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Lecture 10: Online learning T
Mistake-bound model:
*Basic results
+Connection to PAC/distributional learning
+Halving alg
Combining “expert advice":
+(Randomized) Weighted Majority algorithm

PAC model

* Data arrives from some distribution D,
labeled by some target c*.

+ WeseeS = (x1,¥1), (x2,¥2), oo G, Yim)
where x; ~ D, and y; = ¢*(x;).

* Goal: produce h with low true error erry(h).

Online learning

* What if we don't want to make assumption
that data is coming from some fixed
distribution?

+ Can no longer talk about past performance
predicting future results.

+ Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

(Mistake bounds: c* € C, Regret bounds: general case)

Mistake-bound model
- View learning as a sequence of stages.

* In each stage, algorithm is given x, asked to
predict f(x), and then is told correct value.

* Make no assumptions about sequence of x's.
+ Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f € C.

Mistake-bound model

Alg A learns class C with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f €C.

+ Note: can no longer talk about "how much data do I need to
converge?" Maybe see same examples over agaih and learn
nothing new. But that's OK if don't make mistakes either...

+ Want mistake bound poly(h, s), where n is size of example
and s is size of smallest consistent f € C.

+ Cis learnable in MB model if exists alg with mistake bound
and running time per stage poly(n,s).

Simple example: disjunctions
Suppose features are Boolean: X = {0,1}".
Target is an OR function, like X3 v Xg v Xy5.
Can we find an on-line strategy that makes
at most n mistakes?

Sure.

- Start with h(x) =x; VX,V .. Vx,

- Invariant: {vars in h} 2 {vars in f}

- Mistake on negative: throw out vars in h set to 1
in x. Maintains invariant and decreases |h| by 1.

- No mistakes on positives. So at most n mistakes
total.




Simple example: disjunctions

+ Algorithm makes at most n mistakes.

* No deterministic alg can do better:
1000000 +or-2?
0100000 +or-?
0010000 +or-2?
0001000 +or-2?

MB model properties

An alg A is "conservative" if it only changes its state
when it makes a mistake.

Claim: if C is learnable by a deterministic algo with
mistake-bound M, then also learnable by a
conservative alg with mistake bound M.

Why?

+ Take generic alg A. Create new conservative A’ by
running A, but rewinding state if no mistake made.

- Still <M mistakes because algo still sees a legal
sequence of examples.

MB learnable = PAC learnable
Say alg A learns C with mistake-bound M.
Transformation 1:

* Run (conservative) A until it produces a hyp h
that survives = (1/¢)In(M/38) examples.

* If hy is bad, Pr(fooled by h;) <&/M.
* If h, is bad, Pr(fooled by h,) < &/M.

* Pr(fooled ever) <.

Uses at most %ln (%) examples fotal.

MB learnable = PAC learnable

Fancier method gets 0 G [M +1In (%)])

* Run conservative A for 0 e [M +1In (%)D
examples. Argue that whp at least one of
hyps produced has error < ¢/2.

+ Test the M hyps produced on 0 e [ln (%)])
new examples and take the best.

* Nice correctness proof using Chernoff
bounds, but will skip here.

One more example...

+ Say we view each example as an integer
between 0 and 2"-1.

+ C={[0,a] : a< 2"}. (device fails if gets too hot)
+ In PAC model, could just pick any h € C with
errs(h) = 0. Does this work in MB model?

+ What would work?

What can we do with
unbounded computation time?
* "Halving algorithm": take majority vote
over all consistent h € C.

+ Each mistake guarantees to reduce version
space (set of h € C consistent with data so
far) by at least a factor of 2.

* Makes at most Ig(|C|) mistakes.




Is halving alg optimal?

* Halving algorithm: predict using larger set
(h in version space that predict + versus
h in version space that predict -).

- Optimal algorithm: predict using the set
with larger mistake bound.

+ In some cases, these can differ by a bit.

What if there is no perfect function?

Think of as h € C as "experts” giving advice
to you. Want to do nearly as well as best
of them in hindsight.

These are called "regret bounds": Show that
our algorithm does nearly as well as best
predictor in some class.

We'll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using “expert” advice
Say we want to predict the stock market.
+ We solicit n "experts” for their advice. (Will the
market go up or down?)
+ We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor’s dog | truth
down up up up up
down up up down down

Can we do nearly as well as best in hindsight?

["expert": someone with an opinion. Not necessarily someone
who knows anything.]

Using “expert" advice

If one expert is perfect, can get <lg(n) mistakes
with halving alg.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but
once we've crossed off all the experts, restart
from the beginning.

+ Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Weighted Majority Algorithm
Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing

off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Weights:
Predictions:
Weights:

1
D We predict: U Truth: D
1

C -
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C -
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Analysis: do nearly as well as best
expert in hindsight
* M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)™. So,

- -




Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

+ Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) Idea: smooth out the worst case.

+ Also, multiply by 1-¢ rather than by %.
L m In(1 —2) 4+ In(n

M = expected
#mistakes

Analysis
+ Say at time t we have fraction F, of

weight on experts that make mistake.

- So, we have probability F, of making a mistake, and

we remove an ¢F, fraction of the total weight.
= Weing = n(1-¢ Fy)(1 - € Fy)...
= In(Wing) = In(n) + Z; [In(1 - e F)I <In(n) - e . F;
(using In(1-x) < -x)
= In(n) - ¢ M. (= F, = E[# mistakes] = M)

+ If best expert makes m mistakes, then In(Wg;q) > In((1-€)™).
+ Now solve: In(nh) - ¢ M > m In(1-¢).

1
1+ —log(n)

Summarizing

e M<(1+€)OPT+ @, where OPT is the loss of best

expert in hindsight.
+ If run for T > log(n) steps, and set € = @, and use
the fact that OPT < T, we get:
M < OPT + /Tlog(n) ++/Tlog(n)
+ Dividing both sides by T to get avg loss per round:

M OPT log(n)
—_— < —
T T +2 T

Regret term goes to O or better as T— « = “no-regret” algorithm.

Extensions

* What if experts are actions? (rows in a matrix

game, ways to drive to work,...)

- At each time t, each has a loss (cost) in {0,1}.
+ Can still run the algorithm

- Rather than viewing as "pick a prediction with
prob proportional to its weight” ,

- View as "pick an expert with probability
proportional to its weight”

- Alg pays expected cost p; - ¢/ = F;.

* Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions

+ What if losses (costs) in [0,1]?

+ Just modify alg update rule: w; « w;(1 —ecy).

* Fraction of wt removed from system is:
Qiwiec)/(Bjwj) = €X;p; c; = €[our expected cost]
* Analysis very similar to case of {0,1}.

RWM (multiplicative weights alg)

World - life - opponent

(1-ec?)(1-ecy!)1
(1-ec,2)(1-ec,)1

scalin
(l—ec32)(1-sc3l)i so cosgs

in[0,1]
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¢t e

Guarantee: do nearly as well as fixed row in hindsight




