Learning when there is no perfect hypothesis

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need \(O(1/\epsilon^2)\) samples versus \(O(1/\epsilon)\).
- What about polynomial-time algorithms? Seems harder.
 - Given data set \(S\), finding apx best conjunction is NP-hard.
 - Can do other things, like minimize hinge-loss, maxent type loss, but not directly connected to error rate.
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.

Learning from Random Classification Noise

- PAC model, target \(f \in C\), but assume labels from noisy channel.
- "noisy" Oracle \(\text{EX}_\eta(f, D)\). \(\eta\) is the noise rate.
 - Example \(x\) is drawn from \(D\).
 - With probability \(1-\eta\) see label \(\ell(x) = f(x)\).
 - With probability \(\eta\) see label \(\ell(x) = 1-f(x)\).
- E.g., if \(h\) has non-noisy error \(p\), what is the noisy error rate?
 - \(p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta)\).

Notation

- Use "\(\Pr[\ldots]\)" for probability with respect to non-noisy distribution.
- Use "\(\Pr_{\eta}[\ldots]\)" for probability with respect to noisy distribution.

Learning OR-functions (assume monotone)

- Let's assume noise rate \(\eta\) is known. Any ideas?
 - Say \(p_i = \Pr[f(x)=0 \land x_i=1]\)
 - Any \(h\) that includes all \(x_i\) such that \(p_i=0\) and no \(x_i\) such that \(p_i > \epsilon/n\) is good.
- So, just need to estimate \(p_i\) to \(\pm \epsilon/2n\).
 - Rewrite as \(p_i = \Pr[f(x)=0 | x_i=1] \times \Pr[x_i=1]\).
 - 2nd part unaffected by noise (and if tiny, can ignore \(x_i\)). Define \(q\) as 1st part.
 - Then \(\Pr[\ell(x)=0 | x_i=1] = q(1-\eta) \cdot (1-q)\eta = \eta - q(1-2\eta)\).
 - So, enough to approx LHS to \(O((\epsilon/n)(1-2\eta))\).
Learning OR-functions (assume monotone)
• If noise rate not known, can estimate with smallest value of $Pr_n[\eta(x) = 0 | x_i = 1]$.

Generalizing the algorithm
Basic idea of algorithm was:
• See how can learn in non-noisy model by asking about probabilities of certain events with some "slop".
• Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.
Let's formalize this in notion of "statistical query" (SQ) algorithm. Will see how to convert any SQ alg to work with noise.

The Statistical Query Model
• No noise.
• Algorithm asks: "what is the probability a labeled example will have property χ? Please tell me up to additive error τ.
 - Formally, $\chi: X \times \{0, 1\} \rightarrow \{0, 1\}$. Must be poly-time computable. $\tau \geq 1/poly(\ldots)$.
 - Let $P_\chi = Pr[\chi(x,f(x)) = 1]$.
 - World responds with $P_\chi' \in [P_\chi - \tau, P_\chi + \tau]$.
 - [can extend to $[0,1]$-valued or vector-valued χ]• May repeat poly(\ldots) times. Can also ask for unlabeled data. Must output h of error $\leq \varepsilon$. No δ in this model.

The Statistical Query Model
• Examples of queries:
 - What is the probability that $x_i = 1$ and label is negative?
 - What is the error rate of my current hypothesis h? $[\chi(x,l) = 1 \iff h(x) \neq l]$• Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That's why need $\tau \geq 1/poly(\ldots)$.]• To learn OR-functions, ask for $Pr[x_i = 1 \land f(x) = 0]$ with $\tau = \varepsilon/(2n)$. Produce OR of all x_i such that $P_\chi' \leq \varepsilon/(2n)$.

The Statistical Query Model
• Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for $E[x: h(x) \neq f(x)]$ (formally define vector-valued $\chi = x$ if $h(x) \neq f(x)$, and 0 otherwise. Then divide by $Pr[h(x) = f(x)]$).
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
• Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.

SQ-learnable \Rightarrow (PAC+Noise)-learnable
• Given query χ, need to estimate from noisy data. Idea:
 - Break into part predictably affected by noise, and part unaffected.
 - Estimate these parts separately.
 - Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
• Running example: $\chi(x,l) = 1 \iff x_i = 1 \land l = 0$.
How to estimate $\Pr[\chi(x,f(x))=1]$?

- Let $\text{CLEAN} = \{x : \chi(x,0) = \chi(x,1)\}$
- Let $\text{NOISY} = \{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for $\chi(x,t)=1$ iff $x_i=1 \land t=0$?
- Now we can write:
 - $\Pr[\chi(x,f(x))=1] = \Pr[\chi(x,f(x))=1 \land x \in \text{CLEAN}] + \Pr[\chi(x,f(x))=1 \land x \in \text{NOISY}]$.
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in \text{CLEAN}$).
- What about the 2nd part?

How to estimate $\Pr[\chi(x,f(x))=1]$?

- Let $\text{CLEAN} = \{x : \chi(x,0) = \chi(x,1)\}$
- Let $\text{NOISY} = \{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for $\chi(x,t)=1$ iff $x_i=1 \land t=0$?
- Now we can write:
 - $\Pr[\chi(x,f(x))=1] = \Pr[\chi(x,f(x))=1 \land x \in \text{CLEAN}] + \Pr[\chi(x,f(x))=1 \land x \in \text{NOISY}]$.
- Can estimate $\Pr[x \in \text{NOISY}]$.
- Also estimate $P_\eta \equiv \Pr_x[\chi(x,t)=1 \mid x \in \text{NOISY}]$.
- Want $P \equiv \Pr[\chi(x,f(x))=1 \mid x \in \text{NOISY}]$.
- Write $P_\eta = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$.
- So, $P = (P_\eta - \eta)/(1-2\eta)$.
- Just need to estimate P_η to additive error $\tau(1-2\eta)$.
- If don’t know η, can have “guess and check” wrapper around entire algorithm.