
15-859(B) Machine Learning Theory

Homework # 1 Due: January 28, 2008

Groundrules:

• Homeworks will generally consist of exercises, easier problems designed to give you
practice, and problems, that may be harder, and/or somewhat open-ended. You should
do the exercises by yourself, but you may work with a friend on the harder problems
if you want. (Working together doesn’t mean “splitting up the problems” though.) If
you work with a friend, then write down who you are working with.

• If you’ve seen a problem before (sometimes I’ll give problems that are “famous”), then
say that in your solution. It won’t affect your score, I just want to know. Also, if you
use any sources other than the textbook, write that down too. It’s fine to look up a
complicated sum or inequality or whatever, but don’t look up an entire solution.

Exercises:

1. Expressivity of decision lists. Show that conjunctions and disjunctions are both
special cases of decision lists. That is, any function that can be expressed as a con-
junction (or disjunction) can also be expressed as a decision list.

Note: the example given in class shows that decision lists are strictly more general.
That data set had a consistent decision list but no consistent conjunction or disjunction.

2. Expressivity of LTFs. Show that decisions lists are a special case of linear threshold
functions. That is, any function that can be expressed as a decision list can also be
expressed as a linear threshold function “f(x) = + iff w1x1 + . . . wnxn ≥ w0”.

3. Decision tree rank. The rank of a decision tree is defined as follows. If the tree is
a single leaf then the rank is 0. Otherwise, let rL and rR be the ranks of the left and
right subtrees of the root, respectively. If rL = rR then the rank of the tree is rL + 1.
Otherwise, the rank is the maximum of rL and rR.

Prove that a decision tree with ` leaves has rank at most log2(`).

Problems:

4. Decision List mistake bound. Give an algorithm that learns the class of decision
lists in the mistake-bound model, with mistake bound O(nL) where n is the number
of variables and L is the length of the shortest decision list consistent with the data.
The algorithm should run in polynomial time per example.

Hint: think of using some kind of “lazy” version of decision lists as hypotheses.

Note: there is a solution to this problem in the survey article handed out in the first
lecture, but please do this yoursel{f,ves}.



5. Expressivity of decision lists, contd. Show that the class of rank-k decision trees
is a subclass of k-decision lists. (There are several different ways of proving this.)

Thus, we conclude that we can learn constant rank decision trees in polynomial time,
and using Exercise 3 we can learn arbitrary decision trees of size s in time and number
of examples nO(log s). (So this is “almost” a PAC-learning algorithm for decision trees.)

6. Halving is not always optimal. Describe a class C where the halving algorithm is
not optimal: that is, where you would get a better worst-case mistake bound by not

going with the majority vote of the available concepts.

Note: it’s OK if your class is a bit contrived.

Hint: The key issue here is: what if on the current example x, 80% of the functions
say “positive” and 20% say “negative”, but the larger set of functions has a smaller
mistake bound than the smaller set of functions? And how can a large set of functions
have a small mistake bound anyway?

2


