15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and
issues

Avrim Blum
01/14/08

Admin

+ Course web page. Textbook covers about

1/2 of course material.

* 6 hwk assignments. Exercises/problems.
+ Small project: explore a theoretical

question, try some experiments, or read a
paper and explain the idea. Short writeup
and possibly presentation. Small groups ok.

+ Take-home exam (worth roughly 2 hwks).
+ “volunteers” for hwk grading.

OK, let's get to it...

Machine learning can be used to...

* recognize speech, faces,

+ play games, steer cars,

+ adapt programs to users,

* categorize documents, ...

Goals of machine learning theory:
develop and analyze models to understand...

+ what kinds of tasks we can hope to learn,
and from what kind of data,

* what types of guarantees might we hope to
achieve,

+ other common issues that arise.

A typical setting

* Imagine you want a computer program to

help you decide which email messages are
spam and which are important.

* Might represent each message by n features.

(e.g., return address, keywords, spelling, etc.)

* Take sample S of data, labeled according to

whether they were/weren't spam.

* Goal of algorithm is to use data seen so far

produce good prediction rule (a "hypothesis")
h(x) for future data.

The concept learning setting

E.g., $$ meds Mr. bad spelling known-sender | spam?
Y N Y Y N Y
N N N Y Y N
N Y N N N Y
Y N N N Y N
N N Y N Y N
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given data, some reasonable rules might be:
*Predict SPAM if —known AND ($$ OR meds)

*Predict SPAM if $$ + meds - known > O.

Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]
(B)What kind of confidence do we have
that they will do well in the future?
[confidence bound / sample complexity]

for a given learning alg, how
much data do we need...

Power of basic paradigm

Many problems solved by converting to basic
“concept learning from structured data” setting.
- E.g., document classification
- convert to bag-of-words
- Linear separators do well
+ E.g., driving a car
- convert image into
features.

- Use neural net with
several outputs.

Natural formalization (PAC)

+ We are given sample S = {(x,y)}.

- Assume x’'s come from some fixed probability
distribution D over instance space.

- View labels y as being produced by some
unknown target function f.

+ Alg does optimization over S to produce

some hypothesis (prediction rule) h.

* Goal is for h to do well on new examples

also from D. ILe., Prolh(x)£f(x)]< e,

Example of analysis: Decision Lists
‘ Al=17 ‘—“—{ =17 |4"'${ =07 ‘J‘l-a
i f i

[1

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < .

3. This means that A is a good algorithm to use if
f is, in fact, a DL.

If Sis of reasonable size, then A produces a
hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

T1 Tp T3 T4 Ts label
1 0 0 1 1 +
U 1 L U) —
I—1r—1T—0—°0 +
U U U L U —
1 1 Q 1 1 =+
1 0 0 O 1 =

if (x;=0) then -, else
if (x,=1) then +, else
if (x4,=1) then +, else -

Decision List algorithm

+ Start with empty list.
+ Find if-then rule consistent with data.
(and satisfied by at least one example)

+ Put rule at bottom of list so far, and cross of f
examples covered. Repeat until no examples remain.

If this fails, then:
*No DL consistent with remaining data.
*So, no DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data?

Confidence/sample-complexity

+ Consider some DL h with err(h)>¢, that we're

worried might fool us.

+ Chance that h is consistent with S is at

most (1-€)!S!.

+ Let |H| = number of DLs over n Boolean

features. | H | < nl4n, (for each feature there are 4

possible rules, and no feature will appear more than once)

So, Pr[some DL h with err(h)>¢ is consistent]
< [H|(1-€)!8! < nl4n(1-g)!s!,

+ This is < 3 for |S| > (Ve)[In(|H]) + In(1/3)]

or about (1/€)[n In n + In(1/5)]

Example of analysis: Decision Lists

o e

Say we suspect there might be a good prediction

rule of this form.
¢ Design an efficient algorithm A that will find a
O~ consistent DL if one exists.

\AV,ShOW that if |S| is of reasonable size, then
Pr[exists consistent DL h with err(h) > €] < .

3. So, if fisin fact a DL, then whp A’s hypothesis
will be approximately correct. "PAC model”

xl=17

PAC model more formally:

+ We are given sample S = {(x,y)}.

- Assume x's come from some fixed probability distribution D over
instance space.
- View labels y as being produced by some target function f.
+ Alg does optimization over S to produce some hypothesis
(prediction rule) h. Goal is for h to do well on new
examples also from D. IL.e., Pry[h(x)2f(x)] < €.

Algorithm PAC-learns a class of functions C if:

+ For any given €0, 80, any target f € C, any dist. D, the
algorl‘r{\m produces h of err(h)e with prob. at least 1-3.

* Running time and sample sizes polynomial in relevant
parameters: 1/, 1/3, n (size of examples), size(f).

* Require h to be poly-time evaluatable. Learning is called
“proper” if h € C. Can also talk about “learning C by H".

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Algorithm PAC-learns a class of functions C if:

iven £0, »0, any target f € C, any dist. D, the
50'5? '@%\#\ pr‘oduces hof err‘(h <€ with prob. at least 1-3,

&St AR SR Jﬁ%m gpracle
%Mg@ﬁsv% et
utfe h to be poly-time evaluatable. Lear‘nmg is called

© “YirefB)" i¢imcdndamaltenatkuaboeiddkingiay ddsses’.
where some fns could take > poly(n) bits to write down.

* What's great is there was nothing special

+ All we said was: "if there are not foo many

+ And in particular, the number of examples

Confidence/sample-complexity

about DLs in our argument.

rules to choose from, then it's unlikely one
will have fooled us just by chance.”

needs to only be proportional to log(|C|).
(notice big difference between |C| and log(|C|).)

Occam's razor
William of Occam (~1320 AD):

“entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer
simpler explanations”.

Why? TIs this a good policy? What if we
have different notions of what's simpler?

Occam's razor (contd)
A computer-science-ish way of looking at it:

+ Say “simple” = "short description”.

+ At most 2 explanations can be < s bits long.
* So, if the number of examples satisfies:
Thinkofas .| S| > (1/g)[s In(2) + In(1/3)]

10x #bits to
write down h.

Then it's unlikely a bad simple explanation
will fool you just by chance.

Occam's razor (contd)?

Nice interpretation:

+ Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will be
a short explanation for the data. That
depends on your representation.

Decision trees (x)

- Decision trees over {0,1}" not Q @

known to be PAC-learnable.

- Given any data set S, it's easy to find a

consistent DT if one exists. How?

* Where does the DL argument break down?
+ Simple heuristics used in practice (ID3 etc.)

don't work for all ceC even for uniform D.

+ Would suffice to find the (apx) smallest DT

consistent with any dataset S, but that's NP-
hard.

If computation-time is no object,
then any class is PAC-learnable

* Occam bounds = any class is learnable if
computation fime is no object:
- Let s4=10, 8, = 8/2. Fori=1.2,.. do:
+ Request (Le)[s; + In(1/8)] examples S;.

+ Check if there is a function of size at most s;
consistent with S.. If so, output it and halt.

* s, = 2s;, 8,,=8/2.
- At most 8, + 8, + .. < & chance of failure.
- Total data used: O((Ve)[size(f)+In(1/3)]).

More examples

Other classes we can PAC-learn: (how?)

*+ Monomials [conjunctions, AND-functions]
= X1 A Xq A Xg A Xg

+ 3-CNF formulas (3-SAT formulas)

+ OR-functions, 3-DNF formulas

- k-Decision lists (each if-condition is a
conjunction of size k), k is constant.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-

complete. Does that mean 2-term DNF is
hard to learn?

More examples

Hard to learn C by C, but easy to learn C by
H, where H = {2-CNF}.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-
complete. Does that mean 2-term DNF is
hard fo learn?

More about the PAC model

Algom‘rhm PAC-learns a class of functions C if:
For any given €0, 50, any target f € C, any dist. D, the
algorithm pr‘oduces hof err(h)< with prob at least 1-3.

* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n, size(f).

* Require h to be poly-time evaluatable. Learning is called
“proper” if h € C. Can also talk about “learning C by H".

- What if your alg only worked for & = %, what would

you do?

- What if it only worked for € = %, or even € = 3-1/n?

This is called weak-learning. Will get back to later.

+ Agnostic learning model: Don't assume anything

about f. Try to reach error opt(H) + €.

Extensions we'll get at later:

+ Replace log(|H|) with “effective number of
degrees of freedom"”.

- There are inﬁni‘relr many linear separators, but
not that many really different ones.

+ Other more refined analyses.

Some open problems
Can one learn...

* an intersection of 2 halfspaces? (2-
term DNF trick doesn't work)

+ C={fns with only O(log n) relevant
variables}? (or even O(loglog n) or
(1) relevant variables)? This is a
special case of DTs, DNFs.

* Monotone DNF over uniform D?

+ Weak agnostic learning of monomials.

