Today: some basic definitional questions in the PAC model

Algorithm PAC-learns a class of functions \(C \) if:

- For any given \(\varepsilon > 0 \), \(\delta > 0 \), any target \(f \in C \), any dist. \(D \), with prob at least \(1 - \delta \) the algorithm produces \(h \) of \(\text{err}(h) \leq \varepsilon \).
- Running time and sample sizes polynomial in relevant parameters: \(1/\varepsilon \), \(1/\delta \), \(n \), size(\(f \)).
- Require \(h \) to be poly-time evaluable (don’t require \(h \in C \)).

Q1: do we need “for all \(\delta \)”? What if we replace that with “exists \(\delta' > 0 \) such that alg succeeds with prob \(\geq \delta' \)?

Claim: if \(C \) is learnable using new def then also learnable with old def

Say \(A \) achieves error \(\leq \varepsilon/2 \) with prob \(\geq \delta \).
- Uses \(|S| = m\).
- Run it \(1/\delta' \) times. \((m/\delta \text{ data points}) \). With prob at least \(1 - 1/e \) it succeeds at least once.
- Run it \(\ln(2/\delta) \) factor more times. With prob at least \(1 - \delta/2 \) it succeeds at least once.
- Now test hypotheses on new test set \(S' \) of size \(O((1/\varepsilon)\log(1/(\delta\delta')) \) and pick best. By Chernoff bounds, whp this has error \(\leq \varepsilon \).
(see hwk)

Q2: do we need to say “for all \(\varepsilon \)”?

Def: Say alg \(A \) weak-learns class \(C \) if there exists \(\varepsilon, \delta > 0 \) \([1/poly(n)] \) such that for all \(f \in C \), all \(D \), \(A \) achieves error at most \(\frac{1}{2} - \varepsilon \) with probability at least \(\delta \).
- I.e., with some noticeable probability it does noticeably better than guessing.
- If we defined PAC-learning this way, does that change the set of learnable \(C \)?
- No. Given alg satisfying this, can “boost” to satisfy original def.

OK, now let’s go to the blackboard...