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15-859(B) Machine Learning 
Theory

Lecture 9: Margins, kernels, and 
similarity functions

Avrim Blum
02/13/08

Basic Supervised learning setting
w Examples are points x in instance space, like Rn.
w Labeled + or -.
w Assume drawn from some probability 

distribution:
n Distribution D over x, labeled by target function c.
n Or distribution P over (x, l)
n Will call P (or (c,D)) our “learning problem”.

w Given labeled training data, want algorithm to do 
well on new data. +

+ +
++

+
-

-
-

-
-

Margins
If data is separable by large margin γ, then that’s 

a good thing.  Need sample size only µ(1/γ2).

Some ways to see it:
1. The perceptron algorithm does well: makes only 

1/γ2 mistakes.
2. Margin bounds: whp all consistent large-margin 

separators have low true error.
3. Really-Simple-Learning + boosting…
4. Random projection…

|w⋅x|/|x| ≥ γ,  |w|=1
+
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A really simple learning algorithm
Suppose our problem has the property that whp a 

sufficiently large sample S would be separable 
by margin γ.  Here is another way to see why 
this is good for learning.

Consider the following simple algorithm…
1. Pick a random hyperplane.
2. See if it is any good.  
3. If it is a weak-learner (error rate ≤ � - γ/4), 

plug into boosting.   Else don’t.  Repeat.

Claim: if data has a large margin separator, 
there’s a reasonable chance a random 
hyperplane will be a weak-learner.

Proof:
w Pick a (positive) example x.  Consider the 2-d 

plane defined by x and target w*.

w Prh(h⋅x ≤ 0 | h⋅w* ≥ 0)
≤ (π/2 - γ)/π = � - γ/π.

w So, Eh[err(h) | h⋅w* ≥ 0] ≤ � - γ/π.

w Since err(h) is bounded between 0 and 1, there 
must be a reasonable chance of success.

A really simple learning algorithm
Claim: if data has a separator of margin γ, there’s 

a reasonable chance a random hyperplane will 
have error ≤ � - γ/4. [all hyperplanes through origin]� ��

QED

Another way to see why large margin is good
Johnson-Lindenstrauss Lemma:
Given n points in Rn, if project randomly to Rk, for 

k = O(ε-2 log n), then whp all pairwise distances 
preserved up to 1 ± ε (after scaling by (n/k)1/2).

Cleanest proofs: IM98, DG99
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JL Lemma

Proof intuition:
w Consider a random unit-length vector (x1,x2,…,xn)∈∈∈∈Rn. 

What does x1 coordinate look like?
w E[x1

2]=1/n.  Usually ���� c/n.
w If indep, Pr[|(x1

2 + … + xk
2) – k/n| ≥≥≥≥ εk/n] ���� e-O(kε2).

w So, at k = O(ε-2 log n), with prob 1 – 1/poly(n),  projection 
to 1st k coordinates has length (k/n)1/2 (1 ���� ε).

w Now, apply this to vector vij = pi – pj, projecting onto 
random k-diml space.

Given n points in Rn, if project randomly to Rk, for k = O(ε-2 log n), then 
whp all pairwise distances preserved up to 1±ε (after scaling).

Cleanest proofs: IM98, DG99

Whp all vij project to length (k/n)1/2(1±ε)|vij|

JL Lemma, cont
Proof easiest for slightly different projection:
w Pick k vectors u1, …, uk iid from n-diml gaussian.
w Map p ջջջջ (p ⋅⋅⋅⋅ u1, …, p ⋅⋅⋅⋅ uk).
w What happens to vij = pi – pj?

n Becomes (vij ⋅⋅⋅⋅ u1, … , vij ⋅⋅⋅⋅ uk)
n Each component is iid from 1-diml gaussian, scaled by 

|vij|.
n For concentration on sum of squares, plug in version 

of Hoeffding for RVs that are squares of gaussians.

w So, whp all lengths apx preserved, and in fact 
not hard to see that whp all angles are apx
preserved too.

Random projection and margins
Natural connection [AV99]:
w Suppose we have a set S of points in Rn, separable by 

margin γ.
w JL lemma says if project to random k-dimensional space 

for k=O(γ-2 log |S|), whp still separable (by margin γ/2).
n Think of projecting points and target vector w.
n Angles between pi and w change by at most ±γ/2.

w Could have picked projection before sampling data. 
w So, it’s really just a k-dimensional problem after all.  Do 

all your learning in this k-diml space.

So, random projections can help us 
think about why margins are good for 
learning. [note: this argument does NOT imply 

uniform convergence in original space]

OK, now on to kernels…

Generic problem

w Given a set of images:                 , want to train a 
classifier to distinguish men from women.

w Problem: pixel representation not good for LTFs

Classic advice:
w Use a complicated neural net.
w But these are hard to train.

Modern advice:

w Use a Kernel!   K( ,       ) = Φ( )⋅Φ( ).  Φ is 
implicit, high-dimensional mapping.

w Many algorithms only interact with data through dot-
products, so can be “kernelized”. If data is separable 
in Φ-space by large margin, don’t have to pay for dim.

Generic problem
Modern advice:

w Use a Kernel!   K( ,       ) = Φ( )⋅ Φ( ). Φ is 
implicit, high-dimensional mapping.

w Many algorithms only interact with data through dot-
products, so can be “kernelized”. If data is separable 
in Φ-space by large margin, don’t have to pay for dim.

w E.g., K(x,y) = (1+x1y1)(1+x2y2)…(1+xnyn).
n Φ:(n-diml space) ջ (2n-diml space).

w Conceptual warning: You’re not really “getting all the 
power of the high dimensional space without paying 
for it”.  (Not enough to just be separable.  Need large 
margin too.) As we saw from JL lemma, assumption of 
large margin means it’s really an µ(1/γ2)–dimensional 
problem after all.
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Question: do we need the 
notion of an implicit space to 

understand what makes a 
kernel helpful for learning?

…but there’s something a little funny:
w On the one hand, operationally a kernel is just a 

similarity function: K(x,y) ∈ [-1,1], with some extra 
requirements.  [here I’m scaling to |Φ(x)| = 1]

w And in practice, people think of a good kernel as a good 
measure of similarity between data points.

w But Theory talks about margins in implicit high-
dimensional Φ-space.  K(x,y) = Φ(x)⋅Φ(y).

x
y

Kernel fns have become very popular

I want to use ML to classify protein 
structures and I’m trying to decide 
on a similarity fn to use. Any help?

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.

Umm… thanks, I guess.

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.

…but there’s something a little funny:
w On the one hand, operationally a kernel is just a 

similarity function: K(x,y) ∈ [-1,1], with some extra 
requirements.  [here I’m scaling to |Φ(x)| = 1]

w And in practice, people think of a good kernel as a good 
measure of similarity between data points.

w But Theory talks about margins in implicit high-
dimensional Φ-space.  K(x,y) = Φ(x)⋅Φ(y).

x
y

Kernel fns have become very popular

Can we bring these views together?

Goal: notion of “good similarity function” that…

1. Talks in terms of more intuitive properties (no 
implicit high-diml spaces…)

2. If K satisfies these properties for our given 
problem, then has implications to learning         

3. Is broad: includes usual notion of “good 
kernel” (one that induces a large margin 
separator in Φ-space).

[Recent work with Nina Balcan, with extensions by Nati Srebro]
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Defn satisfying (1) and (2):

w Say have a learning problem P (distribution D over 
examples labeled by unknown target f).

w Sim fn K:(x,y)ջ[-1,1] is (ε,γ)-good for P if at 
least a 1-ε fraction of examples x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

w Note: you can have this property without being a 
legal kernel.

w Q: how could you use this to learn?

How to use it
At least a 1-ε prob mass of x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

w Draw S+ of O((1/γ2)ln 1/δ2) positive examples.
w Draw S- of O((1/γ2)ln 1/δ2) negative examples.
w Classify x based on which gives better score.

n Hoeffding: for any given “good x”, prob of 
error over draw of S+,S− at most δ2.

n So, at most δ chance our draw is bad on more 
than δ fraction of “good x”.  

w With prob ≥ 1-δ, error rate � ε + δ.

But not broad enough

w K(x,y)=x⋅y has good separator but doesn’t 
satisfy defn. (half of positives are more similar to 
negs that to typical pos)

+ +

_

30o

30o

These have avg
similarity 0.5 to -, 

0.25 to +

But not broad enough

w Idea: would work if we didn’t pick y’s from top-left.  
w Broaden to say: OK if ∃ large region R s.t. most x are on 

average more similar to y∈R of same label than to y∈R of 
other label. (even if don’t know R in advance)

+ +

_

30o

30o

Broader defn…

w Ask that exists a set R of “reasonable” y (allow
probabilistic) s.t. almost all x satisfy

Ey[K(x,y)|l(y)=l(x),R(y)]≥Ey[K(x,y)|l(y)≠l(x), R(y)]+γ

w And at least ε probability mass of reasonable 
positives/negatives.

w But now, how can we use for learning??

Broader defn…

w Ask that exists a set R of “reasonable” y (allow
probabilistic) s.t. almost all x satisfy

Ey[K(x,y)|l(y)=l(x),R(y)]≥Ey[K(x,y)|l(y)≠l(x), R(y)]+γ

could be unlabeled
n Draw S = {y1,…,yn},  n≈1/(γ2ε).

n View as “landmarks”, use to map new data:
F(x) = [K(x,y1), …,K(x,yn)].

n Whp, exists separator of good L1 margin in 
this space: w=[0,0,1/n+,1/n+,0,0,0,-1/n-,0,0]

n n+ [n-] = # reasonable pos [neg] in S.
n So, take new set of examples, project to this 

space, and run good L1 alg (Winnow).
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And furthermore
Now, defn is broad enough to include all large 

margin kernels (some loss in parameters):
n γ-good margin ⇒ apx (ε,γ2,ε)-good here.

But now, we don’t need to think about implicit 
spaces or require kernel to even have the 
implicit space interpretation.

If PSD, can also show reverse too:
n γ-good here & PSD ⇒ γ-good margin.


