10-806 Foundations of Machine Learning and Data Science

Lecturer: Avrim Blum

10/12/15

Lecture 10: Online learning I

Mistake-bound model:

- ·Basic results
- ·Connection to PAC/distributional learning
- ·Halving alg

Combining "expert advice":

·(Randomized) Weighted Majority algorithm

PAC model

- Data arrives from some distribution D, labeled by some target c^{*} .
- We see $S = (x_1, y_1), (x_2, y_2), ... (x_m, y_m)$ where $x_i \sim D$, and $y_i = c^*(x_i)$.
- Goal: produce h with low true error $err_D(h)$.

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution?
- Can no longer talk about past performance predicting future results.
- · Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

(Mistake bounds: $c^* \in C$, Regret bounds: general case)

Mistake-bound model

- · View learning as a sequence of stages.
- In each stage, algorithm is given x, asked to predict f(x), and then is told correct value.
- Make no assumptions about sequence of x's.
- · Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A makes \leq M mistakes on any sequence of examples consistent with some $f \in C$.

Mistake-bound model

Alg A learns class C with mistake bound M if A makes \leq M mistakes on any sequence of examples consistent with some $f \in C$.

- Note: can no longer talk about "how much data do I need to converge?" Maybe see same examples over again and learn nothing new. But that's OK if don't make mistakes either...
- Want mistake bound poly(n, s), where n is size of example and s is size of smallest consistent $f \in C$.
- C is learnable in MB model if exists alg with mistake bound and running time per stage poly(n,s).

Simple example: disjunctions

- Suppose features are Boolean: X = {0,1}ⁿ.
- Target is an OR function, like x_3 v x_9 v x_{12} .
- Can we find an on-line strategy that makes at most n mistakes?
- Sure
 - Start with $h(x) = x_1 v x_2 v ... v x_n$
 - Invariant: $\{vars in h\} \supseteq \{vars in f\}$
 - Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases |h| by 1.
 - No mistakes on positives. So at most n mistakes total.

Simple example: disjunctions

- · Algorithm makes at most n mistakes.
- · No deterministic alg can do better:

1000000 + or -? 0100000 + or -? 0010000 + or -? 0001000 + or -?

...

MB model properties

An alg A is "conservative" if it only changes its state when it makes a mistake.

Claim: if C is learnable by a deterministic algo with mistake-bound M, then also learnable by a conservative alg with mistake bound M.

Why?

- Take generic alg A. Create new conservative A' by running A, but rewinding state if no mistake made.
- Still \leq M mistakes because algo still sees a legal sequence of examples.

MB learnable ⇒ PAC learnable

Say alg A learns C with mistake-bound M. Transformation 1:

- Run (conservative) A until it produces a hyp h that survives $\geq (1/\epsilon) \ln(M/\delta)$ examples.
- If h_1 is bad, $\Pr(\text{fooled by } h_1) \leq \delta/M$.
- If h_2 is bad, $Pr(fooled by <math>h_2) \le \delta/M$.

•

• Pr(fooled ever) $\leq \delta$.

Uses at most $\frac{M}{\epsilon} \ln \left(\frac{M}{\delta} \right)$ examples total.

MB learnable ⇒ PAC learnable

Fancier method gets $O\left(\frac{1}{\epsilon}\left[M + \ln\left(\frac{1}{\delta}\right)\right]\right)$.

- Run conservative A for $O\left(\frac{1}{\epsilon}\left[M + \ln\left(\frac{1}{\delta}\right)\right]\right)$ examples. Argue that whp at least one of hyps produced has error $\leq \epsilon/2$.
- Test the M hyps produced on $O\left(\frac{1}{\epsilon}\left[\ln\left(\frac{M}{\delta}\right)\right]\right)$ new examples and take the best.
- Nice correctness proof using Chernoff bounds, but will skip here.

One more example...

- Say we view each example as an integer between 0 and 2ⁿ-1.
- $C = \{[0,a] : a < 2^n\}$. (device fails if gets too hot)
- In PAC model, could just pick any $h \in C$ with $err_S(h) = 0$. Does this work in MB model?
- What would work?

What can we do with unbounded computation time?

- "Halving algorithm": take majority vote over all consistent $h \in C$.
- Each mistake guarantees to reduce version space (set of $h \in C$ consistent with data so far) by at least a factor of 2.
- Makes at most Ig(|C|) mistakes.

Is halving alg optimal?

- Halving algorithm: predict using larger set (h in version space that predict + versus h in version space that predict -).
- Optimal algorithm: predict using the set with larger mistake bound.
- · In some cases, these can differ by a bit.

What if there is no perfect function?

Think of as $h \in C$ as "experts" giving advice to you. Want to do nearly as well as best of them in hindsight.

These are called "regret bounds": Show that our algorithm does nearly as well as best predictor in some class.

We'll look at a strategy whose running time is O(|C|). So, only computationally efficient when C is small.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down

Can we do nearly as well as best in hindsight?

["expert": someone with an opinion. Not necessarily someone who knows anything.]

Using "expert" advice

If one expert is perfect, can get $\leq \lg(n)$ mistakes with halving alg.

But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most lg(n)[OPT+1] mistakes, where OPT is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- · W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- · Weight of best expert is (1/2)m. So,

 $(1/2)^m \le n(3/4)^M$ constant $(4/3)^M \le n2^m$ $M \le 2.4(m + \lg n)$

Randomized Weighted Majority

- 2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, multiply by 1- ϵ rather than by $\frac{1}{2}$.

Analysis

- Say at time t we have fraction \boldsymbol{F}_t of weight on experts that make mistake.
- · So, we have probability $F_{\rm t}$ of making a mistake, and we remove an $\epsilon F_{\rm t}$ fraction of the total weight.
 - $W_{final} = n(1-\epsilon F_1)(1 \epsilon F_2)...$
 - $\ln(W_{\text{final}})$ = $\ln(n)$ + $\sum_{t} \left[\ln(1 \epsilon F_{t}) \right] \le \ln(n) \epsilon \sum_{t} F_{t}$ (using $\ln(1-x) < -x$)
 - = $ln(n) \varepsilon M$. ($\sum F_t = E[\# mistakes] = M$)

 F_t

If best expert makes m mistakes, then $ln(W_{final}) > ln((1-\epsilon)^m)$. Now solve: $ln(n) - \epsilon M > m ln(1-\epsilon)$.

$$M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon} \log(n)$$

Summarizing

- $M \leq (1+\epsilon)OPT + \frac{\log(n)}{\epsilon}$, where OPT is the loss of best expert in hindsight.
- If run for $T \ge \log(n)$ steps, and set $\epsilon = \sqrt{\frac{\log(n)}{T}}$, and use the fact that $OPT \le T$, we get:

$$M \le OPT + \sqrt{T\log(n)} + \sqrt{T\log(n)}$$

• Dividing both sides by T to get avg loss per round:

$$\frac{M}{T} \le \frac{OPT}{T} + 2\sqrt{\frac{\log(n)}{T}}$$

Regret term goes to 0 or better as $T \rightarrow \infty$ = "no-regret" algorithm.

Extensions

- What if experts are actions? (rows in a matrix game, ways to drive to work,...)
- · At each time t, each has a loss (cost) in {0,1}.
- Can still run the algorithm
 - Rather than viewing as "pick a prediction with prob proportional to its weight",
 - View as "pick an expert with probability proportional to its weight"
- Alg pays expected cost $\overrightarrow{p_t} \cdot \overrightarrow{c_t} = F_t$.
- · Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions

- What if losses (costs) in [0,1]?
- Just modify alg update rule: $w_i \leftarrow w_i(1 \epsilon c_i)$.
- Fraction of wt removed from system is: $(\sum_i w_i \epsilon c_i)/(\sum_j w_j) = \epsilon \sum_i p_i \, c_i = \epsilon [our \, expected \, cost]$
- · Analysis very similar to case of {0,1}.

Guarantee: do nearly as well as fixed row in hindsight