Groundrules:

- Homeworks will generally consist of *exercises*, easier problems designed to give you practice, and *problems*, that may be harder, and/or somewhat open-ended. You should do the exercises by yourself, but you may work with a friend on the harder problems if you want. (Working together doesn't mean "splitting up the problems" though.) If you work with a friend, then write down who you are working with.
- If you've seen a problem before (sometimes I'll give problems that are "famous"), then say that in your solution. It won't affect your score, I just want to know. Also, if you use any sources other than the textbook, write that down too. It's fine to look up a complicated sum or inequality or whatever, but don't look up an entire solution.

Exercises:

1. Expressivity of decision lists. Show that conjunctions and disjunctions are both special cases of decision lists. That is, any function that can be expressed as a conjunction (or disjunction) can also be expressed as a decision list.

Note: the example given in class shows that decision lists are strictly more general. That data set had a consistent decision list but no consistent conjunction or disjunction.

- 2. **Expressivity of LTFs.** Show that decisions lists are a special case of linear threshold functions. That is, any function that can be expressed as a decision list can also be expressed as a linear threshold function "f(x) = + iff $w_1x_1 + \dots + w_nx_n \ge w_0$ ".
- 3. **Decision tree rank.** The rank of a decision tree is defined as follows. If the tree is a single leaf then the rank is 0. Otherwise, let r_L and r_R be the ranks of the left and right subtrees of the root, respectively. If $r_L = r_R$ then the rank of the tree is $r_L + 1$. Otherwise, the rank is the maximum of r_L and r_R .

Prove that a decision tree with ℓ leaves has rank at most $\log_2(\ell)$.

Problems:

4. **Decision List mistake bound.** Give an algorithm that learns the class of decision lists in the mistake-bound model, with mistake bound O(nL) where n is the number of variables and L is the length of the shortest decision list consistent with the data. The algorithm should run in polynomial time per example.

Hint: think of using some kind of "lazy" version of decision lists as hypotheses.

Note: there is a solution to this problem in the survey article handed out in the first lecture, but please do this yoursel{f,ves}.

5. Expressivity of decision lists, contd. Show that the class of rank-k decision trees is a subclass of k-decision lists. (There are several different ways of proving this.)

Thus, we conclude that we can learn constant rank decision trees in polynomial time, and using Exercise 3 we can learn arbitrary decision trees of size s in time and number of examples $n^{O(\log s)}$. (So this is "almost" a PAC-learning algorithm for decision trees.)

6. **Halving is not always optimal.** Describe a class C where the halving algorithm is not optimal: that is, where you would get a better worst-case mistake bound by *not* going with the majority vote of the available concepts.

Note: it's OK if your class is a bit contrived.

Hint: The key issue here is: what if on the current example x, 80% of the functions say "positive" and 20% say "negative", but the larger set of functions has a smaller mistake bound than the smaller set of functions? And how can a large set of functions have a small mistake bound anyway?