15-859(B) Machine Learning
Learning finite state
environments

Avrim Blum
03/26/08

Consider the following setting

* Say we are a baby frying to figure out
the effects our actions have on our
environment...

- Perform actions
- Get observations

- Try to make an internal model of what is
happening.

A model: learning a finite state
environment
+ Let's model the world as a DFA. We
perform actions, we get observations.

* Our actions can also change the state
of the world. # states is finite.

0
e <7
B O ~——— 01011
o ‘1 ‘0,1
o

O——0O |— 00080

Another way to put it

+ We have a box with buttons and lights.

.
= O
+ Can press the buttons, observe the lights.
lights = f(current state)
next state = g(button, current state)
* Goal: learn predictive model of device.

Learning a DFA

In the language of our standard models...
+ Asking if we can learn a DFA from
Membership Queries.

- Issue of whether we have counterexamples
(Equivalence Queries) or not.

[for the moment, assume hot]

- Also issue of whether or not we have a reset
button.

[for today, assume yes]

Learning DFAs

- This seems really hard. Can't |
tell for sure when world state
has changed.

" Let's look at an easier problem |
first: state = observation. L Y




An example w/o hidden state

2 actions: a, b. AN

bl

(]
bez!

Generic algorithm for lights=state:
*Build a model.
*While not done, find an unexplored
edge and take it.

Now, let's try the harder problem!

Some examples

Example #1 (3 states)

Example #2 (3 states)

Can we desigh a procedure to
do this in general?

One problem: what if we always see the
same thing? How do we know there
isn't something else out there?

Our model:

-=O

b a

Real world:
A<
Called “combination-lock automaton”

Can we designh a procedure to
do this in general?

Combination-lock automaton: basically
simulating a conjunction.
This means we can't hope to efficiently
come up with an exact model of the world
from just our own experimentation. (I.e.,
MQs only).

How to get around this?

+ Assume we can propose model and get
counterexample. (MQ+EQ)

+ Equivalently, goal is to be predictive. Any
time we make a mistake, we think and
perform experiments. (MQ+MB)

* Goal is not to have to do this Yoo many
times. For our algorithm, total # mistakes
will be at most # states.

Algorithm by Dana Angluin
(with extensions by Rivest & Schapire)

+ To simplify things, let's assume we have a
RESET button. [Back to basic DFA
problem]

+ Can get rid of that using something called
a “homing sequence” that you can also
learn.




The problem (recap)
+ We have a DFA:

- observation = f(current state)
- next state = g(button, prev state)

+ Can feed in sequence of actions, get
observations. Then resets to start.

+ Can also propose/field-test model. Get
counterexample.

Key Idea

Key idea is o represent the DFA using
a state/experiment table.

experiments
a
] b
Al O O
states g| O O
b| O O >
b
al O 0o
trans- ab| O O
itions ba| O O
bb| O O

Key Idea

Key idea is to represent the DFA using
a state/experiment table.

experiments
| A a Guarantee will be:
Al O O either this is correct,
states | O O or else the world has >
bl O O n states. In that case,
Taal O O need way of using
trans- ab| O 0O counterexs to add new
itions ba| O O state to model.
bb| O O

The algorithm
We'll do it by example...

Algorithm (formally)

Begin with S = {A}, E = {A}.

1. Fill in transitions to make a hypothesis FSM.

2. While exists s € SA such that no s’ € § has
row(s') = row(s), add s into S, and go to 1.

3. Query for counterexample z.

&

Consider all splits of z into (p;, s;), and replace
p; with its predicted equivalent o; € S.

5. Find o4r; and a;417;41 that produce different
observations.

6. Add r;+1 as a new experiment into E.go to 1.




