
10-806 Foundations of Machine Learning and Data Science

Homework # 5 Due: December 9, 2015

Groundrules:

• Your work will be graded on correctness, clarity, and conciseness. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get
significantly more partial credit if you clearly identify the gap(s) in your solution. It is
good practice to start any long solution with an informal (but accurate) proof summary that
describes the main idea.

• You may collaborate with others on this problem set and consult external sources. However,
you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. [40 pts] Distance and Disagreement.

(a) [20 pts] Prove that for any distribution D, the distance function d(h, h′) = PrD(h(x) 6=
h′(x)) satisfies triangle inequality.
Note that d is clearly symmetric, so this means it is a (semi)metric.

(b) [20 pts] Let C be the class of linear separators through the origin, and let D be the
uniform distribution over X = {x ∈ Rd : ||x|| ≤ 1}, i.e., over points in the unit ball in
Rd. Let h be the linear separator x1 ≥ 0. What is DIS(B(h, ε√

d
))? In other words,

describe what the region looks like or what points are in it.

(c) [10 pts extra credit] What approximately is Pr(DIS(B(h, ε√
d
)))?

2. [30 pts] Active Learning Lower Bound. Prove that active learning of intervals on the
line over the uniform distribution on [0, 1], needs Ω(1/ε) label requests. Specifically, give a
distribution over target functions such that for any active learning algorithm A that makes
less than c/ε label requests (for your choice of constant c > 0), if the target function is chosen
at random from the distribution over targets, then with probability at least 1/2, A outputs a
hypothesis of error ≥ ε. You may assume ε ≤ c′ for sufficiently small constant c′.

3. [30 pts] Another Active Learning Lower Bound. Assume that we are learning a linear
separator w∗ · x ≥ 0 and that the distribution is uniform over the surface of the unit sphere
in Rd. Show that Ω(d log(1/ε)) is a lower bound on the number of label requests needed by
any active learning algorithm to achieve error at most ε with probability ≥ 1/2. A fact you
may wish to use (you don’t need to prove this) is that for some constant c > 0, for any ε′ > 0,
it is possible to construct a set of ( c

ε′ )d vectors in Rd such that the angle between any two of
the vectors is at least ε′.

4. [20 pts Extra Credit] Class Conditional Queries. A class conditional query is a more
powerful form of active learning, where the algorithm specifies a subset S of the unlabeled
examples and a label ` and asks “is there any example of label ` in S? If so, give me one.”
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So, if S has size 1, then this is just like standard active learning (in the case of binary labels)
but this can be more powerful because you can use larger sets.

Give an example of a class C of functions that (in the realizable case) can be learned to
error ≤ ε with probability ≥ 1 − δ from O(1

ε log 1
δ ) unlabeled examples and just one class

conditional query, and yet, for some distribution on examples, would require Ω(1/ε) label
requests to learn for standard active learning.

5. [20 pts Extra Credit] Class Conditional Queries, contd. Show that any class C of VC-
dimension d can be learned to error ≤ ε with probability ≥ 1−δ from m = O(1

ε (d log 1
ε +log 1

δ ))
unlabeled examples and O(d log(m/d)) CCQs.
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