PAC model

- Data arrives from some distribution D, labeled by some target c^*.
- We see $S = (x_1, y_1), (x_2, y_2), ... (x_m, y_m)$ where $x_i \sim D$, and $y_i = c^*(x_i)$.
- Goal: produce h with low true error $err_D(h)$.

Online learning

- What if we don’t want to make assumption that data is coming from some fixed distribution?
- Can no longer talk about past performance predicting future results.
- Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

(Mistake bounds: $c^* \in C$, Regret bounds: general case)

Mistake-bound model

- View learning as a sequence of stages.
- In each stage, algorithm is given x, asked to predict $f(x)$, and then is told correct value.
- Make no assumptions about sequence of x’s.
- Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A makes $\leq M$ mistakes on any sequence of examples consistent with some $f \in C$.

Simple example: disjunctions

- Suppose features are Boolean: $X = \{0,1\}^n$.
- Target is an OR function, like $x_3 \lor x_9 \lor x_{12}$.
- Can we find an on-line strategy that makes at most n mistakes?
- Sure.
 - Start with $h(x) = x_1 \lor x_2 \lor ... \lor x_n$
 - Invariant: $\{\text{vars in } h\} \supseteq \{\text{vars in } f\}$
 - Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases $|h|$ by 1.
 - No mistakes on positives. So at most n mistakes total.
Simple example: disjunctions

- Algorithm makes at most n mistakes.
- No deterministic alg can do better:

 \[
 \begin{align*}
 &1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ + \ or - \ ? \\
 &0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ + \ or - \ ? \\
 &0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ + \ or - \ ? \\
 &0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ + \ or - \ ? \\
 \ldots
 \end{align*}
 \]

MB model properties

An alg A is "conservative" if it only changes its state when it makes a mistake.

Claim: if C is learnable by a deterministic alg with mistake-bound M, then also learnable by a conservative alg with mistake bound M.

Why?
- Take generic alg A. Create new conservative A' by running A, but rewinding state if no mistake made.
- Still \(\leq M \) mistakes because algo still sees a legal sequence of examples.

MB learnable \(\Rightarrow \) PAC learnable

Say alg A learns C with mistake-bound M.

Transformation 1:
- Run (conservative) A until it produces a hyp \(h \) that survives \(\geq (1/\varepsilon) \ln(M/\delta) \) examples.
- If \(h_1 \) is bad, \(\Pr(\text{fooled by } h_1) \leq \delta/M \).
- If \(h_2 \) is bad, \(\Pr(\text{fooled by } h_2) \leq \delta/M \).
- ...
- \(\Pr(\text{fooled ever}) \leq \delta \).
- Uses at most \(M/\varepsilon \ln(M/\delta) \) examples total.

MB learnable \(\Rightarrow \) PAC learnable

Fancier method gets \(O(\frac{1}{\varepsilon} [M + \ln(\frac{M}{\delta})]) \).

- Run conservative A for \(O(\frac{1}{\varepsilon} [M + \ln(\frac{M}{\delta})]) \) examples. Argue that whp at least one of hyps produced has error \(\leq \varepsilon/2 \).
- Test the M hyps produced on \(O(\frac{1}{\varepsilon} \ln(\frac{M}{\delta})) \) new examples and take the best.
- Nice correctness proof using Chernoff bounds, but will skip here.

One more example

- Say we view each example as an integer between 0 and \(2^n-1 \).
- \(C = \{[0,a]: a < 2^n\} \). (device fails if gets too hot)
- In PAC model, could just pick any \(h \in C \) with \(err_S(h) = 0 \). Does this work in MB model?
- What would work?

What can we do with unbounded computation time?

- "Halving algorithm": take majority vote over all consistent \(h \in C \).
- Each mistake guarantees to reduce version space (set of \(h \in C \) consistent with data so far) by at least a factor of 2.
- Makes at most \(\lg(|C|) \) mistakes.
Is halving alg optimal?

- Halving algorithm: predict using larger set (h in version space that predict + versus h in version space that predict -).
- Optimal algorithm: predict using the set with larger mistake bound.
- In some cases, these can differ by a bit.

What if there is no perfect function?

Think of as h ∈ C as “experts” giving advice to you. Want to do nearly as well as best of them in hindsight.

These are called “regret bounds”: Show that our algorithm does nearly as well as best predictor in some class.

We’ll look at a strategy whose running time is O(|C|). So, only computationally efficient when C is small.

Using “expert” advice

Say we want to predict the stock market.
- We solicit n “experts” for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

<table>
<thead>
<tr>
<th>Exp 1</th>
<th>Exp 2</th>
<th>Exp 3</th>
<th>neighbor’s dog</th>
<th>truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>up</td>
<td>up</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>down</td>
<td>up</td>
<td>up</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Can we do nearly as well as best in hindsight?

[“expert”: someone with an opinion. Not necessarily someone who knows anything.]

Using “expert” advice

If one expert is perfect, can get ≤ lg(n) mistakes with halving alg.
But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:
- Iterated halving algorithm. Same as before, but once we’ve crossed off all the experts, restart from the beginning.
- Makes at most lg(n)[OPT+1] mistakes, where OPT is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we’ve "learned". Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn’t completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1
Predictions: U U U D We predict: U Truth: D
Weights: ½ ½ ½ 1

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we’ve made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%. So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

\[
\frac{1}{2}^m \leq n \frac{(3/4)^M}{m} \\
\frac{4}{3}^M \leq n^2 \frac{m}{2^m} \\
M \leq 2.4(m + \lg n)
\]
Randomized Weighted Majority

2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
• Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
• Also, multiply by 1-\epsilon rather than by 1/2.

M = expected # mistakes

\[M \leq 1.39m + 2 \ln n \]
\[M \leq 1.15m + 4 \ln n \]
\[M \leq 1.08m + 8 \ln n \]

Unlike most worst-case bounds, numbers are pretty good.

Analysis

• Say at time t we have fraction F_t of weight on experts that make mistake.
• So, we have probability F_t of making a mistake, and we remove an \epsilon F_t fraction of the total weight.

\[W_{\text{final}} = n(1-\epsilon F_1)(1-\epsilon F_2)... \]
\[\ln(W_{\text{final}}) = \ln(n) + \sum_{t}[\ln(1-\epsilon F_t)] \]
(\text{using } \ln(1-x) < -x)

\[\ln(n) - \epsilon M. \]
(\sum F_t = E[# mistakes] = M)

If best expert makes m mistakes, then

\[\ln(n) - \epsilon M > m \ln(1-\epsilon). \]

Now solve:

\[\ln(n) - \epsilon M > m \ln(1-\epsilon). \]

\[M \leq (1 + \epsilon)OPT + \frac{\ln(n)}{\epsilon}. \]

Summarizing

• M \leq (1 + \epsilon)OPT + \frac{\ln(n)}{\epsilon}, where OPT is the loss of best expert in hindsight.

• If run for T \geq \log(n) steps, and set \epsilon = \sqrt{\frac{\log(n)}{T}}, and use the fact that OPT \leq T, we get:

\[M \leq OPT + \sqrt{T} \log(n) + \sqrt{T} \log(n) \]

• Dividing both sides by T to get avg loss per round:

\[\frac{M}{T} \leq \frac{OPT}{T} + 2 \sqrt{\frac{\log(n)}{T}} \]

Regret term goes to 0 or better as T \to \infty = "no-regret" algorithm.

Extensions

• What if experts are actions? (rows in a matrix game, ways to drive to work,...)
• At each time t, each has a loss (cost) in {0,1}.
• Can still run the algorithm
 - Rather than viewing as "pick a prediction with prob proportional to its weight",
 - View as "pick an expert with probability proportional to its weight"
 - Alg pays expected cost \bar{p}_t \cdot c_t = F_t.
• Same analysis applies.
 Do nearly as well as best action in hindsight!

Extensions

• What if losses (costs) in [0,1]?
• Just modify alg update rule: \[w_i \leftarrow w_i(1 - \epsilon c_i). \]
• Fraction of wt removed from system is:
 \[(\sum_i w_i c_i) / (\sum_j w_j) = \epsilon \sum_i p_i c_i = \epsilon [our expected cost] \]
• Analysis very similar to case of (0,1).

RWM (multiplicative weights alg)

World - life - opponent

<table>
<thead>
<tr>
<th></th>
<th>c^1</th>
<th>c^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-\epsilon c_1^2)(1-\epsilon c_1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1-\epsilon c_2^2)(1-\epsilon c_2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1-\epsilon c_3^2)(1-\epsilon c_3)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(1-\epsilon c_n^2)(1-\epsilon c_n)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Scaling so costs in [0,1]

Guarantee: do nearly as well as fixed row in hindsight.