
15-859(B) Machine Learning Theory

Homework # 6 Due: April 23, 2008

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. DFAs. A distinguishing sequence for a DFA is a sequence of actions such that the
observations produced from these actions uniquely determine the starting state. I.e.,
a sequence h such that if q 6= q′ then obs(q, h) 6= obs(q′, h). (Here, “obs(q, h)” is the
sequence of observations produced by executing h from q.)

A homing sequence for a DFA is a sequence of actions such that the observations
produced from these actions uniquely determine the ending state. I.e., a sequence h
such that if qh 6= q′h then obs(q, h) 6= obs(q′, h). (Here, “qh” is the ending state
produced by executing h from q.)

(a) Describe a strongly-connected DFA that has no distinguishing sequence. Note
that the definition of “q 6= q′” is that there must exist a sequence hqq′ such that
obs(q, hqq′) 6= obs(q′, hqq′), it’s just that no single h works for all pairs.

(b) Give a homing sequence for your DFA.

2. Online resource sharing. Consider a system with n users and m resources. User
i has permissions for some subset Ni of the m resources (if we construct a bipartite
graph with users on the left and resources on the right, then these are the neighbors of
user i). However, user i can only use ki ≤ |Ni| of the Ni resources at a time. Finally,
each resource j has a size sj , and if several users are using a given resource, they have
to split it equally. The goal of a user is to maximize total resource usage.

Formally, the game proceeds as follows. Each user i simultaneously chooses some
subset {ri1 , ri2, . . . , riki

} of their Ni neighbors. Let nj be the total number of users

who choose resource j. Then, user i gets payoff
∑ki

t=1 sit/nit . (This is equivalent to the
market-sharing game of Goemans, Li, Mirrokni and Thottan.)

Suppose we (user i) repeatedly play this game each day. We could place this in the

framework of “combining expert advice”, except the number of experts
(

|Ni|
ki

)

is expo-
nential. Show how you could instead model this in the Kalai-Vempala framework to
get a polynomial-time regret-minimizing algorithm. Make sure to argue how you solve
the offline problem.

Problems:

3. Policy iteration. The goal of this problem is to prove that policy iteration will
eventually reach the optimal policy. Recall that in policy iteration, given some policy
πi, you solve the linear system to compute the state values under that policy:

V πi(s) = R(s, πi(s)) + γ
∑

s′

Prs,πi(s)(s
′)V πi(s′).



(Here, “R(s, a)” is the expected reward of executing action a from state s.) Then, we
define policy πi+1 to be the greedy policy with respect to those values. That is,

πi+1(s) = arg max
a

[

R(s, a) + γ
∑

s′

Prs,a(s
′)V πi(s′)

]

,

and so on.

(a) As an easy first step, argue that if πi+1 = πi (i.e., πi+1(s) = πi(s) for all states s),
then πi is optimal.

(b) As the harder second step, argue that the values never decrease (i.e., for all s,
V πi+1(s) ≥ V πi(s)). This completes the argument because there are only a finite
number of different policies.

Hint: what about a hybrid policy that uses πi+1 for one step and then πi from
then on? How about πi+1 for two steps?

4. Sample complexity bounds. For some learning algorithms, the hypothesis produced
can be uniquely described by a small subset of k of the training examples. E.g., if you
are learning an interval on the line using the simple algorithm “take the smallest interval
that encloses all the positive examples,” then the hypothesis can be reconstructed from
just the outermost positive examples, so k = 2. For a conservative Mistake-Bound
learning algorithm, you can reconstruct the hypothesis by just looking at the examples
on which a mistake was made, so k ≤ M , where M is the algorithm’s mistake-bound.
(In this case, you may also care about the order in which those examples arrived.)

Prove a PAC guarantee based on k. Specifically, fixing a description language (recon-
struction procedure), so for a given set S ′ of examples we have a well-defined hypothesis
hS′, show that

Pr
S∼Dn

(

∃S ′ ⊆ S, |S ′| = k, such that hS′ has 0 error on S − S ′ but true error > ǫ
)

≤ δ,

so long as

n ≥
1

ǫ

(

k ln n + ǫk + ln
1

δ

)

.

Hint: Think of S ′ as a subset of indices, and imagine drawing points in S by drawing
those in S ′ first.

Note the similarity of the form of this bound to VC-dimension and other bounds we
have seen. These are often called “compression bounds”.
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