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Semi-Supervised Learning

• The main models we have been studying (PAC, 
mistake-bound) are for supervised learning.
– Given labeled examples S = {(xi,yi)}, try to learn a 
good prediction rule.

• But often labeled data is rare or expensive.  

• On the other hand, often unlabeled data is 
plentiful and cheap.
– Documents, images, OCR, web-pages, protein 
sequences, …

• Can we use unlabeled data to help?

Semi-Supervised Learning

Can we use unlabeled data to help?
• Unlabeled data is missing the most important 
info!  But maybe still has useful regularities 
that we can use.  E.g., OCR.

Semi-Supervised Learning

Can we use unlabeled data to help?
• This is a question a lot of people in ML have 
been interested in.  A number of interesting 
methods have been developed.

Today:
• Discuss several methods for trying to use  
unlabeled data to help.

• Extension of PAC model to make sense of 
what’s going on.

Plan for today

Methods:
• Co-training

• Transductive SVM

• Graph-based methods

Model:
• Augmented PAC model for SSL.

There’s also a book “Semi-supervised 
learning” on the topic.

Co-training
[Blum&Mitchell’98] motivated by [Yarowsky’95]

Yarowsky’s Problem & Idea:
• Some words have multiple meanings (e.g., “plant”).  
Want to identify which meaning was intended in any 
given instance.

• Standard approach: learn function from local 
context to desired meaning from labeled data. 
“…nuclear power plant generated…”

• Idea: use fact that in most documents, multiple 
uses have same meaning. Use to transfer confident 
predictions over.
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Co-training
Actually, many problems have a similar characteristic.

• Examples x can be written in two parts 
(x1,x2).

• Either part alone is in principle sufficient to 
produce a good classifer.

• E.g., speech+video, image and context, web 
page contents and links.

• So if confident about label for x1, can use to 
impute label for x2, and vice versa. Use each 
classifier to help train the other.

Example: classifying webpages
• Co-training: Agreement between two parts

– examples contain two sets of features, i.e. an example is 
x=〈 x1, x2 〉 and the belief is that the two parts of the 
example are sufficient and consistent, i.e. ∃ c1, c2 such that 
c1(x1)=c2(x2)=c(x)
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Example: intervals
Suppose x1 ∈ R, x2 ∈ R.  c1 = [a1,b1], c2 = [a2,b2]
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Co-Training Theorems
• [BM98] if x1, x2 are independent given the 
label: D = p(D1

+ × D2
+) + (1-p)(D1

- × D2
-), and if 

C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data.

• Def: h is weakly-useful if 

Pr[h(x)=1|c(x)=1] > Pr[h(x)=1|c(x)=0] + ε.

(same as weak hyp if target c is balanced)

• E.g., say “syllabus” appears on 1/3 of course 
pages but only 1/6 of non-course pages.

Co-Training Theorems
• [BM98] if x1, x2 are independent given the 
label: D = p(D1

+ × D2
+) + (1-p)(D1

- × D2
-), and if 

C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data.

• E.g., say “syllabus” appears on 1/3 of course 
pages but only 1/6 of non-course pages.

• Use as noisy label.  Like classification noise 
with potentially asymmetric noise rates α, β.

• Can learn so long as α+β < 1-ε.
(helpful trick: balance data so observed labels are 50/50)

Co-Training Theorems
• [BM98] if x1, x2 are independent given the 
label: D = p(D1

+ × D2
+) + (1-p)(D1

- × D2
-), and if 

C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data.

• [BB05] in some cases (e.g., LTFs), you can use 
this to learn from a single labeled example!
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Proof:
w Pick a (positive) example x.  Consider the 2-d 

plane defined by x and target w*.

w Prh(h⋅x ≤ 0 | h⋅w* ≥ 0)
≤ (π/2 - γ)/π = ½ - γ/π.

w So, Eh[err(h) | h⋅w* ≥ 0] ≤ ½ - γ/π.

w Since err(h) is bounded between 0 and 1, there 
must be a reasonable chance of success.

A really simple learning algorithm
Claim: if data has a separator of margin γ, there’s 

a reasonable chance a random hyperplane will 
have error ≤ ½ - γ/4. [all hyperplanes through origin]

w*
x

QED

Co-Training Theorems
• [BM98] if x1, x2 are independent given the 
label: D = p(D1

+ × D2
+) + (1-p)(D1

- × D2
-), and if 

C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data.

• [BB05] in some cases (e.g., LTFs), you can use 
this to learn from a single labeled example!
– Repeat process multiple times.

– Get 4 kinds of hyps: {close to c, close to ¬c, 
close to 1, close to 0}

Co-Training Theorems
• [BM98] if x1, x2 are independent given the 
label: D = p(D1

+ × D2
+) + (1-p)(D1

- × D2
-), and if 

C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data.

• [BB05] in some cases (e.g., LTFs), you can use 
this to learn from a single labeled example!

• [BBY04] if don’t want to assume indep, and C 
is learnable from positive data only, then 
suffices for D+ to have expansion.

Co-Training and expansion
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Want initial sample to expand to full set of positives 
after limited number of iterations.

Transductive SVM [Joachims98]

• Suppose we believe target separator goes through 
low density regions of the space/large margin.

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U)
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Labeled data only
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Transductive SVM
SVM

Transductive SVM [Joachims98]

• Suppose we believe target separator goes through 
low density regions of the space/large margin.

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U)

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization.
– Start with large margin over labeled data. Induces 
labels on U.

– Then try flipping labels in greedy fashion.
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Graph-based methods
• Suppose we believe that very similar 
examples probably have the same label.

• If you have a lot of labeled data, this 
suggests a Nearest-Neighbor type of alg.

• If you have a lot of unlabeled data, suggests 
a graph-based method.

Graph-based methods
• Transductive approach.  (Given L + U, output 
predictions on U).

• Construct a graph with edges between very 
similar examples.

• Solve for:
– Minimum cut

– Minimum “soft-cut” [ZGL]

– Spectral partitioning

Graph-based methods
• Suppose just two labels: 0 & 1.

• Solve for labels f(x) for unlabeled examples 
x to minimize:
– ∑e=(u,v)|f(u)-f(v)|   [soln = minimum cut]

– ∑e=(u,v) (f(u)-f(v))2 [soln = electric potentials]

-

-+

+

How can we think about 
these approaches to using 

unlabeled data in a PAC-style 
model?

Proposed Model [BB05]
• Augment the notion of a concept class C
with a notion of compatibility χ between a 
concept and the data distribution.

• “learn C” becomes “learn (C,χ)” (i.e. learn 
class C under compatibility notion χ)

• Express relationships that one hopes the 
target function and underlying distribution 
will possess.

• Idea: use unlabeled data & the belief that 
the target is compatible to reduce C down to 
just {the highly compatible functions in C}.

Proposed Model [BB05]
• Augment the notion of a concept class C
with a notion of compatibility χ between a 
concept and the data distribution.

• “learn C” becomes “learn (C,χ)” (i.e. learn 
class C under compatibility notion χ)

• To do this, need unlabeled data to allow us to 
uniformly estimate compatibilities well.

• Require that the degree of compatibility be 
something that can be estimated from a finite
sample.
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Proposed Model [BB05]
• Augment the notion of a concept class C
with a notion of compatibility χ between a 
concept and the data distribution.

• “learn C” becomes “learn (C,χ)” (i.e. learn 
class C under compatibility notion χ)

• Require χ to be an expectation over individual 
examples:

– χ(h,D)=Ex ∈ D[χ(h, x)] compatibility of h with D, 

χ(h,x) ∈ [0,1]

– errunl(h)=1-χ(h, D) incompatibility of h with D 

(unlabeled error rate of h)

Margins, Compatibility

• Margins: belief is that should exist a large margin separator.

• Incompatibility of h and D (unlabeled error rate of h) – the 
probability mass within distance γ of h.

• Can be written as an expectation over individual examples 
χ(h,D)=Ex ∈ D[χ(h,x)] where:

• χ(h,x)=0 if dist(x,h) � γ

• χ(h,x)=1 if dist(x,h) ≥ γ

Highly compatible +

+

+

_

_

Margins, Compatibility

• Margins: belief is that should exist a large margin 
separator.

• If do not want to commit to γ in advance,  define χ(h,x) to be 
a smooth function of dist(x,h), e.g.: 

• Illegal notion of compatibility: the largest γ s.t. D has 
probability mass exactly zero within distance γ of h.

Highly compatible +

+

+

_

_

Co-Training, Compatibility

• Co-training: examples come as pairs 〈 x1, x2 〉 and the goal 
is to learn a pair of functions  〈 h1, h2 〉

• Hope is that the two parts of the example are consistent.

• Legal (and natural) notion of compatibility:  
– the compatibility of 〈 h1, h2 〉 and D: 

– can be written as an expectation over examples:

Sample Complexity - Uniform convergence bounds

Finite Hypothesis Spaces, Doubly Realizable Case

• Define CD,χ(ε) = {h ∈ C : errunl(h) � ε}.

Theorem

• Bound the # of labeled examples as a measure of the 

helpfulness of D with respect to χ
– a helpful distribution is one in which CD,χ(ε) is small

Semi-Supervised Learning
Natural Formalization (PACχ)

• We will say an algorithm "PACχ-learns" if it runs in 

poly time using samples poly in respective bounds.

• E.g., can think of ln|C| as # bits to describe target 

without knowing D, and ln|CD,χ(ε)| as number of bits to 

describe target knowing a good approximation to D, 

given the assumption that the target has low 

unlabeled error rate.
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Target in C, but not fully compatible

Finite Hypothesis Spaces – c* not fully compatible:

Theorem

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume χ(h,x) ∈ {0,1} and χ(C) = {χh : h ∈ C} where χh(x) = χ(h,x).

C[m,D] - expected # of splits of m points from D with concepts in C.

ε-Cover-based bounds
• For algorithms that behave in a specific way: 

– first use the unlabeled data to choose a 
representative set of compatible hypotheses

– then use the labeled sample to choose among these

Theorem

• Can result in much better bound than uniform convergence!

ε-Cover-based bounds
• For algorithms that behave in a specific way: 

– first use the unlabeled data to choose a 
representative set of compatible hypotheses

– then use the labeled sample to choose among these

E.g., in case of co-training linear separators with 
independence assumption:
– ε-cover of compatible set  = {0, 1, c*, ¬ c*}

E.g., Transductive SVM when data is in two blobs.

+

+

_
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Ways unlabeled data can help in this model

• If the target is highly compatible with D and have enough 
unlabeled data to estimate χ over all h ∈ C, then can reduce 
the search space (from C down to just those h ∈ C whose 
estimated unlabeled error rate is low).

• By providing an estimate of D, unlabeled data can allow a 
more refined distribution-specific notion of hypothesis 
space size (such as Annealed VC-entropy or the size of the 
smallest ε-cover).

• If D is nice so that the set of compatible h ∈ C has a small 
ε-cover and the elements of the cover are far apart, then 
can learn from even fewer labeled examples than the 1/ε
needed just to verify a good hypothesis.


