15-859(B) Machine Learning Theory Semi-Supervised Learning

Avrim Blum 04/07/08

Semi-Supervised Learning

- The main models we have been studying (PAC, mistake-bound) are for supervised learning.
 - Given labeled examples $S = \{(x_i,y_i)\}$, try to learn a good prediction rule.
- But often labeled data is rare or expensive.
- On the other hand, often unlabeled data is plentiful and cheap.
 - Documents, images, OCR, web-pages, protein sequences, ...
- Can we use unlabeled data to help?

Semi-Supervised Learning

Can we use unlabeled data to help?

 Unlabeled data is missing the most important info! But maybe still has useful regularities that we can use. E.g., OCR.

Semi-Supervised Learning

Can we use unlabeled data to help?

 This is a question a lot of people in ML have been interested in. A number of interesting methods have been developed.

Today:

- Discuss several methods for trying to use unlabeled data to help.
- Extension of PAC model to make sense of what's going on.

Plan for today

Methods:

- Co-training
- Transductive SVM
- Graph-based methods

Model:

Augmented PAC model for SSL.

There's also a book "Semi-supervised learning" on the topic.

Co-training

[Blum&Mitchell'98] motivated by [Yarowsky'95]

Yarowsky's Problem & Idea:

- Some words have multiple meanings (e.g., "plant").
 Want to identify which meaning was intended in any given instance.
- Standard approach: learn function from local context to desired meaning from labeled data. "...nuclear power plant generated..."
- Idea: use fact that in most documents, multiple uses have same meaning. Use to transfer confident predictions over.

Co-training

Actually, many problems have a similar characteristic.

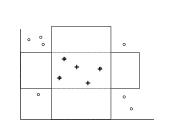
- Examples x can be written in two parts (x_1,x_2) .
- Either part alone is in principle sufficient to produce a good classifer.
- E.g., speech+video, image and context, web page contents and links.
- So if confident about label for x₁, can use to impute label for x₂, and vice versa. Use each classifier to help train the other.

Example: classifying webpages

- · Co-training: Agreement between two parts
- examples contain two sets of features, i.e. an example is $x=\langle\ x_1,\ x_2\ \rangle$ and the belief is that the two parts of the example are sufficient and consistent, i.e. $\exists\ c_1,\ c_2$ such that $c_1(x_1)=c_2(x_2)=c(x)$

Example: intervals

Suppose $x_1 \in R$, $x_2 \in R$. $c_1 = [a_1,b_1]$, $c_2 = [a_2,b_2]$



Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: D = $p(D_1^+ \times D_2^+) + (1-p)(D_1^- \times D_2^-)$, and if C is SQ-learnable, then can learn from an initial "weakly-useful" h_1 plus unlabeled data.
- Def: h is weakly-useful if
 Pr[h(x)=1|c(x)=1] > Pr[h(x)=1|c(x)=0] + ε.
 (same as weak hyp if target c is balanced)
- E.g., say "syllabus" appears on 1/3 of course pages but only 1/6 of non-course pages.

Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: $D = p(D_1^+ \times D_2^+) + (1-p)(D_1^- \times D_2^-)$, and if C is SQ-learnable, then can learn from an initial "weakly-useful" h_1 plus unlabeled data.
- E.g., say "syllabus" appears on 1/3 of course pages but only 1/6 of non-course pages.
- Use as noisy label. Like classification noise with potentially asymmetric noise rates $\alpha, \beta.$
- Can learn so long as $\alpha+\beta$ < 1- ϵ . (helpful trick: balance data so observed labels are 50/50)

Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: $D = p(D_1^+ \times D_2^+) + (1-p)(D_1^- \times D_2^-)$, and if C is SQ-learnable, then can learn from an initial "weakly-useful" h_1 plus unlabeled data.
- [BB05] in some cases (e.g., LTFs), you can use this to learn from a single labeled example!

A really simple learning algorithm

Claim: if data has a separator of margin γ , there's a reasonable chance a random hyperplane will have error $\leq \frac{1}{2} - \gamma/4$. [all hyperplanes through origin]

- w Pick a (positive) example x. Consider the 2-d plane defined by x and target w*.
- w $Pr_h(h \cdot x \leq 0 \mid h \cdot w^* \geq 0)$ $\leq (\pi/2 - \gamma)/\pi = \frac{1}{2} - \gamma/\pi.$
- w So, $E_h[err(h) \mid h \cdot w^* \ge 0] \le \frac{1}{2} \gamma/\pi$.
- Since err(h) is bounded between 0 and 1, there must be a reasonable chance of success.

Co-Training Theorems

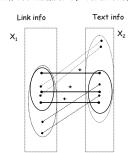
- [BM98] if x_1 , x_2 are independent given the label: $D = p(D_1^+ \times D_2^+) + (1-p)(D_1^- \times D_2^-)$, and if C is SQ-learnable, then can learn from an initial "weakly-useful" h₁ plus unlabeled data.
- [BB05] in some cases (e.g., LTFs), you can use this to learn from a single labeled example!
 - Repeat process multiple times.
 - Get 4 kinds of hyps: {close to c, close to $\neg c$, close to 1, close to 0}

Co-Training Theorems

- [BM98] if x_1 , x_2 are independent given the label: D = $p(D_1^+ \times D_2^+) + (1-p)(D_1^- \times D_2^-)$, and if C is SQ-learnable, then can learn from an initial "weakly-useful" h1 plus unlabeled data.
- [BB05] in some cases (e.g., LTFs), you can use this to learn from a single labeled example!
- [BBY04] if don't want to assume indep, and C is learnable from positive data only, then suffices for D+ to have expansion.

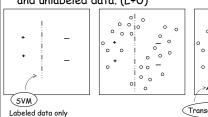
Co-Training and expansion

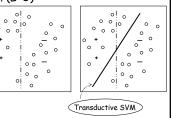
Want initial sample to expand to full set of positives after limited number of iterations.



Transductive SVM [Joachims98]

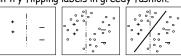
- · Suppose we believe target separator goes through low density regions of the space/large margin.
- Aim for separator with large margin wrt labeled and unlabeled data. (L+U)





Transductive SVM [Joachims98]

- Suppose we believe target separator goes through low density regions of the space/large margin.
- Aim for separator with large margin wrt labeled and unlabeled data. (L+U)
- Unfortunately, optimization problem is now NPhard. Algorithm instead does local optimization.
 - Start with large margin over labeled data. Induces labels on U
 - Then try flipping labels in greedy fashion.

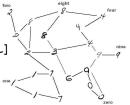


Graph-based methods

- Suppose we believe that very similar examples probably have the same label.
- If you have a lot of labeled data, this suggests a Nearest-Neighbor type of alg.
- If you have a lot of unlabeled data, suggests a graph-based method.

Graph-based methods

- Transductive approach. (Given L + U, output predictions on U).
- Construct a graph with edges between very similar examples.
- · Solve for:
 - Minimum cut
 - Minimum "soft-cut" [ZGL]
 - Spectral partitioning



Graph-based methods

- · Suppose just two labels: 0 & 1.
- Solve for labels f(x) for unlabeled examples x to minimize:
 - $\sum_{e=(u,v)} |f(u)-f(v)|$ [soln = minimum cut]
 - $\sum_{e=(u,v)} (f(u)-f(v))^2$ [soln = electric potentials]

How can we think about these approaches to using unlabeled data in a PAC-style model?

Proposed Model [BB05]

- Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.
 - "learn C" becomes "learn (C,χ) " (i.e. learn class C under compatibility notion χ)
- Express relationships that one hopes the target function and underlying distribution will possess.
- Idea: use unlabeled data & the belief that the target is compatible to reduce C down to just {the highly compatible functions in C}.

Proposed Model [BB05]

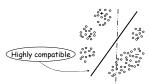
- Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.
 - "learn C" becomes "learn (C,χ) " (i.e. learn class C <u>under</u> compatibility notion χ)
- To do this, need unlabeled data to allow us to uniformly estimate compatibilities well.
- Require that the degree of compatibility be something that can be estimated from a finite sample.

Proposed Model [BB05]

- Augment the notion of a concept class ${\cal C}$ with a notion of compatibility χ between a concept and the data distribution.
 - "learn C" becomes "learn (C,χ) " (i.e. learn class C <u>under</u> compatibility notion χ)
- Require χ to be an expectation over individual examples:
 - $\chi(h,D)$ = $E_{x \in D}[\chi(h,x)]$ compatibility of h with D, $\chi(h,x) \in [0,1]$
 - $err_{unl}(h)=1-\chi(h,D)$ incompatibility of h with D (unlabeled error rate of h)

Margins, Compatibility

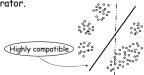
· Margins: belief is that should exist a large margin separator.



- * Incompatibility of h and D (unlabeled error rate of h) the probability mass within distance γ of h.
- Can be written as an expectation over individual examples $\chi(h,D) = E_{x \in D}[\chi(h,x)]$ where:
 - $\chi(h,x)=0$ if $dist(x,h) \leq \gamma$
 - $\chi(h,x)=1$ if dist $(x,h) \geq \gamma$

Margins, Compatibility

• Margins: belief is that should exist a large margin separator.



 If do not want to commit to γ in advance, define χ(h,x) to be a smooth function of dist(x,h), e.g.:

$$\chi(h,x) = 1 - e^{\left[-\frac{dist(x,h)}{2\sigma^2}\right]}$$

• Illegal notion of compatibility: the largest γ s.t. D has probability mass exactly zero within distance γ of h.

Co-Training, Compatibility

- Co-training: examples come as pairs \langle x₁, x₂ \rangle and the goal is to learn a pair of functions \langle h₁, h₂ \rangle
- · Hope is that the two parts of the example are consistent.
- · Legal (and natural) notion of compatibility:
 - the compatibility of $\langle h_1, h_2 \rangle$ and D:

$$\Pr_{\langle x_1,x_2\rangle\in D}[h_1(x_1)=h_2(x_2)]$$

- can be written as an expectation over examples:

$$\chi\left(\langle h_1, h_2 \rangle, \langle x_1, x_2 \rangle\right) = 1$$
 if $h_1(x_1) = h_2(x_2)$

$$\chi\left(\langle h_1,h_2\rangle,\langle x_1,x_2\rangle\right)=0 \text{ if } h_1(x_1)\neq h_2(x_2)$$

Sample Complexity - Uniform convergence bounds

Finite Hypothesis Spaces, Doubly Realizable Case

• Define $C_{D,\chi}(\epsilon)$ = $\{h \in C : err_{unl}(h) \le \epsilon\}$.

Theorem

If we see

$$m_u \ge \frac{1}{\varepsilon} \left[\ln |C| + \ln \frac{2}{\delta} \right]$$

unlabeled examples and

$$m_l \ge \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$$

labeled examples, then with probability $\geq 1-\delta$, all $h\in C$ with $\hat{err}(h)=0$ and $\hat{err}_{unl}(h)=0$ have $err(h)\leq \varepsilon$.

- Bound the # of labeled examples as a measure of the helpfulness of D with respect to $\boldsymbol{\chi}$
 - a helpful distribution is one in which $C_{D,r}(\varepsilon)$ is small

Semi-Supervised Learning Natural Formalization (PAC,)

- We will say an algorithm "PAC $_{\chi}$ -learns" if it runs in poly time using samples poly in respective bounds.
- E.g., can think of $\ln |\mathcal{C}|$ as # bits to describe target without knowing D, and $\ln |\mathcal{C}_{\mathrm{D},\chi}(\epsilon)|$ as number of bits to describe target knowing a good approximation to D, given the assumption that the target has low unlabeled error rate.

Target in C, but not fully compatible

Finite Hypothesis Spaces - c* not fully compatible: Theorem

Given $t \in [0,1]$, if we see

$$m_u \ge \frac{2}{\varepsilon^2} \left[\ln |C| + \ln \frac{4}{\delta} \right]$$

Given
$$t\in[0,1]$$
, if we see
$$m_u\geq\frac{2}{\varepsilon^2}\left[\ln|C|+\ln\frac{4}{\delta}\right]$$
 unlabeled examples and
$$m_l\geq\frac{1}{\varepsilon}\left[\ln|C_{D,\chi}(t+2\varepsilon)|+\ln\frac{2}{\delta}\right]$$

labeled examples, then with prob. $\geq 1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h) \leq t + \varepsilon$ have $err(h) \leq \varepsilon$, and furthermore all $h \in C$ with $err_{unl}(h) \le t$ have $\widehat{err}_{unl}(h) \le t + \varepsilon$.

Implication If $err_{unl}(c^*) \leq t$ and $err(c^*) = 0$ then with probability $\geq 1 - \delta$ the $h \in C$ that optimizes $\widehat{err}(h)$ and $\widehat{err}_{unl}(h)$ has $err(h) \leq \epsilon$.

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume $\chi(h,x) \in \{0,1\}$ and $\chi(\mathcal{C})$ = $\{\chi_h : h \in \mathcal{C}\}$ where $\chi_h(x)$ = $\chi(h,x)$. C[m,D] - expected # of splits of m points from D with concepts in C.

$$m_u = O\left(\frac{VCdim(\chi(C))}{\varepsilon^2}\log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{2}{\delta}\right)$$

unlabeled examples and

$$m_l > \frac{2}{\varepsilon} \left[\log(2s) + \log \frac{2}{\delta} \right]$$

$$s = C_D \cdot (t + 2\varepsilon)[2m_t, D]$$

are sufficient so that with probability at least $1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{uni}(h)\leq t+\varepsilon$ have $err(h)\leq \varepsilon$, and furthermore all $h\in C$ have

$$|err_{unl}(h) - \widehat{err}_{unl}(h)| \le \varepsilon$$

 $\begin{array}{ll} \textbf{Implication:} \ \ \text{If} \ err_{unl}(c^*) \leq t, \ \text{then with probab.} \ \geq 1-\delta, \ \text{the } h \in C \ \text{that optimizes} \\ \text{both } \widehat{err}(h) \ \text{and } \widehat{err}_{unl}(h) \ \text{has } err(h) \leq \varepsilon. \end{array}$

ε-Cover-based bounds

- · For algorithms that behave in a specific way:

 - first use the unlabeled data to choose a representative set of compatible hypotheses
 then use the labeled sample to choose among these

If t is an upper bound for $err_{unl}(c^*)$ and p is the size of a minimum ε – cover for $C_{D,\chi}(t+4arepsilon)$, then using

$$m_u = O\left(\frac{VCdim(\chi(C))}{\varepsilon^2}log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}log\frac{2}{\delta}\right)$$

unlabeled examples and

$$m_l = O\left(\frac{1}{2}\ln\frac{p}{\epsilon}\right)$$

 $m_l = O\left(\frac{1}{\varepsilon} \ln \frac{p}{\delta}\right)$ labeled examples, we can with probab. $\geq 1-\delta$ identify a hypothesis which is 10ϵ

Can result in much better bound than uniform convergence!

ε-Cover-based bounds

- For algorithms that behave in a specific way:
 - first use the unlabeled data to choose a
 - representative set of compatible hypotheses
 - then use the labeled sample to choose among these

E.g., in case of co-training linear separators with independence assumption:

- ϵ -cover of compatible set = {0, 1, c^* , $\neg c^*$ }

E.g., Transductive SVM when data is in two blobs.

Ways unlabeled data can help in this model

- If the target is highly compatible with D and have enough unlabeled data to estimate χ over all $h\in \mathcal{C},$ then can reduce the search space (from C down to just those $h\in \mathcal{C}$ whose estimated unlabeled error rate is low).
- By providing an estimate of D, unlabeled data can allow a more refined distribution-specific notion of hypothesis space size (such as Annealed VC-entropy or the size of the
- If D is nice so that the set of compatible $h \in C$ has a small $\epsilon\text{-cover}$ and the elements of the cover are far apart, then can learn from even fewer labeled examples than the $1/\epsilon$ needed just to verify a good hypothesis.