15-859(B) Machine Learning
Theory

Lecture 04/14/08 & 04/16/08:
Online Learning and Game Theory

Avrim Blum

[Slides from MLSS'08, so will be skipping a
lot we've already covered]

Consider the following setting...

w Each morning, you heed to pick
one of N possible routes fo drive
to work. "
w But traffic is different each day
= Not clear a priori which will be best. -
= When you get there you find out how s

long your route took. (And maybe
others too or maybe not.)

32 min

w Is there a strategy for picking routes so that in the
long run, whatever the sequence of traffic patterns
has been, you've done nearly as well as the best fixed
route in hindsight? (In expectation, over internal
randomness in the algorithm)

w Yes.

“No-regret" algorithms for repeated decisions

A bit more generally:

w Algorithm has N options. World chooses cost vector.
Can view as matrix like this (maybe infinite # cols)

World - life - fate

Algorithm

w At each time step, algorithm picks row, life picks column.
- Alg pays cost for action chosen.
. Alg gets column as feedback (or just its own cost in
the "bandit" model).
= Need to assume some bound on max cost. Let's say all
costs between 0 and 1.

“No-regret" algorithms for repeated decisions

wDA; each time step, algor‘l‘rhm plcks row, life picks column.
efingyaverageeanet i teps as:
-d f
ggeis 8&&&%"&’5 f%g&ba‘@gg& Japsethesh

n‘r ?ﬁﬁlgl‘r*o 0 or beﬁ ras)?e'rs large.
[caII ﬁ A9-¢ on max cost. LeTs say all

costs between 0

Some intuition & properties of no-regret algs.

w Let's look at a small example: World -l fate
* £l 1 0
B O<>O dest | %
: § 0 |

w Note: Not trying to compete with best
adaptive strategy - just best fixed
path in hindsight.
w No-regret algorithms can do much
better than playing minimax optimal,
and never much worse.

w Existence of no-regret algs yields

immediate proof of minimax thm!

Some intuition & properties of no-regret algs.

w Let's look at a small example: World e ate

fo o {40

= g2l O 1
w View of world/life/fate: unknown sequence LRLLRLRR...
w Goal: do well (in expectation) no matter what the

sequence is.
w Algorithms must be randomized or else it's hopeless.
w Viewing as game: algorithm against the world.

History and development (abridged)

w [Hannan'57, Blackwell'56]: Alg. with regret O((N/T)¥2).
. Re-phrasing, need only T = O(N/e?) steps to get time-
average regret down to €. (will call this quantity T,)
. Optimal dependence on T (or €). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.

Wh\/ OpTlmQI in T? World - life - fate
Fo ol g

0 1
+Say world flips fair coin each day.
*Any alg, in T days, has expected cost T/2.
But E[min(# heads #tails)] = T/2 - O(TY2),
*So, per-day gap is O(1/T12),

Algorithm

History and development (abridged)

w [Hannan'57, Blackwell'56]: Alg. with regret O((N/T)¥2).

. Re-phrasing, need only T = O(N/e?) steps to get time-
average regret down to €. (will call this quantity T,)

. Optimal dependence on T (or €). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.

w Learning-theory 80s-90s: “combining expert advice".
Imagine large class C of N prediction rules.
. Perform (nearly) as well as best feC.
o [LittlestoneWarmuth'89]: Weighted-majority algorithm
1 E[cost] < OPT(1+€) + (log N)/e.
1 Regret O((log N)/T)72. T, = O((log N)/€2).

. Optimal as fn of N too, plus lots of work on exact
constants, 2nd order terms, etc. [CFHHSW93]..

w Extensions to bandit model (adds extra factor of N).

To think about this, let's look at
the problem of "combining expert
advice".

[Skipping WM, RWM alg and
analysis]

Summarizing

- E[# mistakes] < (1+e)m + e llog(N).

- If set e=(log(N)/m)¥? to balance the two
terms out (or use guess-and-double), get
bound of E[mistakes]<m+2(m-log N)"/2

- Since m < T, this is at most m + 2(Tlog N)2,

* So, regret — 0.

What if we have N options,
not N predictors?

+ We're not combining N experts, we're
choosing one. Can we still do i?
* Nice feature of RWM: can still apply.
- Choose expert i with probability p; = w/W.
- Still the same algorithm!
- Can apply to choosing N options, so long as costs
are {0,1}.
- What about costs in [0,1]?

What if we have N options,
not N predictors?

What about costs in [0,1]?

+ If expert i has cost c;, do: w; «+ w;(1-ce).
+ Our expected cost = 2, cw,/W.

- Amount of weight removed = ¢ 3, wc,.

+ So, fraction removed = € - (our cost).

* Rest of proof continues as before...

+ S0, now we can drive to work! (assuming full
feedback)

Efficient implicit implementation for large N...

w Bounds have only log dependence on # choices N.

w So, conceivably can do well when N is exponential
in natural problem size, if only could implement
efficiently. $#

w E.g., case of paths.. ~

w nxn grid has N = (2n choose n) possible paths.

w Recent years: series of results giving efficient
implementation/alternatives in various settings,
plus extensions to bandit model.

Efficient implicit implementation for large N...

w Recent years: series of results giving efficient
implementation/alternatives in various settings:

» [HelmboldSchapire97]: best pruning of given DT.
o [BChawlaKalaiO2]: list-update problem.
o [TakimotoWarmuthO2]: online shortest path in DAGs.
» [KalaiVempalaO3]: elegant setting generalizing all above
1 Online linear programming
» [Zinkevich03]: elegant setting generalizing all above
1 Online convex programming
~» [AwerbuchKleinberg04][McMahanBO4]:[KV]—bandit model
» [Kleinberg,FlaxmanKalaiMcMahan05]: [Z03] — bandit model
» [DaniHayesO6]: improve bandit convergence rate
= More...

[Kalai-Vempala'03] and [Zinkevich'03] settings

[KV] setting:
w Implicit set S of feasible points in R™. (E.g., m=#edges,
S={indicator vectors 011010010 for possible paths})

w Assume have oracle for offline problem: given vector c,
find x € S to minimize c-x. (E.g., shortest path algorithm)

w Use to solve online problem: on day 7, must pick x;e S
before c; is given.

w (CpXp++CpXp)/ T = minox-(c+.+cr)/T.

[Z] setting:
w Assume S is convex.
w Allow c(x) to be a convex function over S.

w Assume given any y not in S, can algorithmically find
nearest x € S.

Kalai-Vempala algorithm

w Recall setup: Set S of feasible points in R™, of
bounded diameter.

w For t =110 T: Alg picks x, € S, adversary picks cost
vector c,, Alg pays x, - ¢,. Goal: compete with x € S
that minimizes x - (¢y + ¢, + ... + Cy). .

w Assume have oracle for offline problem: ° %% o
given c, find best x € S. Use to solve online. | ° °

o o o

© o

w Algorithm is very simple:
. Just pick x, € S that minimizes x-(co+ ¢y + ... + Cpq),
= where c, is picked from appropriate distribution.

(in fact, closely related to Hannan's original alg.)
w Form of bounds:
. T, = O(diam(S) - L, bound on c's - log(m)/ €2).
. For online shortest path, T, = O(hm-log(n)/e?).

Analysis sketch [KV]

Two algorithms walk into a bar...
w Alg A picks x, minimizing x,ct!, where ctl=c+..+c,;.
w Alg B picks x, minimizing x.ct, where ct=c+..+c,.

(B has fairy godparents who add c, into history)
Step 1: prove B is at least as good as OPT:

2 (B's xp)- ¢ < min, g x:(cq + .. + C1)
Uses cute telescoping argument.

Now, A & B start drinking and their objectives get fu

Step 2: at appropriate point (width of
distribution for c,), prove A & B are
similar and yet B has not been hurt too

much. /

Bandit setting

w What if alg is only told cost x;-c; and not c; itself.

Ec? . you only find out cost of your own path, not all
ges in network.

w Can you still perform comparably to the best path in
hindsight? (which you don’t even know!)

w Ans: yes, though bounds are worse. Basic idea is fairly
straightforward:

. All we need is an estimate of c*!=¢c; + .. + ¢, ;.
- So, pick basis B and occasionally sample a random x<B.

. Use dot-products with basis vectors to reconstruct
estimate of c*1. (Helps for B to be as orthogonal as
possible)

- Even if world is adaptive (knows what you know), still
can't bias your estimate too much if you do it right.

A natural generalization

w A natural generalization of our regret goal is: what if we
also want that on rainy days, we do nearly as well as the
best route for rainy days.

w And on Mondays, do nearly as well as best route for
Mondays.

w More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

w For all i, want E[cost;(alg)] < (1+€)cost (i) + O(ellog N).

(cost(X) = cost of X on time steps where rule i fires.)

w Can we get this?

A natural generalization

w This generalization is esp natural in machine learning for
combining multiple if-then rules.

w E.g., document classification. Rule: “if <word-X> appears
then predict <Y>". E.g., if has football then classify as
sports.

w So, if 90% of documents with football are about sports,
we should have error < 11% on them.

"Specialists" or “sleeping experts” problem.

Studied theoretically in [B95][FSSW97][BMO5];
experimentally [C5'96,C5'99].

w Assume we have N rules, explicitly given.
w For all i, want E[cost;(alg)] < (1+€)cost (i) + O(elog N).

(cost(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (i on one siide)

w Start with all rules at weight 1.

w At each time step, of the rules i that fire,
select one with probability p; o wi.
w Update weights:
. If didn't fire, leave weight alone.
. If did fire, raise or lower depending on performance
compared fo weighted average:
1= [Zj Py cost(j))/(1+€) - cost(i)
1wy wy(lse)i
. So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+€)
factor. This ensures sum of weights doesn't increase.
w Final w; = (1+€)Elcostilalg)l/(1+e)-costil), S, exponent < etlog N.
w So, E[costi(alg)] < (1+€)cost (i) + O(etlog N).

Can combine with [KV],[Z] too:

w Back to driving, say we are given N “conditions” to pay
attention to (is it raining?, is it a Monday?, ..).

w Each day satisfies some and not others. Want
simultaneously for each condition (incl default) to do
nearly as well as best path for those days.

w To solve, create N rules: “if day satisfies condition i,
then use output of KV;", where KV, is an instantiation of
KV algorithm you run on just the days satisfying that
condition.

Next Topic: Game
Theory

Consider the following scenario...

Shooter has a penalty shot. Can choose to
shoot left or shoot right.

Goalie can choose to dive left or dive right.

If goalie guesses correctly, (s)he saves the
day. If not, it's a goooooaaaaall!

Vice-versa for shooter.

2-Player Zero-Sum games

+ Two players R and C. Zero-sum means that what's
good for one is bad for the other.

* Game defined by matrix with a row for each of R's
options and a column for each of C's options.
Matrix tells who wins how much.

* an entry (x,y) means: x = payoff o row player, y = payoff to
column player. “Zero sum" means that y = -x.

. Eg, PenQITy shot: Left nghfm

Right | (1-1)|(0.0) | T Nega |

Game Theory terminolgy

+ Rows and columns are called pure strategies.

* Randomized algs called mixed strategies.

+ "Zero sum” means that game is purely

competitive. (xy) satisfies x+y=0. (Game
doesn't have to be fair).

Left Right = goaie |
Left | (00) | (L-%m

Right | (1-1)|(0.0) | T Negea |

Minimax-optimal strategies

* Minimax optimal strategy is a (randomized)
strategy that has the best guarantee on its
expected gain, over choices of the opponent.
[maximizes the minimum]

* Le., the thing to play if your opponent knows
you well.
Left ngh'f% goalie

09 O o
Right | (1-1)|(00) | T voged]

Minimax-optimal strategies

* Can solve for minimax-optimal strategies

using Linear programming

+ T.e., the thing to play if your opponent knows

you well.

Left ngh'f % goalie

s T
Right | (1-1)|(00) | T Noged]

Minimax-optimal strategies

* What are the minimax optimal strategies for
this game?

Minimax optimal strategy for both players is
50/50. Gives expected gain of 3 for shooter
(-7 for goalie). Any other is worse.

Left Right = goaie |
Left | (00) | (L-%m

Right | (1-1)|(0.0) | T Nega |

Minimax-optimal strategies

* How about penalty shot with goalie who's

weaker on the left?

Minimax optimal for shooter is (2/3,1/3).
Guarantees expected gain at least 2/3.
Minimax optimal for goalie is also (2/3,1/3).
Guarantees expected loss at most 2/3.

Left nghf % goalie

e G D o
Right | (1-1)|(0.0) | T s

Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique
value V.

+ Minimax optimal strategy for R guarantees
R's expected gain at least V.

+ Minimax optimal strategy for C guarantees
C's expected loss at most V.

Counterintuitive: Means it doesn't hurt o
publish your strategy if both players are
optimal. (Borel had proved for symmetric 5x5
but thought was false for larger games)

Nice proof of minimax thm
+ Suppose for contradiction it was false.

+ This means some game G has V. > Vy:
- If Column player commits first, there exists
a row that gets the Row player at least V.
- But if Row player has to commit first, the
Column player can make him get only V.
- Scale matrix so payoffs to row are
in[-1,0]. Say Vy= V.- 4.

Ve

Ve

Proof contd

* Now, consider playing randomized weighted-
majority alg as Row, against Col who plays
optimally against Row's distrib.

* In T steps,

- Alg gets > (1-e/2)[best row in hindsight] - log(N)/e

- BRiH > TV, [Best against opponent's empirical
distribution]

- Alg < T-V, [Each time, opponent knows your
randomized strategy]

- Gap is 3T. Contradicts assumption if use €=3, once
T > 2log(N)/e2.

Can use notion of minimax
optimality to explain bluffing
in poker

Simplified Poker (Kuhn 1950)

+ Two players A and B.

+ Deck of 3 cards: 1,2,3.

* Players ante $1.

+ Each player gets one card.

A goes first. Can bet $1 or pass.
- If A bets, B can call or fold.
- If A passes, B can bet $1 or pass.
-If B bets, A can call or fold.
- High card wins (if no folding). Max pot $2.

* Two players A and B. 3 cards: 1,2,3.
- Players ante $1. Each player gets one card.
A goes first. Can bet $1 or pass.
+ If A bets, B can call or fold.
« If A passes, B can bet $1 or pass.
- If B bets, A can call or fold.

Writing as a Matrix Game

* For a given card, A can decide to
+ Pass but fold if B bets. [PassFold]
+ Pass but call if B bets. [PassCall]
- Bet. [Bet]

+ Similar set of choices for B.

Can look ﬁ:r a:rl\:::&‘rfques a5 a And the minimax optimal
: - A strategies are...
[FP.FP.CB] [FP.CP.CB] [FB,FP.CB] [FB,CP.CB] - If hold 1, then 5/6 PassFold and 1/6 Bet.

[PFPFPC] O 0 -1/6 -1/6 - If hold 2, then £ PassFold and % PassCall.
[PFPFB] O 176 -1/3 -1/6 - If hold 3, then & PassCall and £ Bet.
[PF PC PC] i;g _1(/)6 1‘/)6 ;jg Has both bluffing and underbidding..
[PFPCB] 1/ 0 0 1/6 - B
[B,PFPC] 1/6 1/3 0 12 - If hold 1, then 2/3 FoldPass and 1/3 FoldBet.

[BPF,B] /6 1/6 176 12 - If hold 2, then 2/3 FoldPass and 1/3 CallPass.
[B,PCPC] 0 -1/2 1/3 -1/6 - If hold 3, then CallBet

[B,PC,B] 0 -1/3 1/6 -1/6 Minimax value of game is -1/18 to A.

General-Sum Games

+ Zero-sum games are good formalism for
worst-case analysis of algorithms.

* General-sum games are good models for
systems with many participants whose
behavior affects each other's interests
- E.g., routing on the internet
- E.g., online auctions

Now, to General-Sum games!

General-sum games

* In general-sum games, can get win-win
and lose-lose situations.

* E.g., "what side of sidewalk to walk on?":
Left Right pereon

walking
towards you
Left | (1,1) |(-1-1
Sl N
Right | (-1-1) (1.1) ,%

&

General-sum games

* In general-sum games, can get win-win

and lose-lose situations.

+ E.g., "which movie should we go t0?":

Spartans Atonement

Spartans | (8,2)|(0,0)

Atonement | (0,0)|(2,8)

No longer a unique “value" to the game.

Nash Equilibrium

* A Nash Equilibrium is a stable pair of
strategies (could be randomized).

+ Stable means that neither player has
incentive to deviate on their own.

+ E.g., "what side of sidewalk to walk on":
Left Right

Left | (1,1) |(-1,-1)

Right | (-1-1) (1,1)

NE are: both left, both right, or both 50/50.

Nash Equilibrium

* A Nash Equilibrium is a stable pair of
strategies (could be randomized).

+ Stable means that neither player has
incentive to deviate on their own.

+ E.g., "which movie o go to":
Spartans Atonement

Spartans | (8,2)|(0,0)

Atonement | (0,0)|(2,8)

NE are: both S, both A, or (80/20,20/80)

Uses
+ Economists use games and equilibria as
models of interaction.
+ E.g., pollution / prisoner’s dilemma:

- (imagine pollution controls cost $4 but improve
everyone's environment by $3)

don't pollute pollute

don't pollute | (2,2)|(-1,3)

pollute | (3,-1)/(0,0)

Need to add extra incentives to get good overall behavior.

NE can do strange things
* Braess paradox:
- Road network, traffic going from s fo t.

- travel time as function of fraction x of
traffic on a given edge.

travel time = 1, travel time
indep of traffic . { X t)=x.

Fine. NE is 50/50. Travel time = 1.5

NE can do strange things
* Braess paradox:
- Road network, traffic going from s to t.

- travel time as function of fraction x of
traffic on a given edge.

travel time = 1,
indep of traffic 1

Add new superhighway. NE: everyone
uses zig-zag path. Travel time = 2.

Existence of NE

* Nash (1950) proved: any general-sum game
must have at least one such equilibrium.

- Might require randomized strategies (called
"mixed strategies”)

+ This also yields minimax thm as a corollary.

- Pick some NE and let V = value to row player in
that equilibrium.

- Since it's a NE, neither player can do better
even knowing the (randomized) strategy their
opponent is playing.

- So, they're each playing minimax optimal.

Existence of NE

* Proof will be non-constructive.

+ Unlike case of zero-sum games, we do not

know any polynomial-time algorithm for

finding Nash Equilibria in n x n general-sum

games. [known to be "PPAD-hard"]

* Notation:

- Assume an nxn matrix.

- Use (py.....p,) To denote mixed strategy for row
player, and (g;.....g,) to denote mixed strategy
for column player.

Proof

+ We'll start with Brouwer's fixed point

theorem.

- Let S be a compact convex region in R" and let
f:S — S be a continuous function.

- Then there must exist x € S such that f(x)=x.
- x is called a “fixed point" of f.

- Simple case: S is the interval [0,1].
+ We will care about:

- 5={(p.9): p.q are legal probability distributions
onl,..n} Ie., S= simplex,x simplex,

Proof (cont)

+ 5={(p.q): p.q are mixed strategies}.
+ Want to define f(p.,q) = (p’,q) such that:
- f is continuous. This means that changing p
or q a little bit shouldn't cause p’ or q' to
change a lot.
- Any fixed point of f is a Nash Equilibrium.

+ Then Brouwer will imply existence of NE.

Try #1

* What about f(p.q) = (p'.q) where p' is best

response to q, and q' is best response to p?

* Problem: not necessarily well-defined:

- E.g., penalty shot: if p = (0.5,0.5) then q' could
be anything.
Left Right

Left | (0,0)|(1,-1)

Right | (1,-1)|(0,0)

Try #1

* What about f(p,q) = (p',q") where p' is best
response to q, and q' is best response to p?
* Problem: also not continuous:
- Eg., if p=(0.51,0.49) thenq = (10). Ifp=
(0.49,0.51) thenq' = (0,1).
Left Right

Left | (0,0) |(1,-1)

Right | (1,-1)|(0.,0)

Instead we will use...

- f(p.q) = (p'.q") such that:
- ¢ maximizes [(expected gain wrt p) - ||q-q'|2]
- p' maximizes [(expected gain wrt q) - ||p-p'||2]

N

p_p

Note: quadratic + linear = quadratic.

Instead we will use...

- f(p.q) = (p'.q") such that:
- ¢ maximizes [(expected gain wrt p) - ||q-q'|2]
- p' maximizes [(expected gain wrt q) - ||p-p'||2]

7N

23]

Note: quadratic + linear = quadratic.

Instead we will use...

* f(p.9) = (p'.9) such that:
- q' maximizes [(expected gain wrt p) - |g-q'|12]
- p' maximizes [(expected gain wrt q) - ||p-p'| |2]

+ f is well-defined and continuous since
quadratic has uniqgue maximum and small
change to p,q only moves this a little.

+ Also fixed point = NE. (even if tiny
incentive to move, will move little bit).

+ So, that's it!

One more interesting game

“Ultimatum game":
+ Two players "Splitter” and “Chooser”
3rd party puts $10 on table.

Splitter gets to decide how to split
between himself and Chooser.

Chooser can accept or reject.
If reject, money is burned.

One more interesting game
"Ultimatum game": E.g., with $4

Splitter: how much
to offer chooser

1 2 3

13)(2,2)| (3.1)
0,0(2,2) 31
(0,0)|(0,0)| (31

Boosting & game theory

+ Suppose I have an algorithm A that for any
distribution (weighting fn) over a dataset S
can produce a rule heH that gets < 40%
error.

+ Adaboost gives a way to use such an A to
get error — O at a good rate, using
weighted votes of rules produced.

+ How can we see that this is even possible?

Boosting & game theory

+ Assume for all D over cols,
exists a row with cost < 0.4. X1 X2, X34m00 X

* Minimax implies must exist a
weighting over rows s.t. for
every x;, the vote is at least
60/40 in the right way.

+ So, weighted vote has L, h

1

h,

I

margin at least 0.2.

- (Of course, AdaBoost gives
you a way to get at it with
only access via A. But this at

Entry ij=1if
hi(x;) is
incorrect, 0
if correct

least implies existence...)

Stop 3: What happens if
everyone is adapting
their behavior?

What if everyone started using no-regret algs?

w What if changing cost function is due to other
players in the system optimizing for themselves?
w No-regret can be viewed as a hice definition of
reasonable self-interested behavior. So, what
happens to overall system if everyone uses one?
w In zero-sum games, empirical frequencies quickly
approaches minimax optimal.
» If your empirical distribution of play didn't,
then opponent would be able to (and have to)
take advantage, giving you < V.

What if everyone started using no-regret algs?

w What if changing cost function is due to other
players in the system optimizing for themselves?

w No-regret can be viewed as a nice definition of
reasonable self-interested behavior. So, what
happens to overall system if everyone uses one?

w In zero-sum games, empirical frequencies quickly
approaches minimax optimal.

w In general-sum games, does behavior quickly (or
at all) approach a Nash equilibrium? (after all, a
Nash Eq is exactly a set of distributions that
are no-regret wrt each other).

w Well, unfortunately, no.

A bad example for general-sum games

w Augmented Shapley game from [Z04]: "RPSF"

- First 3 rows/cols are Shapley game (rock / paper /
scissors but if both do same action then both lose).

- 4th action “play foosball” has slight negative if other
player is still doing r/p/s but positive if other player
does 4th action too.

= NR algs will cycle among first 3 and have no regret,
but do worse than only Nash Equilibrium of both
playing foosball.

w We didn't really expect this to work given how
hard NE can be to find...

What canwe say?

w If algorithms minimize “internal” or “swap”
regret, then empirical distribution of play
approaches correlated equilibrium.

. Foster & Vohra, Hart & Mas-Colell,...
= Though doesn't imply play is stabilizing.

w In some natural cases, like routing in Wardrop
model, can show daily traffic actually approaches
Nash.

More general forms of regret

1. “best expert” or "external” regret:
- Given nstrategies. Compete with best of them in
hindsight.
2. “sleeping expert” or “regret with time-intervals”:
- Given n strategies, k properties. Let S; be set of days
satisfying property i (might overlap). Want to
simultaneously achieve low regret over each S;.
3. ‘internal” or "swap” regret: like (2), except that
S, = set of days in which we chose strategy i.

11

Internal/swap-regret

E.g., each day we pick one stock to buy
shares in.

- Don't want to have regret of the form "every
time I bought IBM, I should have bought
Microsoft instead”.

Formally, regret is wrt optimal function
f:{1,..N}—={1,...N} such that every time you
played action j, it plays f(j).

Motivation: connection to correlated
equilibria.

Internal/swap-regret

“Correlated equilibrium”

- Distribution over entries in matrix, such that if
a trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

- E.g., Shapley game. R P s

R |-1-1-111-1
1-1-1-1 -11
s |-111,-1]-1,1

Internal/swap-regret

If all parties run a low internal/swap regret
algorithm, then empirical distribution of
play is an apx correlated equilibrium.

- Correlator chooses random time t € {1,2,...,T}.
Tells each player to play the action j they
played in time t (but does not reveal value of t).

- Expected incentive to deviate:XPr(j)(Regret|j)
= swap-regret of algorithm

- So, this says that correlated equilibria are a
natural thing to see in multi-agent systems
where individuals are optimizing for themselves

Internal/swap-regret, contd

Algorithms for achieving low regret of this
form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg
& Levine.

- Can also convert any “best expert” algorithm
into one achieving low swap regret.

- Unfortunately, time o achieve low regret is
linear in n rather than log(n)....

Internal/swap-regret, contd

Can convert any "best expert” algorithm A into one
achieving low swap regret. Idea:

- Instantiate one copy A, responsible for
expected regret over times we play i.

- Each time step, if we play p=(p;.....p,) and get
cost vector c=(cy,...,c,), then A, gets cost-vector
pic.

- If each A, proposed to play g;, so all fogether
we have matrix Q, then define p = pQ.

- Allows us to view p; as prob we chose action i or
prob we chose algorithm A;.

12

