
1

10-806 Foundations of Machine Learning
and Data Science

Lecturer: Avrim Blum 10/12/15

Lecture 10: Online learning I
Mistake-bound model:

•Basic results
•Connection to PAC/distributional learning
•Halving alg

Combining “expert advice”:
•(Randomized) Weighted Majority algorithm

PAC model

• Data arrives from some distribution 𝐷,
labeled by some target 𝑐∗.

• We see 𝑆 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … (𝑥𝑚 , 𝑦𝑚)
where 𝑥𝑖 ∼ 𝐷, and 𝑦𝑖 = 𝑐

∗(𝑥𝑖).

• Goal: produce ℎ with low true error 𝑒𝑟𝑟𝐷 ℎ .

Online learning
• What if we don’t want to make assumption

that data is coming from some fixed
distribution?

• Can no longer talk about past performance
predicting future results.

• Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

(Mistake bounds: 𝑐∗ ∈ 𝐶, Regret bounds: general case)

Mistake-bound model
• View learning as a sequence of stages.

• In each stage, algorithm is given 𝑥, asked to
predict 𝑓(𝑥), and then is told correct value.

• Make no assumptions about sequence of 𝑥’s.

• Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈ C.

Mistake-bound model

• Note: can no longer talk about “how much data do I need to
converge?” Maybe see same examples over again and learn
nothing new. But that’s OK if don’t make mistakes either…

• Want mistake bound poly(n, s), where n is size of example
and s is size of smallest consistent f ∈ C.

• C is learnable in MB model if exists alg with mistake bound
and running time per stage poly(n,s).

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈C.

Simple example: disjunctions
• Suppose features are Boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.

2

Simple example: disjunctions
• Algorithm makes at most n mistakes.

• No deterministic alg can do better:

 1 0 0 0 0 0 0 + or - ?

 0 1 0 0 0 0 0 + or - ?

 0 0 1 0 0 0 0 + or - ?

 0 0 0 1 0 0 0 + or - ?

 ...

MB model properties
An alg A is “conservative” if it only changes its state

when it makes a mistake.

Claim: if C is learnable by a deterministic algo with
mistake-bound M, then also learnable by a
conservative alg with mistake bound M.

Why?

• Take generic alg A. Create new conservative A’ by
running A, but rewinding state if no mistake made.

• Still ≤ M mistakes because algo still sees a legal
sequence of examples.

MB learnable ⇒ PAC learnable
Say alg A learns C with mistake-bound M.

Transformation 1:

• Run (conservative) A until it produces a hyp h
that survives ≥ (1/)ln(M/) examples.

• If ℎ1 is bad, Pr(fooled by ℎ1) ≤ /M.

• If ℎ2 is bad, Pr(fooled by ℎ2) ≤ /M.

• …

• Pr(fooled ever) ≤ .

Uses at most
𝑀

𝜖
ln

𝑀

𝛿
 examples total.

Fancier method gets 𝑂
1

𝜖
𝑀 + ln

1

𝛿
.

• Run conservative A for 𝑂
1

𝜖
𝑀 + ln

1

𝛿

examples. Argue that whp at least one of
hyps produced has error ≤ /2.

• Test the M hyps produced on 𝑂
1

𝜖
ln

𝑀

𝛿

new examples and take the best.

• Nice correctness proof using Chernoff
bounds, but will skip here.

MB learnable ⇒ PAC learnable

One more example…
• Say we view each example as an integer

between 0 and 2n-1.

• C = {[0,a] : a < 2n}. (device fails if gets too hot)

• In PAC model, could just pick any ℎ ∈ 𝐶 with
𝑒𝑟𝑟𝑆 ℎ = 0. Does this work in MB model?

• What would work?

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C.

• Each mistake guarantees to reduce version
space (set of h ∈ C consistent with data so
far) by at least a factor of 2.

• Makes at most lg(|C|) mistakes.

3

Is halving alg optimal?
• Halving algorithm: predict using larger set

(h in version space that predict + versus
h in version space that predict -).

• Optimal algorithm: predict using the set
with larger mistake bound.

• In some cases, these can differ by a bit.

What if there is no perfect function?
Think of as h ∈ C as “experts” giving advice

to you. Want to do nearly as well as best
of them in hindsight.

These are called “regret bounds”: Show that
our algorithm does nearly as well as best
predictor in some class.

We’ll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Can we do nearly as well as best in hindsight?

[“expert”: someone with an opinion. Not necessarily someone
who knows anything.]

Using “expert” advice
If one expert is perfect, can get ≤ lg 𝑛 mistakes

with halving alg.
But what if none is perfect? Can we do nearly as

well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Weighted Majority Algorithm
Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1

Predictions: U U U D We predict: U

Weights: ½ ½ ½ 1

Truth: D

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

 So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant
ratio

4

Randomized Weighted Majority
2.4(m + lg n) not so good if the best expert makes a

mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, multiply by 1- rather than by ½.

unlike most
worst-case

bounds, numbers
are pretty good.

M = expected
#mistakes

Analysis
• Say at time t we have fraction Ft of

weight on experts that make mistake.

• So, we have probability Ft of making a mistake, and
we remove an Ft fraction of the total weight.
– Wfinal = n(1- F1)(1 -  F2)...

– ln(Wfinal) = ln(n) + t [ln(1 -  Ft)] ≤ ln(n) -  t Ft

 (using ln(1-x) < -x)

 = ln(n) -  M. ( Ft = E[# mistakes] = M)

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-)m).

• Now solve: ln(n) -  M > m ln(1-).

Ft

Summarizing
• 𝑀 ≤ 1 + 𝜖 𝑂𝑃𝑇 +

log 𝑛

𝜖
, where OPT is the loss of best

expert in hindsight.

• If run for 𝑇 ≥ log 𝑛 steps, and set 𝜖 =
log 𝑛

𝑇
, and use

the fact that 𝑂𝑃𝑇 ≤ 𝑇, we get:

𝑀 ≤ 𝑂𝑃𝑇 + 𝑇 log 𝑛 + 𝑇 log 𝑛

• Dividing both sides by 𝑇 to get avg loss per round:

𝑀

𝑇
≤
𝑂𝑃𝑇

𝑇
+ 2

log 𝑛

𝑇

Regret term goes to 0 or better as T→ ∞ = “no-regret” algorithm.

Extensions
• What if experts are actions? (rows in a matrix

game, ways to drive to work,…)

• At each time t, each has a loss (cost) in {0,1}.

• Can still run the algorithm

– Rather than viewing as “pick a prediction with
prob proportional to its weight” ,

– View as “pick an expert with probability
proportional to its weight”

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.

• Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions
• What if losses (costs) in [0,1]?

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 .

• Fraction of wt removed from system is:
 (𝑤𝑖𝜖𝑐𝑖𝑖)/(𝑤𝑗)𝑗 = 𝜖 𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡]

• Analysis very similar to case of {0,1}.

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-c1
1)

(1-c2
1)

(1-c3
1)

.

.
(1-cn

1)

scaling
so costs
in [0,1]

c1 c2

(1-c1
2)

(1-c2
2)

(1-c3
2)

.

.
(1-cn

2)

 Guarantee: do nearly as well as fixed row in hindsight

