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15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and 
issues

Avrim Blum
01/14/08

Admin
• Course web page.  Textbook covers about 

1/2 of course material.

• 6 hwk assignments.  Exercises/problems.

• Small project: explore a theoretical 
question, try some experiments, or read a 
paper and explain the idea.  Short writeup
and possibly presentation. Small groups ok.

• Take-home exam (worth roughly 2 hwks).

• “volunteers” for hwk grading.

OK, let’s get to it…

Machine learning can be used to…
• recognize speech, faces,
• play games, steer cars,
• adapt programs to users,
• categorize documents, ...

Goals of machine learning theory:
develop and analyze models to understand…
• what kinds of tasks we can hope to learn, 

and from what kind of data,
• what types of guarantees might we hope to 

achieve,
• other common issues that arise.

A typical setting
• Imagine you want a computer program to 

help you decide which email messages are 
spam and which are important.

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data. 

The concept learning setting
E.g., 

Given data, some reasonable rules might be:
•Predict SPAM if �known AND ($$ OR meds)

•Predict SPAM if $$ + meds – known > 0.

•...

Big questions

(A)How might we automatically generate 
rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have 
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how 
much data do we need...
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Power of basic paradigm

• E.g., document classification
– convert to bag-of-words

– Linear separators do well

• E.g., driving a car
– convert image into     

features.

– Use neural net with        
several outputs.

Many problems solved by converting to basic 
“concept learning from structured data” setting. 

Natural formalization (PAC)
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability 
distribution D over instance space.

– View labels y as being produced by some 
unknown target function f. 

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h.

• Goal is for h to do well on new examples 
also from D. I.e., PrD[h(x)≠f(x)] < ε.

err(h)

Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if S is of reasonable size, then 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. This means that A is a good algorithm to use if 
f is, in fact, a DL.

If S is of reasonable size, then A produces a 
hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data. 
(and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain.

If this fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?

Confidence/sample-complexity
• Consider some DL h with err(h)>ε, that we’re 

worried might fool us.
• Chance that h is consistent with S is at 

most (1-ε)|S|.
• Let |H| = number of DLs over n Boolean 

features.  |H| < n!4n. (for each feature there are 4 
possible rules, and no feature will appear more than once)

So, Pr[some DL h with err(h)>ε is consistent] 
< |H|(1-ε)|S| < n!4n(1-ε)|S|.

• This is < δ for |S| > (1/ε)[ln(|H|) + ln(1/δ)]
or about (1/ε)[n ln n + ln(1/δ)]
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Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model”

DONE

DONE

PAC model more formally:
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability distribution D over 
instance space.

– View labels y as being produced by some target function f. 

• Alg does optimization over S to produce some hypothesis 
(prediction rule) h.  Goal is for h to do well on new 
examples also from D. I.e., PrD[h(x)≠f(x)] < ε.

Algorithm PAC-learns a class of functions C if:
• For any given ε>0, δ>0, any target f ∈ C, any dist. D, the 

algorithm produces h of err(h)<ε with prob. at least 1-δ.
• Running time and sample sizes polynomial in relevant 

parameters: 1/ε, 1/δ, n (size of examples), size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h ∈ C.  Can also talk about “learning C by H”.

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Some notes:

• Can either view alg as requesting examples (button/oracle 
model) or just as function of S, with guarantee if S is 
suff. lg.

• “size(f)” term comes in when you are looking at classes 
where some fns could take > poly(n) bits to write down.

Algorithm PAC-learns a class of functions C if:
• For any given ε>0, δ>0, any target f ∈ C, any dist. D, the 

algorithm produces h of err(h)<ε with prob. at least 1-δ.
• Running time and sample sizes polynomial in relevant 

parameters: 1/ε, 1/δ, n (size of examples), size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h ∈ C.  Can also talk about “learning C by H”.

Confidence/sample-complexity

• What’s great is there was nothing special 
about DLs in our argument.

• All we said was: “if there are not too many 
rules to choose from, then it’s unlikely one 
will have fooled us just by chance.”

• And in particular, the number of examples 
needs to only be proportional to log(|C|).

(notice big difference between |C| and log(|C|).)

Occam’s razor
William of Occam (~1320 AD):

“entities should not be multiplied 
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer 
simpler explanations”.

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler?

Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

|S| > (1/ε)[s ln(2) + ln(1/δ)]

Then it’s unlikely a bad simple explanation 
will fool you just by chance.

Think of as 
10x #bits to 

write down h.
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Occam’s razor (contd)2

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will be 
a short explanation for the data.  That 
depends on your representation.

Nice interpretation:

Decision trees
• Decision trees over {0,1}n not 

known to be PAC-learnable.

x3

x5x2

+ +- -

• Given any data set S, it’s easy to find a 
consistent DT if one exists.  How?

• Where does the DL argument break down?

• Simple heuristics used in practice (ID3 etc.) 
don’t work for all c∈C even for uniform D.

• Would suffice to find the (apx) smallest DT 
consistent with any dataset S, but that’s NP-
hard.

If computation-time is no object, 
then any class is PAC-learnable

• Occam bounds ⇒ any class is learnable if 
computation time is no object:
– Let s1=10, δ1 = δ/2.  For i=1,2,… do:

• Request (1/ε)[si + ln(1/δi)] examples Si.

• Check if there is a function of size at most si
consistent with Si.  If so, output it and halt.

• si+1 = 2si, δi+1 = δi/2.

– At most δ1 + δ2 + … � δ chance of failure.

– Total data used: O((1/ε)[size(f)+ln(1/δ)]).

More examples
Other classes we can PAC-learn: (how?)
• Monomials [conjunctions, AND-functions]

– x1 ∧ x4 ∧ x6 ∧ x9

• 3-CNF formulas  (3-SAT formulas)
• OR-functions, 3-DNF formulas
• k-Decision lists (each if-condition is a 

conjunction of size k), k is constant.
Given a data set S, deciding if there is a 

consistent 2-term DNF formula is NP-
complete.  Does that mean 2-term DNF is 
hard to learn?

More examples

Given a data set S, deciding if there is a 
consistent 2-term DNF formula is NP-
complete.  Does that mean 2-term DNF is 
hard to learn?

Hard to learn C by C, but easy to learn C by 
H, where H = {2-CNF}.

More about the PAC model

• What if your alg only worked for δ = �, what would 
you do?

• What if it only worked for ε = �, or even ε = �-1/n?  
This is called weak-learning.  Will get back to later.

• Agnostic learning model: Don’t assume anything 
about f.  Try to reach error opt(H) + ε.

Algorithm PAC-learns a class of functions C if:
• For any given ε>0, δ>0, any target f ∈ C, any dist. D, the 

algorithm produces h of err(h)<ε with prob. at least 1-δ.
• Running time and sample sizes polynomial in relevant 

parameters: 1/ε, 1/δ, n, size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h ∈ C.  Can also talk about “learning C by H”.
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Extensions we’ll get at later:
• Replace log(|H|) with “effective number of 

degrees of freedom”.

+

+
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−
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– There are infinitely many linear separators, but 
not that many really different ones.

• Other more refined analyses.

Some open problems
Can one learn…
• an intersection of 2 halfspaces? (2-

term DNF trick doesn’t work)

• C={fns with only O(log n) relevant 
variables}? (or even O(loglog n) or 
ω(1) relevant variables)? This is a 
special case of DTs, DNFs.

• Monotone DNF over uniform D?

• Weak agnostic learning of monomials.


