n [BChawlaKalai02]: list-update problem.

n [TakimotoWarmuth02]: online shortest path in DAGs.

n [KalaiVempala03]: elegant setting generalizing all above

l Online linear programming

n [Zinkevich03]: elegant setting generalizing all above

l Online convex programming

n [AwerbuchKleinberg04][McMahanB04]:[KV]→bandit model

n [Kleinberg,FlaxmanKalaiMcMahan05]: [Z03] → bandit model

n [DaniHayes06]: improve bandit convergence rate

n More…

w Recent years: series of results giving efficient 
implementation/alternatives in various settings:

Efficient implicit implementation for large N…

[Kalai-Vempala’03] and [Zinkevich’03] settings

[Z] setting:

w Assume S is convex.  

w Allow c(x) to be a convex function over S.

w Assume given any y not in S, can algorithmically find 
nearest x ∈ S.

[KV] setting:

w Implicit set S of feasible points in Rm. (E.g., m=#edges, 
S={indicator vectors 011010010 for possible paths})

w Assume have oracle for offline problem: given vector c, 
find x ∈ S to minimize c·x. (E.g., shortest path algorithm)

w Use to solve online problem: on day t, must pick x
t
∈ S 

before c
t

is given.

w (c1·x1+…+cT·xT)/T → minx∈Sx·(c1+…+cT)/T.

x

Kalai-Vempala algorithm

w Algorithm is very simple:

n Just pick x
t
∈ S that minimizes x·(c0 + c1 + … + c

t-1),

n where c0 is picked from appropriate distribution.
(in fact, closely related to Hannan’s original alg.)

w Form of bounds:

n Tε = O(diam(S) · L1 bound on c’s · log(m)/ ε2).

n For online shortest path, Tε = O(nm·log(n)/ε2).

w Recall setup: Set S of feasible points in Rm, of 
bounded diameter.

w For t = 1 to T: Alg picks x
t
∈ S, adversary picks cost 

vector c
t
, Alg pays x

t
· c

t
.  Goal: compete with x ∈ S 

that minimizes x · (c1 + c2 + … + cT).

w Assume have oracle for offline problem:            
given c, find best x ∈ S. Use to solve online.

x

Analysis sketch [KV]
Two algorithms walk into a bar…

w Alg A picks x
t

minimizing x
t
·ct-1, where ct-1=c1+…+c

t-1.

w Alg B picks x
t

minimizing x
t
·ct, where ct=c1+…+c

t
.

(B has fairy godparents who add c
t 

into history)

Step 1: prove B is at least as good as OPT:

∑t (B’s xt)· ct � minx∈ S x·(c1 + … + cT)

Uses cute telescoping argument.

Now, A & B start drinking and their objectives get fuzzier…

Ct-1

Ct

Step 2: at appropriate point (width of 
distribution for c0), prove A & B are 
similar and yet B has not been hurt too 
much.

Bandit setting
w What if alg is only told cost x

t
·c

t
and not c

t 
itself.

n E.g., you only find out cost of your own path, not all 
edges in network.

w Can you still perform comparably to the best path in 
hindsight? (which you don’t even know!)

w Ans: yes, though bounds are worse. Basic idea is fairly 
straightforward:
n All we need is an estimate of ct-1=c1 + … + ct-1.
n So, pick basis B and occasionally sample a random x∈B.
n Use dot-products with basis vectors to reconstruct 

estimate of ct-1.  (Helps for B to be as orthogonal as 
possible)

n Even if world is adaptive (knows what you know), still 
can’t bias your estimate too much if you do it right.



4

A natural generalization
w A natural generalization of our regret goal is: what if we 

also want that on rainy days, we do nearly as well as the 
best route for rainy days.

w And on Mondays, do nearly as well as best route for 
Mondays.

w More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

w Can we get this?

A natural generalization
w This generalization is esp natural in machine learning for 

combining multiple if-then rules.

w E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports.

w So, if 90% of documents with football are about sports, 
we should have error � 11% on them.

“Specialists” or “sleeping experts” problem.

Studied theoretically in [B95][FSSW97][BM05]; 
experimentally [CS’96,CS’99].   

w Assume we have N rules, explicitly given.

w For all i, want E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)

w Start with all rules at weight 1.
w At each time step, of the rules i that fire, 

select one with probability pi ∝ wi.
w Update weights:

n If didn’t fire, leave weight alone.
n If did fire, raise or lower depending on performance 

compared to weighted average:
l ri = [∑j pj cost(j)]/(1+ε) – cost(i)
l wi ← wi(1+ε)ri

n So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+ε) 
factor.  This ensures sum of weights doesn’t increase.

w Final wi = (1+ε)E[costi(alg)]/(1+ε)-costi(i). So, exponent � ε-1log N. 
w So, E[costi(alg)] � (1+ε)costi(i) + O(ε-1log N).

Can combine with [KV],[Z] too:

w Back to driving, say we are given N “conditions” to pay 
attention to (is it raining?, is it a Monday?, …).  

w Each day satisfies some and not others.  Want 
simultaneously for each condition (incl default) to do 
nearly as well as best path for those days.

w To solve, create N rules: “if day satisfies condition i, 
then use output of KVi”, where KVi is an instantiation of 
KV algorithm you run on just the days satisfying that 
condition.

Next Topic: Game 
Theory

Consider the following scenario…

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right.

• Goalie can choose to dive left or dive right.

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall!

• Vice-versa for shooter.



5

2-Player Zero-Sum games
• Two players R and C.  Zero-sum means that what’s 

good for one is bad for the other.

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much.

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x.

• E.g., penalty shot:

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Game Theory terminolgy
• Rows and columns are called pure strategies.

• Randomized algs called mixed strategies.

• “Zero sum” means that game is purely 
competitive. (x,y) satisfies x+y=0. (Game 
doesn’t have to be fair).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum]

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• Can solve for minimax-optimal strategies 

using Linear programming

• I.e., the thing to play if your opponent knows 
you well.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax-optimal strategies
• What are the minimax optimal strategies for 

this game?

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

shooter

goalie

No goal

GOAALLL!!!

Minimax optimal strategy for both players is 
50/50.  Gives expected gain of ½ for shooter 
(-½ for goalie).  Any other is worse.

(½,-½) (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Minimax-optimal strategies
• How about penalty shot with goalie who’s 

weaker on the left?

shooter

goalie

50/50

GOAALLL!!!

Minimax optimal for shooter is (2/3,1/3).
Guarantees expected gain at least 2/3. 
Minimax optimal for goalie is also (2/3,1/3).
Guarantees expected loss at most 2/3.



6

Minimax Theorem (von Neumann 1928)
• Every 2-player zero-sum game has a unique 

value V.

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V.

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V.

Counterintuitive: Means it doesn’t hurt to 
publish your strategy if both players are 
optimal.  (Borel had proved for symmetric 5x5 
but thought was false for larger games)

Nice proof of minimax thm
• Suppose for contradiction it was false.

• This means some game G has VC
> VR:

– If Column player commits first, there exists 
a row that gets the Row player at least VC.

– But if Row player has to commit first, the 
Column player can make him get only VR.

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - δ.

VC

VR

Proof contd
• Now, consider playing randomized weighted-

majority alg as Row, against Col who plays 
optimally against Row’s distrib.

• In T steps,
– Alg gets ≥ (1−ε/2)[best row in hindsight] – log(N)/ε

– BRiH ≥ T·VC [Best against opponent’s empirical 
distribution]

– Alg � T·VR [Each time, opponent knows your 
randomized strategy]

– Gap is δT. Contradicts assumption if use ε=δ, once 
T > 2log(N)/ε2.

Can use notion of minimax 
optimality to explain bluffing 

in poker

Simplified Poker (Kuhn 1950)

• Two players A and B.  

• Deck of 3 cards: 1,2,3.

• Players ante $1.

• Each player gets one card. 

• A goes first.  Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

• High card wins (if no folding). Max pot $2.

• Two players A and B.  3 cards: 1,2,3.

• Players ante $1. Each player gets one card. 

• A goes first.  Can bet $1 or pass.
• If A bets, B can call or fold.

• If A passes, B can bet $1 or pass.

– If B bets, A can call or fold.

Writing as a Matrix Game
• For a given card, A can decide to

• Pass but fold if B bets. [PassFold]
• Pass but call if B bets. [PassCall]
• Bet. [Bet]

• Similar set of choices for B.



7

Can look at all strategies as a 
big matrix…

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB]

[PF,PF,PC]
[PF,PF,B]

[PF,PC,PC]
[PF,PC,B]
[B,PF,PC]
[B,PF,B]

[B,PC,PC]
[B,PC,B]

0             0             -1/6             -1/6
0            1/6           -1/3             -1/6

-1/6           0                0                1/6
-1/6        –1/6             1/6              1/6
-1/6           0                0                1/6
1/6        –1/3              0               –1/2
1/6        –1/6           –1/6             –1/2
0         –1/2             1/3             –1/6
0         –1/3             1/6             –1/6

And the minimax optimal 
strategies are…• A: 

– If hold 1, then 5/6 PassFold and 1/6 Bet.
– If hold 2, then ½ PassFold and ½ PassCall.
– If hold 3, then ½ PassCall and ½ Bet.

Has both bluffing and underbidding…
• B:

– If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
– If hold 2, then 2/3 FoldPass and 1/3 CallPass.
– If hold 3, then CallBet

Minimax value of game is –1/18 to A.

Now, to General-Sum games!

General-Sum Games

• Zero-sum games are good formalism for 
worst-case analysis of algorithms.

• General-sum games are good models for 
systems with many participants whose 
behavior affects each other’s interests
– E.g., routing on the internet

– E.g., online auctions

General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “what side of sidewalk to walk on?”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right person 
walking 

towards you

you

General-sum games

• In general-sum games, can get win-win 
and lose-lose situations.

• E.g., “which movie should we go to?”:

(8,2)  (0,0)

(0,0)  (2,8)

Spartans

Atonement

Spartans    Atonement

No longer a unique “value” to the game.



8

Nash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate on their own.
• E.g., “what side of sidewalk to walk on”:

(1,1)   (-1,-1)

(-1,-1)  (1,1)

Left

Right

Left   Right

NE are: both left, both right, or both 50/50.

Nash Equilibrium
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized).
• Stable means that neither player has 

incentive to deviate on their own.
• E.g., “which movie to go to”:

NE are: both S, both A, or (80/20,20/80)

(8,2)  (0,0)

(0,0)  (2,8)

Spartans

Atonement

Spartans    Atonement

Uses
• Economists use games and equilibria as 

models of interaction.
• E.g., pollution / prisoner’s dilemma:

– (imagine pollution controls cost $4 but improve 
everyone’s environment by $3)

(2,2)  (-1,3)

(3,-1)  (0,0)

don’t pollute

pollute

don’t pollute   pollute

Need to add extra incentives to get good overall behavior.

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Fine.  NE is 50/50.  Travel time = 1.5

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 

NE can do strange things
• Braess paradox:

– Road network, traffic going from s to t.

– travel time as function of fraction x of 
traffic on a given edge.

Add new superhighway.  NE: everyone 
uses zig-zag path.  Travel time = 2.

s
x

1

1

tx
travel time = 1, 
indep of traffic

travel time t ( x ) = x
. 

0

Existence of NE
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium.
– Might require randomized strategies (called 

“mixed strategies”)

• This also yields minimax thm as a corollary.
– Pick some NE and let V = value to row player in 

that equilibrium. 
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing.

– So, they’re each playing minimax optimal.



9

Existence of NE
• Proof will be non-constructive.
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n × n general-sum 
games. [known to be “PPAD-hard”]

• Notation:
– Assume an nxn matrix.
– Use (p1,...,pn) to denote mixed strategy for row 

player, and (q1,...,qn) to denote mixed strategy 
for column player.

Proof

• We’ll start with Brouwer’s fixed point 
theorem.
– Let S be a compact convex region in Rn and let 

f:S → S be a continuous function.

– Then there must exist x ∈ S such that f(x)=x.

– x is called a “fixed point” of f.

• Simple case: S is the interval [0,1].

• We will care about:
– S = {(p,q): p,q are legal probability distributions 

on 1,...,n}.   I.e.,  S =  simplexn × simplexn

Proof (cont)

• S = {(p,q): p,q are mixed strategies}.

• Want to define f(p,q) = (p’,q’) such that:
– f is continuous.  This means that changing p 

or q a little bit shouldn’t cause p’ or q’ to 
change a lot.

– Any fixed point of f is a Nash Equilibrium.

• Then Brouwer will imply existence of NE.

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: not necessarily well-defined:
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 

be anything.

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Try #1

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p?

• Problem: also not continuous:
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 

(0.49,0.51) then q’ = (0,1).

(0,0)  (1,-1)

(1,-1)  (0,0)

Left

Right

Left   Right

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p  p’

Note: quadratic + linear = quadratic.



10

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

p

Note: quadratic + linear = quadratic.

p’

Instead we will use...

• f(p,q) = (p’,q’) such that:
– q’ maximizes [(expected gain wrt p) - ||q-q’||2]

– p’ maximizes [(expected gain wrt q) - ||p-p’||2]

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little.

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit).

• So, that’s it!

One more interesting game
“Ultimatum game”:

• Two players “Splitter” and “Chooser”

• 3rd party puts $10 on table.

• Splitter gets to decide how to split 
between himself and Chooser.

• Chooser can accept or reject.

• If reject, money is burned.

One more interesting game
“Ultimatum game”:  E.g., with $4

(1,3) (2,2)  (3,1)

(0,0) (2,2)  (3,1)

(0,0) (0,0)  (3,1)

1

2

3

1      2      3 

Splitter: how much 
to offer chooser

Chooser: 
how 

much to 
accept

Boosting & game theory
• Suppose I have an algorithm A that for any 

distribution (weighting fn) over a dataset S 
can produce a rule h∈H that gets < 40% 
error.

• Adaboost gives a way to use such an A to 
get error → 0 at a good rate, using 
weighted votes of rules produced.

• How can we see that this is even possible? 

Boosting & game theory

h1

h2

…
hm

x1, x2, x3,…, xn

Entry ij = 1 if 
hi(xj) is 

incorrect, 0 
if correct

• Assume for all D over cols, 
exists a row with cost < 0.4. 

• Minimax implies must exist a 
weighting over rows s.t. for 
every xi, the vote is at least 
60/40 in the right way.

• So, weighted vote has L1

margin at least 0.2.

• (Of course, AdaBoost gives 
you a way to get at it with 
only access via A.  But this at 
least implies existence…)



11

Stop 3: What happens if 
everyone is adapting 

their behavior?  

What if everyone started using no-regret algs?

w What if changing cost function is due to other 
players in the system optimizing for themselves?

w No-regret can be viewed as a nice definition of 
reasonable self-interested behavior.  So, what 
happens to overall system if everyone uses one?

w In zero-sum games, empirical frequencies quickly 
approaches minimax optimal.

n If your empirical distribution of play didn’t, 
then opponent would be able to (and have to) 
take advantage, giving you < V.

What if everyone started using no-regret algs?

w What if changing cost function is due to other 
players in the system optimizing for themselves?

w No-regret can be viewed as a nice definition of 
reasonable self-interested behavior.  So, what 
happens to overall system if everyone uses one?

w In zero-sum games, empirical frequencies quickly 
approaches minimax optimal.

w In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?  (after all, a 
Nash Eq is exactly a set of distributions that 
are no-regret wrt each other).

w Well, unfortunately, no.  

A bad example for general-sum games
w Augmented Shapley game from [Z04]: “RPSF”

n First 3 rows/cols are Shapley game (rock / paper / 
scissors but if both do same action then both lose).

n 4th action “play foosball” has slight negative if other 
player is still doing r/p/s but positive if other player 
does 4th action too.

n NR algs will cycle among first 3 and have no regret, 
but do worse than only Nash Equilibrium of both 
playing foosball.

w We didn’t really expect this to work given how 
hard NE can be to find…

What can we say?
w If algorithms minimize “internal” or “swap”

regret, then empirical distribution of play 
approaches correlated equilibrium.
n Foster & Vohra, Hart & Mas-Colell,…

n Though doesn’t imply play is stabilizing.

w In some natural cases, like routing in Wardrop
model, can show daily traffic actually approaches 
Nash.

More general forms of regret
1. “best expert” or “external” regret:

– Given n strategies.  Compete with best of them in 
hindsight.

2. “sleeping expert” or “regret with time-intervals”:
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si.

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i.



12

Internal/swap-regret
• E.g., each day we pick one stock to buy 

shares in.
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”.

• Formally, regret is wrt optimal function 
f:{1,…,N}→{1,…,N} such that every time you 
played action j, it plays f(j).

• Motivation: connection to correlated 
equilibria.

Internal/swap-regret
“Correlated equilibrium”

– Distribution over entries in matrix, such that if 
a trusted party chooses one at random and tells 
you your part, you have no incentive to deviate.

– E.g., Shapley game.

-1,-1  -1,1   1,-1

1,-1 -1,-1  -1,1

-1,1   1,-1   -1,-1

R

P

S

R       P       S

Internal/swap-regret
• If all parties run a low internal/swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium.

– Correlator chooses random time t ∈ {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t).

– Expected incentive to deviate:∑jPr(j)(Regret|j)
= swap-regret of algorithm

– So, this says that correlated equilibria are a 
natural thing to see in multi-agent systems 
where individuals are optimizing for themselves

Internal/swap-regret, contd
Algorithms for achieving low regret of this 

form:
– Foster & Vohra, Hart & Mas-Colell, Fudenberg

& Levine.

– Can also convert any “best expert” algorithm 
into one achieving low swap regret.

– Unfortunately, time to achieve low regret is 
linear in n rather than log(n)….

Internal/swap-regret, contd
Can convert any “best expert” algorithm A into one 

achieving low swap regret.  Idea:

– Instantiate one copy Ai responsible for 
expected regret over times we play i.

– Each time step, if we play p=(p1,…,pn) and get 
cost vector c=(c1,…,cn), then Ai gets cost-vector 
pic.

– If each Ai proposed to play qi, so all together 
we have matrix Q, then define p = pQ.

– Allows us to view pi as prob we chose action i or
prob we chose algorithm Ai.


