15-859(B) Machine Learning Theory

Lecture 15: Learning from noisy data,
intfro fo SQ model

Avrim Blum
03/03/08

+ Hoeffding/Chernoff bounds: minimizing training

+ What about polynomial-time algorithms? Seems

+ One way to make progress: make assumptions on

Learning when there is no perfect

hypothesis

error will approximately minimize true error: just
need O(1/€2) samples versus O(1/¢).

harder.
- Given data set S, finding apx best conjunction is NP-hard.

- Can do other things, like minimize hinge-loss, maxent type
loss, but not directly connected to error rate.

the “noise” in the data. E.g., Random Classification
Noise model.

Learning from Random Classification Noise
* PAC model, target f € C, but assume labels
from noisy channel.
* "noisy"” Oracle EX"(f D). n is the noise rate.
- Example x is drawn from D.
- With probability 1-n see label &(x) = f(x).
- With probability n see label £(x) = 1-f(x).
- E.g., if h has non-noisy error p, what is the
noisy error rate?
= p(1-n) + (1-p)n = n + p(1-2n).
0 1

0 0 = 1

Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification
noise if for any feC, any distrib D, any n < 1/2, any
g, 0> 0, given access to EX1(f,D), A finds a hyp h
that is e-close to f, with probability > 1-3.

Allowed time poly(1/¢, 1/3, 1/(1-2n), n , size(f))

* Q: is this a plausible goal? We are asking the
learner to get closer to f than the data is.

+ A: OK because noisy error rate is linear in
true error rate (squashed by 1-2n)

0 1

0] 3 = 1

Notation
+ Use "Pr[..]" for probability with respect to
non-noisy distribution.
* Use "Pr[..]" for probability with respect to
noisy distribution.

Learning OR-functions (assume monotone)
+ Let's assume noise raten is known. Any ideas?
* Say p; = Pr[f(x)=0 A x;=1]
* Any h that includes all x; such that p;=0 and
no x; such that p; > €/n is good.
+ So, just need to estimate p; to & €/2n.
- Rewrite as p; = Pr[f(x)=0]x;=1] x Pr[x;=1].
- 2nd part unaffected by noise (and if tiny, can
ignore x;). Define q; as 15t part.

- Then Pr[¢(x)=0|x;=1] = q(1-n)+(1-g;)n = n+qi(1-2n).
- So, enough to approx LHS to O((e/n)(1-2n)).




Learning OR-functions (assume monotone)

+ If noise rate not known, can estimate with
smallest value of Pr, [d(x)=0]x;=1].

Generalizing the algorithm

Basic idea of algorithm was:
+ See how can learn in non-noisy model by

asking about probabilities of certain events
with some "slop”.

* Try to learn in noisy model by breaking

events into:
- Parts predictably affected by noise.
- Parts unaffected by noise.

Let's formalize this in notion of “statistical

query” (SQ) algorithm. Will see how to
convert any SQ alg to work with noise.

The Statistical Query Model

+ No noise.

+ Algorithm asks: "what is the probability a
labeled example will have property X? Please
tell me up to additive error t1."

- Formally, x:X x {0,1} — {0,1}. Must be poly-time
computable. T > 1/poly(...).

- Let P, = Prix(x.f(x))=1].

- World responds with P, € [P,-T, P,*T].
[can extend to [0,1]-valued or vector-valued X]

* May repeat poly(..) times. Can also ask for
unlabeled data. Must output h of error <e.
No & in this model.

The Statistical Query Model

+ Examples of queries:

- What is the probability that x;=1 and label is
negative?

- What is the error rate of my current hypothesis
h? [Xx(x.0)=1iff h(x) # ]

- Get back answer to £1. Can simulate from

~ 1/1% examples. [That's why need 1 > 1/poly(...).]

+ To learn OR-functions, ask for Pr(x,=1Af(x)=0]

with 1 = ¢/(2n). Produce OR of all x; such
that P', < €/(2n).

The Statistical Query Model
* Many algorithms can be simulated with
statistical queries:

- Perceptron: ask for E[x : h(x)#f(x)] (formally
define vector-valued x = x if h(x)#f(x), and O otherwise.
Then divide by Pr[h(x)£f(x)].)

- Hill-climbing type algorithms: what is error rate
of h? What would it be if T made this tweak?

* Properties of SQ model:

- Can automatically convert to work in presence of
classification noise.

- Can give a nice characterization of what can and
cannot be learned in it.

SQ-learnable = (PAC+Noise)-learnable

* Given query X, need fo estimate from noisy

data. Idea:

- Break into part predictably affected by noise,
and part unaffected.

- Estimate these parts separately.

- Can draw fresh examples for each query or
estimate many queries from same sample if
VCDim of query space is small.

* Running example: x(x,0)=1 iff x;=1 A €=0.




How to estimate Pr[x(x f(x))=11?

- Let CLEAN = {x : x(x,0) = x(x,1)}

« Let NOISY = {x : x(x,0) # x(x,1)}

- What are these for x(x,6)=1iff x=1A¢=0?

+ Now we can write:

- Prix(x,f(x))=1] = Prix(x,f(x))=1 A xeCLEAN] +
Prix(x,f(x))=1 A xeNOISY].

+ Step 1: first part is easy to estimate from
noisy data (easy to tell if x € CLEAN).

+ What about the 2" part?

How to estimate Prx(x f(x))=11?

- Let CLEAN = {x : x(x,0) = x(x.,1)}
+ Let NOISY = {x: x(x,0) # x(x.1)}

- What are these for x(x,6)=1iff x=1A¢=0?

* Now we can write:

- Prix(x,f(x))=1] = Pr[x(x,f(x))=1 A xeCLEAN] +
Prix(x,f(x))=1 A xeNOISY].

+ Can estimate Pr[xeNOISY].

* Also estimate P, = Pr [x(x£)=1 | xeNOISY].
+ Want P = Prx(x,f(x))=1 | xeNOISY].

* Write P, = P(1-n) + (1-P)n = n + P(1-2n).

*+ So,P=(P,-n)/(1-2n).

- Just need to estimate P, to additive error 1(1-2n).

- If don't know n, can have “guess and check" wrapper
around entire algorithm.




