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* The main models we have been studying (PAC,

* But often labeled data is rare or expensive.
* On the other hand, often unlabeled data is

+ Can we use unlabeled data to help?

Semi-Supervised Learning

mistake-bound) are for supervised learning.

- Given labeled examples S = {(x;y;)}, try to learn a
good prediction rule.

plentiful and cheap.
- Documents, images, OCR, web-pages, protein
sequences, ...

Semi-Supervised Learning

Can we use unlabeled data to help?

* Unlabeled data is missing the most important
infol But maybe still has useful regularities
that we canuse. E.g., OCR.

Semi-Supervised Learning

Can we use unlabeled data to help?

* This is a question a lot of people in ML have
been interested in. A number of interesting
methods have been developed.

Today:

- Discuss several methods for trying to use
unlabeled data to help.

+ Extension of PAC model to make sense of
what's going on.

Plan for today

Methods:

+ Co-training

*+ Transductive SVM

- Graph-based methods

Model:

+ Augmented PAC model for SSL.

There's also a book "Semi-supervised
learning” on the topic.

Co-training

[Blum&Mitchell'98] motivated by [Yarowsky'95]

Yar'owskys Problem & Idea:

* Some words have multiple meanings (e.g., "plant").
Want to identify which meaning was infended in any
given instance.

+ Standard approach: learn function from local
context to desired meaning from labeled data.
"..nuclear power plant generated...”

+ Idea: use fact that in most documents, multiple
uses have same meaning. Use to transfer confident
predictions over.




Co-training

Actually, many problems have a similar characteristic.

- Examples x can be written in two parts
(X1.X2).

+ Either part alone is in principle sufficient to
produce a good classifer.

+ E.g., speech+video, image and context, web
page contents and links.

+ So if confident about label for x;, can use to
impute label for x,, and vice versa. Use each
classifier to help train the other.

Example: classifying webpages

+ Co-training: Agreement between two parts
- examples contain two sets of features, i.e. an example is
x=( Xy, X, ) and the belief is that the two parts of the
example are sufficient and consistent, i.e. 3 ¢;, ¢, such that
c1(Xp)=ca(xz)=c(x)
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Example: intervals

Suppose x; € R, x, € R. ¢; = [a4,b], ¢, = [a,,b,]

Co-Training Theorems
+ [BM98] if xy, X, are independent given the
label: D = p(Dy* x D,*) + (1-p)(Dy x D,7), and if
C is SQ-learnable, then can learn from an
initial "weakly-useful” h; plus unlabeled data.

+ |Def: h is weakly-useful if
Prih(x)=1]|c(x)=1] > Pr[h(x)=1|c(x)=0] + ¢.
(same as weak hyp if target c is balanced)

- E.g., say "syllabus" appears on 1/3 of course
pages but only 1/6 of non-course pages.

Co-Training Theorems

+ [BM98] if x4, x, are independent given the
label: D = p(D;* x D,*) + (1-p)(Dy x D,7), and if
C is SQ-learnable, then can learn from an
initial "weakly-useful” h; plus unlabeled data.

+ E.g., say "syllabus" appears on 1/3 of course
pages but only 1/6 of non-course pages.

+ Use as noisy label. Like classification noise
with potentially asymmetric noise rates a, f.

+ Can learn so long as o+f < 1-&.
(helpful trick: balance data so observed labels are 50/50)

Co-Training Theorems

+ [BM98] if x4, x, are independent given the
label: D = p(D;* x D,*) + (1-p)(Dy x D,7), and if
C is SQ-learnable, then can learn from an
initial "weakly-useful” h; plus unlabeled data.

+ [BBO5] in some cases (e.g., LTFs), you can use
this to learn from a single labeled examplel




A really simple learning algorithm

Claim: if data has a separator of margin v, there's
a reasonable chance a random hyperplane will
have error < % - 'Y/4 [all hyperplanes through origin]

Proof:
w Pick aéposi‘rive) example x. Consider the 2-d
plane defined by x and target w*. .
w Pry(hx <0 | hw* > 0) =X
<(@/2-y)/n=3%-vy/n
w So,E,[err(h) | hw*20]< % - v/x.

w Since err(h) is bounded between O and 1, there
must be a reasonable chance of success.

QED

Co-Training Theorems

+ [BM98] if x4, x, are independent given the

label: D = p(D;* x D,*) + (1-p)(D; x D7), and if
C is SQ-learnable, then can learn from an
initial “weakly-useful” h, plus unlabeled data.

+ [BBO5] in some cases (e.g., LTFs), you can use

this to learn from a single labeled examplel!
- Repeat process multiple times.

- Get 4 kinds of hyps: {close 1o c, close to —c,
close to 1, close to 0}

Co-Training Theorems

+ [BM98] if x,, X, are independent given the
label: D = p(D;* x D,*) + (1-p)(Dy x D,7), and if
C is SQ-learnable, then can learn from an
initial “weakly-useful” h; plus unlabeled data.

+ [BBO5] in some cases (e.g., LTFs), you can use
this to learn from a single labeled example!

+ [BBY04] if don't want to assume indep, and C
is learnable from positive data only, then
suffices for D* to have expansion.

Co-Training and expansion

Want initial sample to expand to full set of positives
after limited number of iterations.
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Transductive SVM [Joachims98]

+ Suppose we believe target separator goes through
low density regions of the space/large margin.

+ Aim for separator with large margin wrt labeled
and unlabeled data. (L+U)
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SVM
Labeled data only Transductive SVM

Transductive SVM [Joachims98]

+ Suppose we believe target separator goes through

low density regions of the space/large margin.

+ Aim for separator with large margin wrt labeled

and unlabeled data. (L+U)

+ Unfortunately, optimization problem is now NP-

hard. Algorithm instead does local optimization.

- Start with large margin over labeled data. Induces
labels on U.
- Then try flipping labels in greedy fashion.




Graph-based methods

* Suppose we believe that very similar
examples probably have the same label.

* If you have a lot of labeled data, this
suggests a Nearest-Neighbor type of alg.

+ If you have a lot of unlabeled data, suggests
a graph-based method.

* Solve for:

Graph-based methods

* Transductive approach. (GivenlL + U, output

predictions on U).

+ Construct a graph with edges between very

similar examples.
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Graph-based methods

+ Suppose just two labels: 0 & 1.

* Solve for labels f(x) for unlabeled examples
X To minimize:

= Tyl FW-F(W)|  [soln = minimum cut]

= Yeequyy (F(U)-f(v))? [soln = electric potentials]

How can we think about
these approaches to using
unlabeled data in a PAC-style
model?

Proposed Model [BBO5]

+ Augment the notion of a concept class C
with a notion of compatibility x between a
concept and the data distribution.

+ “learn C" becomes "“learn (C )" (i.e. learn
class C under compatibility notion )

+ Express relationships that one hopes the
target function and underlying distribution
will possess.

+ Idea: use unlabeled data & the belief that
the target is compatible to reduce € down to
just {the highly compatible functions in C}.

Proposed Model [BBO5]

+ Augment the notion of a concept class C
with a notion of compatibility x between a
concept and the data distribution.

+ “learn C" becomes "“learn (C )" (i.e. learn
class C under compatibility notion )

+ To do this, need unlabeled data to allow us to
uniformly estimate compatibilities well.

* Require that the degree of compatibility be
something that can be estimated from a finite
sample.




Proposed Model [BBO5]

+ Augment the notion of a concept class C
with a notion of compatibility x between a
concept and the data distribution.

+ "learn C" becomes “learn (Cx)" (i.e. learn
class C under compatibility notion )

* Require y to be an expectation over individual
examples:

- x(h,D)=E, . p[x(h, x)] compatibility of h with D,
x(hx) € [0,1]
erry,(h)=1-x(h, D) incompatibility of h with D
(unlabeled error rate of h)

Margins, Compatibility

+ Margins: belief is that should exist a large margin separator.

i
- Incompatibility of h and D (unlabeled error rate of h) - the

probability mass within distance y of h.

+ Can be written as an expectation over individual examples

%(h.D)=E, . p[x(h.x)] where:
« x(h,x)=0 if dist(x,h) <y
< x(h,x)=1if dist(x,h) >y

Margins, Compatibility

+ Margins: belief is that should exist a large margin
separator.

Highly compatible ;:oi

I
+ If do not want to commit to yin advance, define y(h x) to be
a smooth function of dist(x,h), e.g.:

) =1 — o577

+ Illegal notion of compatibility: the largest ys.t. D has
probability mass exactly zero within distance y of h.

°%

Co-Training, Compatibility

+ Co-tfraining: examples come as pairs ( X;, X, ) and the goal

is to learn a pair of functions (hy, h;)

* Hope is that the two parts of the example are consistent.

+ Legal (and natural) notion of compatibility:

- the compatibility of ( hy, h, ) and D:
Pr iz, aoyenlhi(z1) = ho(a2)]
- can be written as an expectation over examples:
X ((h1, h2), (w1, 22)) = 1 if hy(w1) = ha(22)

X ((h1, ho), (x1,22)) = 0 if hy(z1) # ho(22)

Sample Complexity - Uniform convergence bounds

Finite Hypothesis Spaces, Doubly Realizable Case
- Define Cp,(e) = {h € C: err, (h) <e}.

Theorem
If we see

1 2
my > = [In IC+ In—}
€ )

unlabeled examples and

1 2
my > - {In [Cpy(&)|+1n ﬂ

labeled examples, then with probability > 16, all h € C with efr(h) =0

and err,,;(h) = 0 have err(h) <e.
* Bound the # of labeled examples as a measure of the
helpfulness of D with respect to x

- ahelpful distribution is one in which C;, (¢) is small

Semi-Supervised Learning
Natural Formalization (PAC.)

* We will say an algorithm "PAC,-learns" if it runs in

poly time using samples poly in respective bounds.

- E.g., can think of In|C| as # bits to describe target

without knowing D, and In|C;, (€)| as number of bits to
describe target knowing a good approximation to D,
given the assumption that the target has low
unlabeled error rate.




Target in C, but not fully compatible

Finite Hypothesis Spaces - ¢* not fully compatible:
Theorem
Given t € [0,1], if we see
2 4
my > 2 [In |C]+In g}

unlabeled examples and

1 2
my > - [In [Cp(t+2¢)|+1In g}

labeled examples, then with prob. > 1 -4, all h € C with éerr(h) =0
and érry,(h) < t+ e have err(h) < e, and furthermore all h € C' with
errypi(h) <t have erry,(h) <t+e.

Implication If err,,(¢*) < t and err(c*) = 0 then with probability
>1—6 the h € C that optimizes érr(h) and érr,, (k) has err(h) <e.

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces
Assume x(h,x) € {0,1} and x(C) = {x : h € C} where y,,(x) = x(h,x).
C[m,D] - expected # of splits of m points from D with concepts in C.
Theorem
=0 <\,rcduzz(x((’)) Iog f 4 12 Iog f)

unlabeled examples and

my > § [Iog(Qs) + log %}
labeled examples, where

s = Cp(t +2¢)[2my, D]

are sufficient so that with probability at least 1 — 4, all h € C with érr(h) = 0 and
érryni(h) < t+ ¢ have err(h) <e, and furthermore all h € C have

lerruni(h) = errym(h)| < e

Implication: If err,,(c*) <t, then with probab. > 1 -4, the h € C that optimizes
both érr(h) and érr,, (h) has err(h) <e.

e-Cover-based bounds

+ For algorithms that behave in a specific way:

- first use the unlabeled data to choose a
representative set of compatible hypotheses

- then use the labeled sample to choose among these

Theorem

If ¢ is an upper bound for err,,(c*) and p is the size of a minimum & — cover for
Cpx(t+ 4<), then using

_ _(vCdim(x(C)), 1 1 2
my=0 ( = log~ + —log’s
unlabeled examples and
1
mi=0 (7 In 9_)
)
labeled examples, we can with probab. > 1 —§ identify a hypothesis which is 10e

close to c*.

Can result in much better bound than uniform convergencel!

e-Cover-based bounds
+ For algorithms that behave in a specific way:

- first use the unlabeled data to choose a
representative set of compatible hypotheses
- then use the labeled sample to choose among these

E.g., in case of co-training linear separators with
independence assumption:
- e-cover of compatible set = {0, 1, c*, - c*}

E.g., Transductive SVM when data is in two blobs.

Ways unlabeled data can help in this model

+ If the target is highly compatible with D and have enough
unlabeled data to estimate y over all h € C, then can reduce
the search space (from C down to just those h € C whose
estimated unlabeled error rate is low).

+ By providing an estimate of D, unlabeled data can allow a
more refined distribution-specific notion of hypothesis
space size (such as Annealed VC-entropy or the size of the
smallest e-cover).

+ If Dis nice so that the set of compatible h € C has a small
e-cover and the elements of the cover are far apart, then
can learn from even fewer labeled examples than the 1/¢
needed just to verify a good hypothesis.




