Machine learning can be used to...

- recognize speech, faces,
- play games, steer cars,
- adapt programs to users,
- categorize documents, ...

Goals of machine learning theory:

develop and analyze models to understand...

- what kinds of tasks we can hope to learn, and from what kind of data,
- what types of guarantees might we hope to achieve,
- other common issues that arise.

A typical setting

- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by n features.
 (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far to produce good prediction rule (a “hypothesis”) $h(x)$ for future data.

The concept learning setting

E.g.,

<table>
<thead>
<tr>
<th>δ</th>
<th>meds</th>
<th>Mr.</th>
<th>bad spelling</th>
<th>known-sender</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Given data, some reasonable rules might be:
- Predict SPAM if ~known AND (δ OR meds)
- Predict SPAM if δ + meds - known > 0.
- ...

Big questions

(A) How might we automatically generate rules that do well on observed data? [algorithm design]

(B) What kind of confidence do we have that they will do well in the future? [confidence bound / sample complexity]

for a given learning alg, how much data do we need...
Power of basic paradigm

Many problems solved by converting to basic “concept learning from structured data” setting.

- E.g., document classification
 - convert to bag-of-words
 - Linear separators do well
- E.g., driving a car
 - convert image into features.
 - Use neural net with several outputs.

Natural formalization (PAC)

- We are given sample $S = \{(x,y)\}$.
 - Assume x’s come from some fixed probability distribution D over instance space.
 - View labels y as being produced by some unknown target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h.
- Goal is for h to do well on new examples also from D. I.e., $\Pr_D[h(x) \neq f(x)] < \epsilon$.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm A that will find a consistent DL if one exists.
2. Show that if S is of reasonable size, then $\Pr[\exists \text{consistent DL} h \text{ with } \text{err}(h) > \epsilon] < \delta$.
3. This means that A is a good algorithm to use if f is, in fact, a DL.
 - If S is of reasonable size, then A produces a hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

If $(x_i=0)$ then -, else
if $(x_i=1)$ then +, else
if $(x_i=1)$ then +, else -

Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:
- No DL consistent with remaining data.
- So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with $\text{err}(h) > \epsilon$, that we’re worried might fool us.
- Chance that h is consistent with S is at most $(1-\epsilon)^{|S|}$.
- Let $|H| = \text{number of DLs over } n \text{ Boolean features. } |H| < n!4^n$. (for each feature there are 4 possible rules, and no feature will appear more than once)

So, $\Pr[\text{some DL } h \text{ with err}(h) > \epsilon \text{ is consistent}] < |H|(1-\epsilon)^{|S|} < n!4^n(1-\epsilon)^{|S|}$.

- This is $\leq \delta$ for $|S| > (1/\epsilon)[\ln(|H|) + \ln(1/\delta)]$
 or about $(1/\epsilon)[\ln \ln n + \ln(1/\delta)]$
Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1. Design an efficient algorithm A that will find a consistent DL if one exists.
2. Show that if |S| is of reasonable size, then Pr[exists consistent DL h with err(h) > ε] < δ.
3. So, if f is in fact a DL, then whp A’s hypothesis will be approximately correct. “PAC model”

PAC model more formally:

- We are given sample S = (x,y).
- Assume x’s come from some fixed probability distribution D over instance space.
- View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h. Goal is for h to do well on new examples also from D. I.e., Pr_h[|h(x)≠f(x)|] < ε.

Algorithm PAC-learns a class of functions C if:
- For any given ε>0, δ>0, any target f ∈ C, any dist. D, the algorithm produces h of err(h)≤ε with prob. at least 1-δ.
- Running time and sample sizes polynomial in relevant parameters: 1/ε, 1/δ, n (size of examples), size(f).
- Require h to be poly-time evaluable. Learning is called “proper” if h ∈ C. Can also talk about “learning C by H.”

We just gave an alg to PAC-learn decision lists.

Confidence/sample-complexity

- What’s great is there was nothing special about DLs in our argument.
- All we said was: “if there are not too many rules to choose from, then it’s unlikely one will have fooled us just by chance.”
- And in particular, the number of examples needs to only be proportional to log(|C|).
 (notice big difference between |C| and log(|C|)).

Occam’s razor

William of Occam (~1320 AD):
“entities should not be multiplied unnecessarily” (in Latin)

Which we interpret as: “in general, prefer simpler explanations”.

Why? Is this a good policy? What if we have different notions of what’s simpler?

Occam’s razor (contd)

A computer-science-ish way of looking at it:

- Say “simple” = “short description”.
- At most 2^s explanations can be < s bits long.
- So, if the number of examples satisfies:
 $$|S| > \left(\frac{1}{\varepsilon}\right)s \ln(2) + \ln(\frac{1}{\delta})$$
 (Think of as $10x#bits$ to write down h.)

Then it’s unlikely a bad simple explanation will fool you just by chance.
Occam's razor (contd)

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Decision trees

- Decision trees over \(\{0,1\}^n\) not known to be PAC-learnable.
- Given any data set \(S\), it's easy to find a consistent DT if one exists. How?
- Where does the DL argument break down?
- Simple heuristics used in practice (ID3 etc.) don't work for all \(c \in C\) even for uniform \(D\).
- Would suffice to find the (apx) smallest DT consistent with any dataset \(S\), but that's NP-hard.

If computation-time is no object, then any class is PAC-learnable

- Occam bounds ⇒ any class is learnable if computation time is no object:
 - Let \(s_i=10\), \(\delta_i = \delta/2\). For \(i=1,2,\ldots\) do:
 - Request \((1/\delta)[s_i + \ln(1/\delta)]\) examples \(S_i\).
 - Check if there is a function of size at most \(s_i\) consistent with \(S_i\). If so, output it and halt.
 - \(s_{i+1} = 2s_i\), \(\delta_{i+1} = \delta/2\).
 - At most \(\delta_1 + \delta_2 + \ldots \leq \delta\) chance of failure.
 - Total data used: \(O((1/\epsilon)(\text{size}(f)+\ln(1/\delta)))\).

More examples

Other classes we can PAC-learn: (how?)

- Monomials [conjunctions, AND-functions]
 - \(x_1 \land x_4 \land x_6 \land x_9\)
- 3-CNF formulas (3-SAT formulas)
- OR-functions, 3-DNF formulas
- \(k\)-Decision lists (each if-condition is a conjunction of size \(k\)), \(k\) is constant.

Given a data set \(S\), deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

More examples

Hard to learn \(C\) by \(C\), but easy to learn \(C\) by \(H\), where \(H = \{2\text{-CNF}\}\).

Given a data set \(S\), deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

More about the PAC model

Algorithm PAC-learns a class of functions \(C\) if:

- For any given \(\epsilon, \delta\), any target \(f \in C\), any dist. \(D\), the algorithm produces \(h\) of \(\text{err}(h) < \epsilon\) with prob. at least \(1-\delta\).
- Running time and sample sizes polynomial in relevant parameters: \(1/\epsilon\), \(1/\delta\), \(n, \text{size}(f)\).
- Require \(h\) to be poly-time evaluable. Learning is called "proper" if \(h \in C\). Can also talk about "learning \(C\) by \(H\)."

- What if your alg only worked for \(\delta = \frac{1}{2}\), what would you do?
- What if it only worked for \(\epsilon = \frac{1}{2}\), or even \(\epsilon = \frac{1}{2} - 1/n\)? This is called weak-learning. Will get back to later.
- Agnostic learning model: Don't assume anything about \(f\). Try to reach error \(\text{opt}(H) + \epsilon\).
Extensions we’ll get at later:

- Replace $\log(|I|)$ with "effective number of degrees of freedom".
- There are infinitely many linear separators, but not that many really different ones.
- Other more refined analyses.

Some open problems

Can one learn...

- an intersection of 2 halfspaces? (2-term DNF trick doesn’t work)
- $C=${fns with only $O(\log n)$ relevant variables}? (or even $O(\log \log n)$ or $\omega(1)$ relevant variables)? This is a special case of DTs, DNFs.
- Monotone DNF over uniform D?
- Weak agnostic learning of monomials.