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10-806 Foundations of Machine Learning 
and Data Science 

Lecturer: Avrim Blum                                 10/12/15 

Lecture 10: Online learning I 
Mistake-bound model: 

•Basic results 
•Connection to PAC/distributional learning 
•Halving alg 

Combining “expert advice”: 
•(Randomized) Weighted Majority algorithm 

PAC model 

• Data arrives from some distribution 𝐷, 
labeled by some target 𝑐∗. 

• We see 𝑆 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … (𝑥𝑚 , 𝑦𝑚) 
where 𝑥𝑖 ∼ 𝐷, and 𝑦𝑖 = 𝑐

∗(𝑥𝑖). 

• Goal: produce ℎ with low true error 𝑒𝑟𝑟𝐷 ℎ . 

Online learning 
• What if we don’t want to make assumption 

that data is coming from some fixed 
distribution? 
 

• Can no longer talk about past performance 
predicting future results. 
 

• Can we hope to say anything interesting?? 

Idea: mistake bounds & regret bounds.   

(Mistake bounds: 𝑐∗ ∈ 𝐶,  Regret bounds: general case)   

Mistake-bound model 
• View learning as a sequence of stages. 

• In each stage, algorithm is given 𝑥, asked to 
predict 𝑓(𝑥), and then is told correct value.   

• Make no assumptions about sequence of 𝑥’s. 

• Goal is to bound total number of mistakes. 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈ C. 

Mistake-bound model 

• Note: can no longer talk about “how much data do I need to 
converge?”  Maybe see same examples over again and learn 
nothing new.  But that’s OK if don’t make mistakes either… 
 

• Want mistake bound poly(n, s), where n is size of example 
and s is size of smallest consistent f ∈ C.   
 

• C is learnable in MB model if exists alg with mistake bound 
and running time per stage poly(n,s). 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈C. 

Simple example: disjunctions 
• Suppose features are Boolean: X = {0,1}n. 

• Target is an OR function, like x3 v x9 v x12.  
• Can we find an on-line strategy that makes 

at most n mistakes? 
• Sure. 

– Start with h(x) = x1 v x2 v ... v xn 

– Invariant: {vars in h} ⊇ {vars in f } 
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1. 
– No mistakes on positives.  So at most n mistakes 

total. 
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Simple example: disjunctions 
• Algorithm makes at most n mistakes. 

• No deterministic alg can do better: 

   1 0 0 0 0 0 0    + or - ?  

                  0 1 0 0 0 0 0    + or - ? 

               0 0 1 0 0 0 0    + or - ?  

                  0 0 0 1 0 0 0    + or - ? 

   ... 

 

MB model properties 
An alg A is “conservative” if it only changes its state 

when it makes a mistake. 

Claim: if C is learnable by a deterministic algo with 
mistake-bound M, then also learnable by a 
conservative alg with mistake bound M. 

Why? 

• Take generic alg A.  Create new conservative A’ by 
running A, but rewinding state if no mistake made. 

• Still ≤ M mistakes because algo still sees a legal 
sequence of examples. 

MB learnable ⇒ PAC learnable 
Say alg A learns C with mistake-bound M. 

Transformation 1: 

• Run (conservative) A until it produces a hyp h 
that survives ≥ (1/)ln(M/) examples. 

• If ℎ1 is bad, Pr(fooled by ℎ1) ≤ /M. 

• If ℎ2 is bad, Pr(fooled by ℎ2) ≤ /M. 

• … 

• Pr(fooled ever) ≤ . 

Uses at most 
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examples.  Argue that whp at least one of 
hyps produced has error ≤ /2. 

• Test the M hyps produced on 𝑂
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new examples and take the best. 

• Nice correctness proof using Chernoff 
bounds, but will skip here. 

MB learnable ⇒ PAC learnable 

One more example… 
• Say we view each example as an integer 

between 0 and 2n-1.  

• C = {[0,a] : a < 2n}.  (device fails if gets too hot) 

• In PAC model, could just pick any ℎ ∈ 𝐶 with 
𝑒𝑟𝑟𝑆 ℎ = 0.  Does this work in MB model? 

• What would work? 

What can we do with 
unbounded computation time? 

• “Halving algorithm”: take majority vote 
over all consistent h ∈ C.   

• Each mistake guarantees to reduce version 
space (set of h ∈ C consistent with data so 
far) by at least a factor of 2. 

• Makes at most lg(|C|) mistakes. 
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Is halving alg optimal? 
• Halving algorithm: predict using larger set 

(h in version space that predict + versus    
h in version space that predict -). 

• Optimal algorithm: predict using the set 
with larger mistake bound. 

• In some cases, these can differ by a bit. 

What if there is no perfect function? 
Think of as h ∈ C as “experts” giving advice 

to you.  Want to do nearly as well as best 
of them in hindsight. 

These are called “regret bounds”: Show that 
our algorithm does nearly as well as best 
predictor in some class. 

We’ll look at a strategy whose running 
time is O(|C|).  So, only computationally 
efficient when C is small. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Can we do nearly as well as best in hindsight? 

[“expert”: someone with an opinion.  Not necessarily someone 
who knows anything.] 

Using “expert” advice 
If one expert is perfect, can get  ≤ lg 𝑛  mistakes 

with halving alg.   
But what if none is perfect?  Can we do nearly as 

well as the best one in hindsight?  

Strategy #1: 
• Iterated halving algorithm.  Same as before, but 

once we've crossed off all the experts, restart 
from the beginning. 

• Makes at most lg(n)[OPT+1] mistakes, where OPT 
is #mistakes of the best expert in hindsight. 

 

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? 

Weighted Majority Algorithm 
Intuition: Making a mistake doesn't completely 

disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority Alg: 
– Start with all experts having weight 1. 

– Predict based on weighted majority vote. 

– Penalize mistakes by cutting weight in half. 

Weights:    1     1     1     1 

Predictions:    U    U    U    D We predict:    U 

Weights:    ½    ½     ½    1 

Truth:    D 

Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

constant  
ratio 
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Randomized Weighted Majority 
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, multiply by 1- rather than by ½.  

unlike most 
worst-case 

bounds, numbers 
are pretty good. 

M = expected 
#mistakes 

Analysis 
• Say at time t we have fraction Ft of                    

weight on experts that make mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an Ft fraction of the total weight. 
– Wfinal = n(1- F1)(1 -  F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 -  Ft)] ≤ ln(n) -  t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) -  M.             ( Ft = E[# mistakes] = M) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-)m). 

• Now solve: ln(n) -  M > m ln(1-). 

Ft 

Summarizing 
• 𝑀 ≤ 1 + 𝜖 𝑂𝑃𝑇 +

log 𝑛

𝜖
, where OPT is the loss of best 

expert in hindsight. 

• If run for 𝑇 ≥ log 𝑛  steps, and set 𝜖 =
log 𝑛

𝑇
, and use 

the fact that 𝑂𝑃𝑇 ≤ 𝑇, we get:  

𝑀 ≤ 𝑂𝑃𝑇 + 𝑇 log 𝑛 + 𝑇 log 𝑛  

• Dividing both sides by 𝑇 to get avg loss per round: 

𝑀

𝑇
≤
𝑂𝑃𝑇

𝑇
+ 2

log 𝑛

𝑇
 

Regret term goes to 0 or better as T→ ∞  =  “no-regret” algorithm. 

Extensions 
• What if experts are actions? (rows in a matrix 

game, ways to drive to work,…) 

• At each time t, each has a loss (cost) in {0,1}. 

• Can still run the algorithm 

– Rather than viewing as “pick a prediction with 
prob proportional to its weight” , 

– View as “pick an expert with probability 
proportional to its weight” 

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.  

• Same analysis applies. 

Do nearly as well as best action in hindsight! 

Extensions 
• What if losses (costs) in [0,1]?  

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 . 

• Fraction of wt removed from system is: 
    ( 𝑤𝑖𝜖𝑐𝑖𝑖 )/( 𝑤𝑗)𝑗 = 𝜖 𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡] 

• Analysis very similar to case of {0,1}. 
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 Guarantee: do nearly as well as fixed row in hindsight 


