
10-806 Foundations of Machine Learning and Data Science

Homework # 4 Due: November 30, 2015

Groundrules:

• Your work will be graded on correctness, clarity, and conciseness. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get
significantly more partial credit if you clearly identify the gap(s) in your solution. It is
good practice to start any long solution with an informal (but accurate) proof summary that
describes the main idea.

• You may collaborate with others on this problem set and consult external sources. However,
you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. [33 pts] Boosting and Game Theory. In class, we discussed how the minimax theorem
can be used to argue why boosting should be possible in principle. Specifically, given a data
sample S and a finite class of hypotheses H, we created a matrix game with one row for each
hi ∈ H and one column for each xj ∈ S. Entry Mij = 1 if hi(xj) is correct and Mij = −1 if
hi(xj) is incorrect (these are payoffs to the row player). We then used the minimax theorem
to argue that if for any distribution D over columns there exists a row i with expected payoff
Ej∼D[Mij ] ≥ γ, then this means there must exist a distribution P over rows such that for
any column j the expected payoff Ei∼P [Mij ] ≥ γ.

(a) Even though the minimax theorem only applies to finite games, argue that this applies
to infinite classes H as well. Specifically, suppose H is an infinite class, and that for any
distribution D over S there exists h ∈ H such that Prj∼D[h(xj) 6= f(xj)] ≤ 1/2 − γ/2.
We want to argue that this implies there must exist a distribution P over H such that
for any xj ∈ S, Prh∼P [h(xj) 6= f(xj)] ≤ 1/2 − γ/2. Show how we can argue this by
reducing (or converting) it to the finite case.

(b) Use Hoeffding bounds to argue that not only is there some weighted vote over rows that
is correct on every xj ∈ S, but in fact there is a sparse combination, in which only a
multiset of O( 1

γ2 log |S|) hypotheses are combined via majority vote.

2. [33 pts] “Pruning” a Decision Tree Online via Sleeping Experts. Consider a decision
tree T with L leaves. A pruning of T is a new tree h in which one or more of the internal
nodes of T have been turned into leaves, labeled as “+” or “−”, and with all of their original
descendants removed (since they are now leaves). For instance, the very simple tree h in
which the root is a leaf labeled “+” would be a pruning of any tree T with L ≥ 2 leaves, as
would be the very simple tree h in which the root is a leaf labeled “−”.

Suppose we are handed a decision tree T and we believe that either it, or some pruning of
it, will be a good predictor on future data arriving online. One interesting way we can make
predictions is as follows. For each internal node v of T create two sleeping experts: one
that predicts positive on any example that reaches v and one that predicts negative on any

1



example that reaches v. Also, for each leaf v of T , create a sleeping expert that predicts the
same as v on any example that reaches v. (In all cases, the expert does not raise its hand if
the example does not reach v). So, the total number of sleeping experts is O(L).

(a) Say why any pruning h of T , and any assignment of {+,−} labels to the leaves of h,
corresponds to a subset of sleeping experts with the property that exactly one sleeping
expert in the subset makes a prediction on any given example.

(b) Prove that for any sequence S of examples, if we run the sleeping-experts algorithm
using ε =

√
` log L
|S| , then the expected error rate of the algorithm on S (the total number

of mistakes of the algorithm divided by |S|) will be at most errS(h`)+O(
√

` log L
|S| ), where

h` is the pruning of T with ` leaves having the lowest error on S.

(c) (10 pts Extra Credit.) The above algorithm requires knowing a good value of ` in
advance (to use in setting ε). Show how one can achieve a bound of the form:

min
`

[
errS(h`) + O(

√
` log L

|S|
)

]
,

perhaps by applying another round of combining expert advice.

3. [34 pts] Estimating frequency counts. Recall that in class we used the Count-Min sketch
to produce estimates of frequency counts such that for each element ai, our estimate F̂i

satisfies F̂i ≥ Fi, and with probability ≥ 1 − δ, also satisfies F̂i ≤ Fi + εm, where Fi is the
true number of occurences of ai in the stream.

Here is a different approach that uses a bit more space. What we will do is choose k =
O(1

ε log 1
ε ) random locations in the stream, i.e., k independent uniform random numbers

t1, . . . , tk ∈ {1, . . . ,m}. For each one, we record what we see there in the stream, and then
count all subsequent copies of that element. E.g., if t1 = 37 and we see a 3 there, we will
count all 3’s that we see from location 37 onward. This will be our estimate of the number
of 3’s in the stream. If multiple locations tj have 3’s in them, then our estimate F̂3 will just
be the largest of the counts, i.e., the count from the smallest such tj . If some element ai is
not seen in any of the locations tj then our estimate F̂i is zero.

(a) It is clear that our estimates F̂i satisfy F̂i ≤ Fi. Argue that with probability ≥ 1 − δ,
for all i we will have F̂s ≥ Fs − εm, so long as k ≥ 1

ε log 1
εδ .

(b) The above algorithm requires the ability to pick a random location in the stream. If we
know m ahead of time, this is easy. What if we don’t know m ahead of time? How can
we implement the algorithm in that case? (This part of the question should be fairly
easy given what was discussed in class).
For this problem you can think of k = 1 (since you will just be replicating this for each
counter).

2


