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Basic Supervised learning setting

w Examples are points x in instance space, like R".
w Labeled + or -.
w Assume drawn from some probability
distribution:
n Distribution D over x, labeled by target function c.
» Or distribution P over (x, 1)
n Will call P (or (c,D)) our “learning problem”.
w Given labeled training data, want algorithm to do
well on new data. + o+

Margins

A really simple learning algorithm

If datais separable by large marginy, then that's
a good thing. Need sample size only O(1/y?).
+ +
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Some ways to see it:

1. The perceptron algorithm does well: makes only
1/y2 mistakes.

2. Margin bounds: whp all consistent large-margin
separators have low true error.

3. Really-Simple-Learning + boosting...
4. Random projection...

Suppose our problem has the property that whp a
sufficiently large sample S would be separable
by marginy. Here is another way to see why
this is good for learning.

Consider the following simple algorithm...

1. Pick a random hyperplane.

2. See if it is any good.

3. If it is a weak-learner (error rate < - y/4),
plug into boosting. Else don't. Repeat.

Claim: if data has a large margin separator,
there's a reasonable chance a random
hyperplane will be a weak-learner.

A really simple learning algorithm

Another way to see why large margin is good

Claim: if data has a separator of margin y, there's
a reasonable chance a random hyperplane will
have error < % - y/4 [all hyperplanes through origin]

Proof:
w Pick aéposi‘rive) example x. Consider the 2-d
plane defined by x and target w*. .
w Pry(h <0 | hw* = 0) =
<(W2-vy)/n=%-y/n
w So, E,[err(h) | hw*=0]< % -y/nt

w Since err(h) is bounded between O and 1, there
must be a reasonable chance of success.

QED

Johnson-Lindenstrauss Lemma:

Given n points in R, if project randomly to Rk, for
k = O(e2 log n), then whp all pairwise distances
preserved up to 1+ € (after scaling by (n/k)Y2).

Cleanest proofs: IM98, D699




JL Lemma

JL Lemma, cont

Given n points in R", if project randomly to R¥, for k = O(e2 log n), then

whp all pairwise distances preserved up to 1+e (after scaling).

Cleanest proofs: IM98, D699
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Proof intuition:

Consider a random unit-length vector (x;,X,,... X,)ER".
What does x; coordinate look like?

E[x,2]=1/n. Usually < c/n.

If indep, Prl|(x2 + .. + x,2) - k/n| > ek/n] < e-0lke?),

So, at k = O(e2 log n), with prob 1 - 1/poly(n), projection
to 1st k coordinates has length (k/n)/2 (1 £ ).

Now, apply this to vector v;; = p; - p;, projecting onto
random k-diml space.

Whp all v;; project to length (k/n)/3(1£€)]v;|

Proof easiest for slightly different projection:
w Pick k vectors uy, ..., uy iid from n-diml gaussian.
w Mapp = (p-up, .., p-u.
w What happens to v;; = p; - p;?
n Becomes (vjj - Uy, .., Vij - Uy)
n IlEaclh component is iid from 1-diml gaussian, scaled by
viil.
n Fo“r concentration on sum of squares, plug in version
of Hoeffding for RVs that are squares of gaussians.
w So, whp all lengths apx preserved, and in fact
not hard to see that whp all angles are apx
preserved too.

Random projection and margins

Natural connection [AV99]:
w Suppose we have a set S of points in R", separable by

margin y.

w JL lemma says if project to random k-dimensional space

for k=O(y2 log |S|), whp still separable (by margin y/2).
n Think of projecting points and target vector w.
n Angles between p; and w change by at most +y/2.

w Could have picked projection before sampling data.
w So, it's really just a k-dimensional problem after all. Do

all your learning in this k-diml space.

So, random projections can help us
think about why margins are good for

learning. [note: this argument does NOT imply
uniform convergence in original space]

OK, now on to kernels...

Generic problem

Generic problem

w Given a set of images: E« a , want to traina

classifier to distinguish men from women.
w Problem: pixel representation not good for LTFs
Classic advice:
w Use a complicated neural net.
w But these are hard to train.

xﬁ::;iv;:u K(g,a): m(g)m(‘a) ®is

implicit, high-dimensional mapping.

w Many algorithms only interact with data through dot-
products, so can be “kernelized". If data is separable
in ®-space by large margin, don't have to pay for dim.

xotj:err;i\::;! K(g ,a) = o(g)- o(a). ®is

implicit, high-dimensional mapping.
w Many algorithms only interact with data through dot-
products, so can be “kernelized”. If data is separable
in ®-space by large margin, don't have to pay for dim.
w E.g., K(x.y) = (1+x1y)(1+Xay5)... 1+X,y,)-
n ®:(n-diml space) — (2"-diml space).

w Conceptual warning: You're not really “getting all the
power of the high dimensional space without paying
for it". (Not enough fo just be separable. Need large
margin too.) As we saw from JL lemma, assumption of
large margin means it's really an O(1/y?)-dimensional
problem after all.




Question: do we need the
notion of an implicit space to
understand what makes a
kernel helpful for learning?

Kernel fns have become very popular

..but there's something a little funny:

w On the one hand, operationally a kernel is just a
similarity function: K(xy) € [-1,1], with some extra
requirements. [here I'm scaling o |®(x)| = 1]

=
y
w And in practice, people think of a good kernel as a good

measure of similarity between data points.

w But Theory talks about margins in implicit high-
dimensional ®-space. K(x,y) = ®(x)-®(y).

T want to use ML to classify protein
structures and I'm frying to decide
on a similarity fn to use. Any help?

It should be pos. semidefinite, and
should result in your data having a large
margin separator in implicit high-diml
space you probably can’t even calculate.

Umm... thanks, I guess.

It should be pos. semidefinite, and
should result in your data having a large
margin separator in implicit high-diml
space you probably can’t even calculate.

Kernel fns have become very popular

Goal: notion of “good similarity function” that...

..but there's something a little funny:

w On the one hand, operationally a kernel is just a
similarity function: K(xy) € [-1,1], with some extra
requirements. [here I'm scaling o |®(x)| = 1]

=

y

w And in practice, people think of a good kernel as a good
measure of similarity between data points.

w But Theory talks about margins in implicit high-
dimensional ®-space. K(x,y) = ®(x)-®(y).

Can we bring these views together?

1. Talks in terms of more intuitive properties (no
implicit high-diml spaces...)

2. If K satisfies these properties for our given
problem, then has implications to learning

3. TIs broad: includes usual notion of “good
kernel" (one that induces a large margin
separator in ®-space).

[Recent work with Nina Balcan, with extensions by Nati Srebro]




Defn satisfying (1) and (2):

w Say have a learning problem P (distribution D over
examples labeled by unknown target f).

w Sim fn Ki(x,y)—[-11] is (g,y)-good for P if at
least a 1-€ fraction of examples x satisfy:

Ey~olK(X.Y)I&y)=6(x)] > E,.p[K(x,y)|€(y)2e(x)J+y

w Note: you can have this property without being a
legal kernel.

w Q: how could you use this to learn?

How to use it

At least a 1-€ prob mass of x satisfy:
E,-olK(xy)l€y)=€(x)] > E,.p[K(x.y) ey e(x)]+y

w Draw S* of O((1/y?)In1/3?) positive examples.
w Draw S- of O((1/y?)In1/3?) negative examples.
w Classify x based on which gives better score.

n Hoeffding: for any given “good x", prob of
error over draw of S*,5™ at most 3

n S0, at most & chance our draw is bad on more
than & fraction of “good x".

w With prob > 1-3, error rate < € + 3.

But not broad enough

These have avg
similarity 0.5 to -,

arity 05

w K(x,y)=x-y has good separator but doesn't

satisfy defn. (half of positives are more similar to
negs that to typical pos)

But not broad enough

w Idea: would work if we didn't pick y's from top-left.

w Broaden to say: OK if 3 large region R s.t. most x are on
average more similar to yeR of same label than fo yeR of
other label. (even if don't know R in advance)

Broader defn...

w Ask that exists a set R of "reasonable” y (allow
probabilistic) st. almost all x satisfy

Broader defn...

E, [K(x.y)|€y)=E(x) R(y)]> E, [K(x.y) |(y)2E(x). R(y)J+y

w And at least € probability mass of reasonable
positives/negatives.

w But now, how can we use for learning??

w Ask that exists a set R of "reasonable” y (allow
probabilistic) st. almost all x satisfy

E, KO [Ay)=ER1 By IKOxy )y )40x) ROy T+y
T could be unlabeled |
n Draw S = {y1/--~lyn}, Nn~1/(y2€). Id be unlabeled

n View as “landmarks”, use to map new data:
F(x) = [K(x.ys), .. K(xyn)].
n Whp, exists separator of good L; margin in
this space: w=[0,0,1/n,,1/n,,0,0,0,-1/n_,0,0]
n h, [n.] = # reasonable pos [neg] in S.

n So, take new set of examples, project to this
space, and run good L, alg (Winnow).




And furthermore

Now, defn is broad enough to include all large
margin kernels (some loss in parameters):
n Y-good margin = apx (g,y?,€)-good here.

But now, we don't need to think about implicit
spaces or require kernel to even have the
implicit space interpretation.

If PSD, can also show reverse too:
n Y-good here & PSD = y-good margin.




