
10-806 Foundations of Machine Learning and Data Science

Lecturer: Avrim Blum Lecture 17: November 4, 2015

1 Streaming Algorithms

We now turn from problems of prediction to problems of summarization. The setting we will be
focusing on is that we have a huge stream of data, like search queries, or packets on a network, and
we want to efficiently keep a small “sketch” or summary or set of statistics of this data. The key
challenge is that the data stream is extremely large and our memory is small. So, we can’t store
the whole stream and then do our computation. In fact, we will be especially interested in the case
that our memory size is only logarithmic in the length of the stream.

Formally, we assume we are observing a sequence (a stream) of m items from a domain of size n,
where we think of both m and n as very large. Our goal will be to use space logarithmic in m and
n. Most of the algorithms we look at will be randomized, and we will assume we have the ability
to flip coins of any desired bias.

Notation: We will use {a1, . . . , an} to denote the domain (e.g., if these are search queries, then a1

might be “machine-learning”, a2 might be “sample-complexity”, etc.). We will use Fi to denote
the number of occurences (frequency) of element ai in the data stream. We assume n is known in
advance, but m may not be.

1.1 A warmup problem: sampling

As a warmup, let’s consider the problem of maintaining an iid sample of k items from the stream,
when we don’t know the length m of the stream in advance. I.e., at any point in time, we want our
sample to consist of k independent draws from the multiset of items observed so far. We will want
to do this in space O(k log n + log m). Note that it takes space O(k log n) just to store the sample.

Let’s focus on the case k = 1, so we just want one random element from the stream. So, the first
item comes along and we keep it in memory (which we need to do in case m = 1). Now the second
item comes along. What do we do? With probability 1/2 we replace the item in memory with the
new one and with probability 1/2 we keep the old one. Now a third item comes along. We want to
replace our memory with the new item with probability 1/3 and keep the old item with probability
2/3. In general when the tth item comes along, we put it into our memory with probability 1/t. We
can see why this gives us a uniformly-chosen random element from the stream so far by induction.
Clearly the new item ends up in our memory with the correct probability 1/t, but what about the
previous items? Each of them was in our memory with probability 1

t−1 by induction, so it is in our
memory now with probability 1

t−1 ·
t−1

t = 1
t as desired.

To run this algorithm, we need to keep one item, which requires O(log n) bits, and the length of
the stream so far, which requires O(log m) bits.

For general values of k, we just run k copies of this independently (but just need to keep one copy
of the value of t).

1



1.2 Maintaining Frequency Counts

Suppose we want to keep track of how many times we’ve seen each item. We can do this in
O(n log m) space by storing a vector of n counts, one per item, with log m bits to store each count.
Or, we can do this in O(m log n) space by just storing a list of everything seen, and then just
computing the counts when requested. Both of these are too much storage.

Unfortunately, we can’t do very much better if we want exact information. In fact, suppose all
we wanted to know was how many times the most frequent element occurred. Even this requires
Ω(min(m,n)) space to keep track of exactly. Intuitively, the difficulty is that we don’t know in
advace which element is going to be most frequent in the end. Here is the formal reasoning. Let’s
look at the state of memory after the first m/2 items in the stream. Let’s just focus on which
elements have appeared at least once and which haven’t. If m/2 ≥ n then there are 2n−1 different
subsets that could have appeared. For each subset, arbitrarily fix some sequence containing exactly
those elements (each of those elements appearing one or more times). If we have n−1 or fewer bits
of memory, then there must be some memory state that two different such sequences S1, S2 map
to. Since each of these sequences corresponds to a different subset, there must be some element
that appears in one of them (say S1) but not the other. Say i is an element that appears k > 0
times in S1 but zero times in S2. If the next m/2 items are all element i, then the correct answer
is m/2 + k if the first half was S1, but is just m/2 if the first half was S2. So we can’t tell the
difference. If m/2 < n, then we can do this with just the first n′ = m/2 elements and get a lower
bound of m/2. Either way, we get a lower bound of Ω(min(m,n)).

Now, what if we allow ourselves an error of εm? That is, if element ai appears Fi times, we want
an estimate that is within εm of Fi. So, for elements that don’t appear very often this isn’t very
meaningful, but for frequent elements, we want a good estimate. It turns out there are a couple of
different interesting ways to do this with very little space. We’ll talk about one way, that also has
other applications, called the “count-min sketch”. The space used will be O(1

ε log m).

1.3 The Count-Min Sketch

First of all, we are going to maintain estimates F̂i, and the guarantee we’ll get is that for each i,
our estimate F̂i ≥ Fi, and with probability 1− δ, F̂i ≤ Fi + εm.

Here is the idea: We pick lg(1/δ) hash functions h1, h2, ..., hlg(1/δ), each of which is mapping the
domain {1, 2, . . . , n} to the range {1, 2, ..., r} for r = 2/ε. Intuitively, think of them as random
mappings from the domain to the range, but formally we will want to pick them from what is
called a universal hash function family.

Universal Hashing: First of all, the reason we don’t really want to choose the ht’s as random
mappings is that it would require keeping Ω(n) bits of information, namely where each item maps
to. Instead, a universal hash function family is a set H of hash functions that just satisfies the
condition that for any two distinct elements x 6= x′ in the domain,

Pr
h∈H

[h(x) = h(x′)] ≤ 1/r,

where r is the size of the range. The key point is that we can achieve this using a set H that is
much smaller than rn, so that the functions h can be described with many fewer bits. For example,
one nice way to do this, if n and r are powers of 2, is as follows. First of all, we will view the
domain as the integers 0, 1, . . . , n− 1. Now, to choose h, we pick a random lg(r) by lg(n) matrix of

2



0s and 1s. Then, viewing the binary representation of x as a column vector, we define h(x) = hx
(mod 2), i.e., we multiply the matrix by the vector with all additions done modulo 2. This gives
us a lg(r)-bit output, which we view as a binary representation of an element in the range (add 1
if we want the range to be 1, . . . , r instead of 0, . . . , r − 1). We need to prove that this works, but
notice that now h takes only O((log n)(log r)) bits to describe (and there are even more efficient
constructions).

[This is not needed to follow the main argument] Why does this work? The easiest way to see it
is to think of hx as using x to index a subset of columns of h and then adding those columns up
mod 2. If x 6= x′, then there must be at least one index i where x[i] 6= x′[i], and let’s say x[i] = 0
and x′[i] = 1. Fixing x and x′, over a random choice of h, we want to argue that the chance of
h(x) = h(x′) is at most 1/r. Imagine filling h randomly with 0’s and 1’s but filling in the ith
column last. Just before the ith column is filled, h(x) is now determined. But all of the 2lg(r) ways
of filling in the ith column produce a different value for h(x′). That’s because if a+ b = a+ b′ then
b = b′ (where b, b′ represent two different possible ith columns and a = h(x′) if you fill in the ith
column with all zeroes). So, only one of those r ways can collide with h(x).

Back to the Count-Min Sketch: So, we have our lg(1/δ) hash functions. Now what we’ll do
is keep a lg(1/δ) by r matrix of counts, called “count”, with all entries initialized to 0. When the
item ai arrives, we will increment count[j, hj(ai)] for each j = 1, 2, . . . , lg(1/δ). Think of each row
of this matrix as a hash table but where we don’t resolve collisions and instead just increment the
counters. So, notice that count[j, hj(ai)] is always greater than or equal to the true number of
occurences of ai. Our estimate F̂i will be minj count[j, hj(ai)].

To analyze this, we need to analyze collisions. Fix some element ai and some hash function j. The
expected number of collisions of other elements into hj(ai) is at most m/r since each other element
has at most a 1/r probability of colliding with ai, over the selection of hj . Here we are using
linearity of expectation along with the fact that hj was selected from a universal hash function
family. So the expected number of collisions with ai is at most εm/2. By Markov’s inequality, this
means there is at least a 1/2 chance that the number of collisions with ai is at most εm. Now,
we don’t necessarily get tail bounds for an individual hash function, but since we chose the hash
functions independently from the universal hash family, the chance that all of them have more than
εm collisions is at most (1/2)lg(1/δ) = δ. So, with probability ≥ 1 − δ we have F̂i ≤ Fi + εm, as
desired.

Another nice application is this also works with inserts/deletes (each observation is an element ai

along with a positive or negative change in its “account”. Define m now as the sum of all accounts
at the end of the process. All the rest of the analysis still holds (except space usage depends on
the log of the maximum count value over time, not just the final count value).

1.4 Estimating the number of distinct elements

Another quantity we might want to estimate in our data stream is the number of distinct elements
seen. Note that the above procedure doesn’t really help with this.

Here is an idea for how we can do this. First, some intuition: suppose we had a hash function h
that mapped each element in the domain to a uniform random number in some range {1, . . . , r},
independently. (As we saw above, having a truly independent random mapping is too much to
hope for, but let’s imagine.) If the data stream has t distinct elements, then the expected value of
mini h(ai) would be approximately r

t+1 ; here, think of r as much larger than t. The key point here

3



is that multiple copies of the same element hash the same way (since h is a function), so {h(ai)}
looks like t random numbers between 1 and r. So, from the minimum, we could get an estimate of
t. We could then repeat this with multiple hash functions if we want to improve our accuracy.

We’ll now implement this idea using a generalization of universal hashing called “2-universal” or
“pairwise-independent” hashing. Formally, a set H is a 2-universal or pairwise independent family
of hash functions if for any two distinct elements x 6= x′ in the domain, and any two elements y, y′

in the range,
Pr

h∈H
[h(x) = y ∧ h(x′) = y′] = 1/r2,

where r is the size of the range. Note that our specific scheme using binary matrices also has this
property if we remove the all-zeroes element from the domain (since that always hashes to 0).

We’re going to focus on getting within a factor of 2 of the correct answer. Note that we’re not going
to have a hash table now—that would be too big since we’ll need r to be larger than t. Instead,
we’ll just be keeping track of the minimum hash value seen, which takes only O(log r) bits per hash
function. Let’s now consider a single hash function chosen at random from our 2-universal family.

Claim 1 Suppose the data stream a1, a2, . . . has t distinct values. Then, for a 2-universal hash
family H,

Pr
h∈H

[
min

i
(h(ai)) ≤

r

4t

]
≤ 1

4
and Pr

h∈H

[
min

i
(h(ai)) ≥

⌈
r

2t

⌉]
≤ 5

8

Proof: First, for any given element ai, the chance that h(ai) ≤ r
4t is at most 1

4t ; in fact, it’s exactly
equal to 1

4t if r
4t is an integer. So just using the union bound, if there are t distinct elements, the

probability that the minimum is ≤ r
4t is at most 1/4.

Now, by the same reasoning, the chance that h(ai) ≤ d r
2te is at least 1

2t . In fact, to make this
analysis cleaner, let’s assume r

2t is an integer so the probability is equal to 1
2t . We now argue that

the probability that the minimum is ≤ r
2t is at least 3/8. For this we use 2 steps of inclusion-

exclusion, called the “Boole-Bonferroni inequalities.” These say that for any set of events Ai,∑
i

Pr(Ai)−
∑
i<j

Pr(Ai ∩Aj) ≤ Pr

[⋃
i

Ai

]
≤

∑
i

Pr(Ai).

Notice that RHS is the union bound, but now we want to use the LHS. Specifically, since our hash
function is 2-universal, for any pair ai, aj , Pr(h(ai) ≤ r

2t ∧ h(aj) ≤ r
2t) = 1

4t2
. So, applying the

inequality we get that Pr[∃i s.t. h(ai) ≤ r
2t ] ≥

1
2 −

(t
2

)
1

4t2
≥ 1

2 −
1
8 = 3

8 .

Now let’s perform this with k random hash functions and look at the minima produced by each
hash function. We expect at most 1/4 of the minima to be below r

4t , and by Hoeffding bounds, for
sufficiently large k, with high probability we will have less than 5/16 of the minima below r

4t . In the
other direction, we expect at most 5/8 of the minima to be above d r

2te and by Hoeffding bounds,
for sufficiently large k, with high probability we will have less than 11/16 of the minima above
d r

2te. So, this means that for sufficiently large k, with high probability the 5
16 × 100th percentile q

satisfies:
r

4t
≤ q ≤ d r

2t
e.

So, for r � t, this means that with high probability we have:

t(1− o(1)) ≤ r

2q
≤ 2t.

4


