15-859(B) Machine Learning Theory

Lecture 1: intro, basic models and issues

Avrim Blum 01/14/08

Admin

- Course web page. Textbook covers about 1/2 of course material.
- 6 hwk assignments. Exercises/problems.
- Small project: explore a theoretical question, try some experiments, or read a paper and explain the idea. Short writeup and possibly presentation. Small groups ok.
- · Take-home exam (worth roughly 2 hwks).
- "volunteers" for hwk grading.

OK, let's get to it...

Machine learning can be used to...

- recognize speech, faces,
- · play games, steer cars,
- · adapt programs to users,
- · categorize documents, ...

Goals of machine learning theory:

develop and analyze models to understand...

- what kinds of tasks we can hope to learn, and from what kind of data,
- what types of guarantees might we hope to achieve.
- · other common issues that arise.

A typical setting

- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

The concept learning setting

Given data, some reasonable rules might be: •Predict SPAM if ¬known AND (\$\$ OR meds)

·Predict SPAM if \$\$ + meds - known > 0.

•...

Big questions

(A)How might we automatically generate rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have that they will do well in the future?
[confidence bound / sample complexity]

for a given learning alg, how much data do we need...

Power of basic paradigm

Many problems solved by converting to basic "concept learning from structured data" setting.

- · E.g., document classification
 - convert to bag-of-words
 - Linear separators do well
- E.a., driving a car
 - convert image into features.
 - Use neural net with several outputs.

Natural formalization (PAC)

- We are given sample $S = \{(x,y)\}.$
 - Assume x's come from some fixed probability distribution D over instance space.
 - View labels y as being produced by some unknown target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h.
- Goal is for h to do well on new examples also from D. I.e., $Pr_{b}[h(x)\neq f(x)] < \epsilon$.

err(h)

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

- Design an efficient algorithm A that will find a consistent DL if one exists.
- 2. Show that if S is of reasonable size, then $Pr[exists consistent DL h with err(h) > \epsilon] < \delta$.
- 3. This means that **A** is a good algorithm to use if f is, in fact, a DL.

If S is of reasonable size, then A produces a hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

		x_1	x_2	x_3	x_4	x_5	label	
		1	0	0	1	1	+	
_	H	0	1	1	0	0	_	
_	H	1	1	1	0	0	+	
_	Н	0	0	0	1	0	_	
	L	_1_	_1_	_0_	_1_	_1_	+	
		1	0	0	0	1		

if $(x_1=0)$ then -, else

if $(x_2=1)$ then +, else

if $(x_4=1)$ then +, else -

Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:

- ·No DL consistent with remaining data.
- ·So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>€, that we're worried might fool us.
- Chance that h is consistent with S is at most $(1-\epsilon)^{|S|}$.
- Let |H| = number of DLs over n Boolean features. |H| < n!4ⁿ. (for each feature there are 4 possible rules, and no feature will appear more than once)

So, Pr[some DL h with err(h)> ϵ is consistent] $< |H|(1-\epsilon)^{|S|} < n!4^n(1-\epsilon)^{|S|}$.

• This is < δ for $|S| > (1/\epsilon)[\ln(|H|) + \ln(1/\delta)]$ or about $(1/\epsilon)[\ln \ln n + \ln(1/\delta)]$

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

1 Design an efficient algorithm **A** that will find a consistent DL if one exists.

2. Show that if |S| is of reasonable size, then Pr[exists consistent DL h with err(h) > ϵ] < δ .

3. So, if f is in fact a DL, then whp A's hypothesis will be approximately correct. "PAC model"

PAC model more formally:

- We are given sample S = {(x,y)}.
 - Assume x's come from some fixed probability distribution D over instance space.
- View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h. Goal is for h to do well on new examples also from D. I.e., Pr_b[h(x)≠f(x)] < ε.

Algorithm PAC-learns a class of functions C if:

- For any given $\epsilon >0$, $\delta >0$, any target $f\in C$, any dist. D, the algorithm produces h of err(h) $\epsilon \epsilon$ with prob. at least 1- δ .
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n (size of examples), size(f).
- Require h to be poly-time evaluatable. Learning is called "proper" if h ∈ C. Can also talk about "learning C by H".

We just gave an alg to PAC-learn decision lists.

PAC model more formally:

Algorithm PAC-learns a class of functions ${\cal C}$ if:

- So. For any given $\varepsilon 0$, $\delta \cdot 0$, any target $f \in C$, any dist. D, the agorithm produces h of $\operatorname{err}(h) \varepsilon$ with prob. at least $1-\delta$. Substituting the state of $\operatorname{err}(h) \varepsilon$ with problem of $\operatorname{err}(h) \varepsilon$ with problem of $\operatorname{err}(h) \varepsilon$ is the state of $\operatorname{err}(h) \varepsilon$ is $\operatorname{err}(h) \varepsilon$.
- Requibe h to be poly-time evaluatable. Learning is called ""size(fe)" "ifrim cone amadimental number of desired in the some fins could take > poly(n) bits to write down.

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|C|).

(notice big difference between |C| and $\log(|C|)$.)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- · At most 2s explanations can be < s bits long.
- · So, if the number of examples satisfies:

Think of as 10x #bits to write down h. Think of as $(1/\epsilon)[s \ln(2) + \ln(1/\delta)]$

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)2

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

<u>Decision trees</u>

 Decision trees over {0,1}ⁿ not known to be PAC-learnable.

- Given any data set S, it's easy to find a consistent DT if one exists. How?
- Where does the DL argument break down?
- Simple heuristics used in practice (ID3 etc.) don't work for all $c \in C$ even for uniform D.
- Would suffice to find the (apx) smallest DT consistent with any dataset S, but that's NPhard.

<u>If computation-time is no object,</u> <u>then any class is PAC-learnable</u>

- Occam bounds ⇒ any class is learnable if computation time is no object:
 - Let $s_1=10$, $\delta_1=\delta/2$. For i=1,2,... do:
 - Request $(1/\epsilon)[s_i + \ln(1/\delta_i)]$ examples S_i .
 - Check if there is a function of size at most s_i consistent with S_i. If so, output it and halt.
 - $s_{i+1} = 2s_i$, $\delta_{i+1} = \delta_i/2$.
 - At most δ_1 + δ_2 + ... $\leq \delta$ chance of failure.
 - Total data used: $O((1/\epsilon)[\text{size}(f)+\ln(1/\delta)])$.

More examples

Other classes we can PAC-learn: (how?)

- Monomials [conjunctions, AND-functions] $-x_1 \wedge x_4 \wedge x_6 \wedge x_9$
- 3-CNF formulas (3-SAT formulas)
- · OR-functions, 3-DNF formulas
- k-Decision lists (each if-condition is a conjunction of size k), k is constant.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

<u>More examples</u>

Hard to learn C by C, but easy to learn C by H, where $H = \{2-CNF\}$.

Given a data set S, deciding if there is a consistent 2-term DNF formula is NP-complete. Does that mean 2-term DNF is hard to learn?

More about the PAC model

Algorithm PAC-learns a class of functions C if:

- For any given ε>0, δ>0, any target f ∈ C, any dist. D, the algorithm produces h of err(h)
 ε with prob. at least 1-δ.
- Running time and sample sizes polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, n, size(f).
- Require h to be poly-time evaluatable. Learning is called "proper" if $h \in C$. Can also talk about "learning C by H".
- What if your alg only worked for $\delta = \frac{1}{2}$, what would you do?
- What if it only worked for $\varepsilon = \frac{1}{4}$, or even $\varepsilon = \frac{1}{2} 1/n^2$ This is called weak-learning. Will get back to later.
- Agnostic learning model: Don't assume anything about f. Try to reach error $opt(H) + \epsilon$.

Extensions we'll get at later:

 Replace log(|H|) with "effective number of degrees of freedom".

- There are infinitely many linear separators, but not that many really different ones.
- · Other more refined analyses.

Some open problems

Can one learn...

- an intersection of 2 halfspaces? (2term DNF trick doesn't work)
- C={fns with only $O(\log n)$ relevant variables}? (or even $O(\log\log n)$ or $\omega(1)$ relevant variables)? This is a special case of DTs, DNFs.
- · Monotone DNF over uniform D?
- · Weak agnostic learning of monomials.