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Active Learning of Linear Separators

Preliminaries and Notation

We focus on binary classification problems; that is, we consider the problem of predicting a binary
label y based on its corresponding input vector x. As in the standard machine learning formulation,
we assume that the data points (x, y) are drawn from an unknown underlying distribution DXY

over X × Y ; X is called the instance space and Y is the label space. We assume that Y = {±1}
and X = Rd; we also denote the marginal distribution over X by D. Let C be the class of
linear separators through the origin, that is C = {sign(w · x) : w ∈ Rd, ||w|| = 1}. To keep the
notation simple, we sometimes refer to a weight vector and the linear classifier with that weight
vector interchangeably. Our goal is to output a hypothesis function w ∈ C of small error, where
err(w) = errDXY

(w) = P(x,y)∼DXY
[sign(w · x) 6= y].

Recall that in (pool-based) active learning, a set of labeled examples (x1, y1) . . . (xm, ym) is drawn
i.i.d. from DXY ; the learning algorithm is permitted direct access to the sequence of xi values
(unlabeled data points), but has to make a label request to obtain the label yi of example xi. The
hope is that we can output a classifier of small error by using many fewer label requests than in
passive learning by actively directing the queries to informative examples (while keeping the number
of unlabeled examples polynomial). For added generality, we also consider the selective sampling
active learning model, where the algorithm visits the unlabeled data points xi in sequence, and, for
each i, makes a decision on whether or not to request the label yi based only on the previously-
observed xj values (j ≤ i) and corresponding requested labels, and never changes this decision once
made. Our upper and lower bounds will apply to both selective sampling and pool-based active
learning.

In the “realizable case”, we assume that the labels are deterministic and generated by a target
function that belongs to C. In the non-realizable case we do not make this assumption and instead
aim to compete with the best function in C.
Given two vectors u and v and any distribution D̃ we denote by dD̃(u, v) = Px∼D̃(sign(u · x) 6=
sign(v · x)); we also denote by θ(u, v) the angle between the vectors u and v.

Log-Concave Densities

Throughout this lecture we focus on the case where the underlying distribution D is log-concave.
Such distributions have played a key role in the past two decades in several areas including sampling,
optimization, and integration algorithms [9], and more recently for learning theory as well [6, 7, 11].

We first summarize several results about such distributions that will be useful for our analysis.

Definition 1. A distribution over Rd is log-concave if log f(·) is concave, where f is its associated
density function. It is isotropic if its mean is the origin and its covariance matrix is the identity.
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Log-concave distributions form a broad class of distributions: for example, the Gaussian, Logistic,
and uniform distribution over any convex set are log-concave distributions. The following lemma
summarizes known useful facts about isotropic log-concave distributions (most are from [9]; the
upper bound on the density is from [7]).

Lemma 2. Assume that D is log-concave in Rd and let f be its density function.

(a) If D is isotropic then Px∼D[||x|| ≥ α
√
d] ≤ e−α+1. If d = 1 then: Px∼D[x ∈ [a, b]] ≤ |b− a|.

(b) If D is isotropic, then f(x) ≥ 2−7d29d||x|| whenever 0 ≤ ||x|| ≤ 1/9. Furthermore, 2−7d ≤
f(0) ≤ d(20d)d/2, and f(x) ≤ A(d) exp(−B(d)||x||), where A(d) is 28ddd/2e and B(d) is

2−7d

2(d−1)(20(d−1))(d−1)/2 , for all x of any norm.

(c) All marginals of D are log-concave. If D is isotropic, its marginals are isotropic as well.

(d) If D is isotropic and d = 1 we have f(0) ≥ 1/8 and f(x) ≤ 1 for all x.

We will use the fact that there exists a universal constant c such that the probability of disagreement
of any two homogeneous linear separators is lower bounded by the c times the angle between their
normal vectors. This follows by projecting the region of disagreement in the space given by the
two normal vectors, and then using properties of log-concave distributions in 2-dimensions.

Lemma 3. Assume D is an isotropic log-concave in Rd. Then there exists c such that for any two
unit vectors u and v in Rd we have cθ(v, u) ≤ dD(u, v).

Proof. Consider two unit vectors u and v. Let proju,v(x) denote the projection operator that, given
x ∈ Rd, orthogonally projects x onto the plane determined by u and v. That is, if we define an
orthogonal coordinate system in which coordinates 1, 2 lie in this plane and coordinates 3, . . . , d
are orthogonal to this plane, then x′ = proju,v(x1, . . . , xd) = (x1, x2). Also, given distribution D
over Rd, define proju,v(D) to be the distribution given by first picking x ∼ D and then outputting
x′ = proju,v(x). That is, proju,v(D) is just the marginal distribution over coordinates 1, 2 in the
above coordinate system. Notice that if x′ = proju,v(x) then u · x = u′ · x′ where u′ = proju,v(u)
and v′ = proju,v(v). So, if D2 = proju,v(D) then dD(u, v) = dD2(u′, v′).

By Lemma 2(c), we have that if D is isotropic and log-concave, then D2 is as well. Let A be the re-
gion of disagreement between u′ and v′ intersected with the ball of radius 1/9 in R2. The probability
mass of A under D2 is at least the volume of A times infx∈AD2(x). So, using Lemma 2(b)

dD2(u′, v′) ≥ vol(A) inf
x∈A

D2(x) ≥ cθ(u, v),

as desired.

Analysis of the Disagreement Coefficient

Recall the definition of the disagreement coefficient. For r > 0, define B(w, r) = {u ∈ C : PD(sign(u·
x) 6= sign(w · x)) ≤ r}. For any H ⊆ C, define the region of disagreement as DIS(H) = {x ∈ X :
∃w, u ∈ H s.t. sign(u · x) 6= sign(w · x))}. Define the Alexander capacity function capw∗,D(·) for

w∗ ∈ C w.r.t. D as: capw∗,D(r) = PD(DIS(B(w∗,r)))
r . Define the disagreement coefficients for w∗ ∈ C

w.r.t. D as: Θw∗,D(ε) = sup
r≥ε

[capw∗,D(r)].

The following is a bound on the disagreement coefficient.
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Theorem 4. Assume that D is an isotropic log-concave distribution in Rd. For any w∗, for any
r, capw∗,D(r) is O(d1/2 log(1/r)). Thus Θw∗,D(ε) = O(d1/2 log(1/ε)).

Proof. Roughly, we will show that almost all x classified by a large enough margin by w∗ are not
in DIS(B(w∗, r)), because all hypotheses agree with w∗ about how to classify such x, and therefore
all pairs of hypotheses agree with each other. Consider w such that d(w,w∗) ≤ r; by Lemma 3 we
have θ(w,w∗) ≤ Cr, for some constant C. For any x such that ||x|| ≤

√
d log(1/r) we have

(w · x− w∗ · x) < ||w − w∗|| × ||x||
≤ Cr

√
d log(1/r). (w,w∗ are unit length so ||w − w∗|| ≤ θ(w,w∗))

Thus, if x also satisfies |w∗ · x| ≥ Cr
√
d log(1/r) we have (w∗ · x)(w · x) > 0. Since this is true for

all w, any such x is not in DIS(B(h, r)). By Lemma 2(a) we have,

Px∼D
(
|w∗ · x| ≤ Cr

√
d log(1/r)

)
= O(r

√
d log(1/r)).

Moreover, by Lemma 2(a) we also have

Px∼D[||x|| ≥
√
d log(1/r)] = O(r).

These both imply capw∗,D(r) = O(
√
d log(1/r)).

Theorem 4 immediately leads to concrete bounds on the label complexity of several algorithms in
the literature, including the one discusses last time(CAL and A2 [5, 3, 2]) as well as others [8,
4]. For example, by composing it with a result of [4], we obtain a bound of Õ(d3/2(log2(1/ε) +
(ν/ε)2)) for agnostic active learning when D is isotropic log-concave in Rd; that is we only need
Õ(d3/2(log2(1/ε) + (ν/ε)2))) label requests to output a classifier of error at most ν + ε, where
ν = minw∈C err(w).

Margin-based Active Learning

We now consider a more aggressive margin-based active learning algorithm for the realizable case.
First, to motivate and analyze this algorithm we use the following characterization of the region of
disagreement of two linear separators under a log-concave measure:

Theorem 5. For any c1 > 0, there is a c2 > 0 such that the following holds. Let u and v be two
unit vectors in Rd, and assume that θ(u, v) = α < π/2. If D is isotropic log-concave in Rd, then:

Px∼D[sign(u · x) 6= sign(v · x) and |v · x| ≥ c2α] ≤ c1α. (1)

We now present and analyze a margin-based active learning algorithm for the realizable case —
the resulting algorithm is computationally efficient (polynomial time and label efficient).

Theorem 6. Assume D is isotropic log-concave in Rd. There exist constants C1, C2, c s.t. for
d ≥ 4, and for any ε, δ > 0, ε < 1/4, using Algorithm 1 with bk = C1

2k
and mk = C2

(
d+ ln s

δ

)
, after

s = dlog2
1
cεe iterations, we find a separator of error at most ε with probability 1 − δ. The total

number of labeled examples needed is O((d+ log(1/δ) + log log(1/ε)) log(1/ε)).
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Algorithm 1 Margin-based Active Learning

Input: a sampling oracle for D, a labeling oracle, sequences mk > 0, k ∈ Z+ (sample sizes) and
bk > 0, k ∈ Z+ (cut-off values).
Output: weight vector ŵs.

• Draw m1 examples from D, label them and put them in W (1).

• iterate k = 1, . . . , s

– find a hypothesis ŵk with ‖ŵk‖2 = 1 consistent with all labeled examples in W (k).

– let W (k + 1) = W (k).

– until mk+1 additional data points are labeled, draw sample x from D

∗ if |ŵk · x| ≥ bk, then reject x,

∗ else, ask for label of x, and put into W (k + 1).

Proof. Let c be the constant from Lemma 3. We will show, using induction, that, for all k ≤ s,
with probability at least 1 − kδ

s , any ŵ consistent with the data in the working set W (k) has
err(ŵ) ≤ c2−k, so that, in particular, err(ŵk) ≤ c2−k.
The case where k = 1 follows from the standard VC bounds (see e.g.,[10]). Assume now the claim
is true for k − 1 (k > 1), and consider the kth iteration. Let S1 = {x : |ŵk−1 · x| ≤ bk−1}, and
S2 = {x : |ŵk−1 · x| > bk−1}. By the induction hypothesis, we know that, with probability at least

1− (k−1)δ
s , all ŵ consistent with W (k− 1), including ŵk−1, have errors at most c2−(k−1). Consider

an arbitrary such ŵ. By Lemma 3 we have θ(ŵ, w∗) ≤ 2−(k−1) and θ(ŵk−1, w
∗) ≤ 2−(k−1), so

θ(ŵk−1, ŵ) ≤ 4 × 2−k. Applying Theorem 5, there is a choice of C1 (the constant such that

bk−1 = C1/2
k−1) that satisfies P((ŵk−1 · x)(ŵ · x) < 0, x ∈ S2) ≤ c2−k

4 and P((ŵk−1 · x)(w∗ · x) <

0, x ∈ S2) ≤ c2−k

4 . So

P((ŵ · x)(w∗ · x) < 0, x ∈ S2) ≤
c2−k

2
. (2)

Now let us treat the case that x ∈ S1. Since we are labeling mk data points in S1 at iteration
k−1, standard passive-learning VC bounds (Lecture 4) imply that, if C2 is a large enough absolute
constant, then with probability 1− δ/s, for all ŵ consistent with the data in W (k),

err(ŵ|S1) = P((ŵ · x)(w∗ · x) < 0 | x ∈ S1) ≤
c2−k

4bk
=

c

4C1
. (3)

Finally, since S1 consists of those points that, after projecting onto the direction ŵk−1, fall into an
interval of length 2bk, Lemma 2 implies that P(S1) ≤ 2bk. Putting this together with (2) and (3),
with probability 1− kδ

s , we have err(ŵ) ≤ c2−k, completing the proof.

See [1] for an extension of this approach to obtain a computationally efficient and label efficient algo-
rithm for learning linear separators under log-concave distributions in the agnostic case and [12] for
extensions to more general concept spaces (these results are not computationally efficient however).
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