
10-806 Foundations of Machine Learning and Data Science

Homework # 2 Due: October 12, 2015

Groundrules:

• Your work will be graded on correctness, clarity, and conciseness. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get
significantly more partial credit if you clearly identify the gap(s) in your solution. It is
good practice to start any long solution with an informal (but accurate) proof summary that
describes the main idea.

• You may collaborate with others on this problem set and consult external sources. However,
you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. [20 pts] An Incorrect Proof. Explain the bug in the following attempt to prove a sample
complexity guarantee for the non-realizable case without dependence on the concept class C.

Let A be an algorithm that takes the training sample S and outputs the hypothesis hA ∈ C
of minimum empirical error. Let h∗ denote the h ∈ C of minimum true error.

Now, for any hypothesis h, let Bh denote the bad event that |errS(h)−errD(h)| > ε. We know
by Hoeffding bounds that for a sample S of size at least 1

2ε2
ln(4/δ), we have PrS(Bh) < δ/2.

So, simply plug in h = h∗ and we have PrS(Bh∗) < δ/2, and also plug in h = hA and we have
PrS(BhA

) < δ/2. So, with probability at least 1−δ, neither bad event occurs, and so we have

errD(hA) ≤ errS(hA) + ε ≤ errS(h∗) + ε ≤ errD(h∗) + 2ε

as desired, with a sample size that has no dependence on C.

2. [40 pts] VC-dimension of linear separators. Let LTFn denote the set of linear separators
(linear threshold functions) in Rn. That is, LTFn consists of all Boolean functions that can
be described as “f(~x) = positive iff a1x1 + . . .+anxn ≥ a0,” where a0, . . . , an are real-valued.

(a) Prove that VC-dim(LTFn) ≥ n+1 by presenting a set S of n+1 points in Rn such that
one can label S in all 2n+1 possible ways using linear separators (and show how one can
label S in any desired way.)

(b) The following is “Radon’s Theorem,” from the 1920’s. Note: the convex hull of a set of
points S is the set of all convex combinations of points in S; this is the set of all points
that can be written as

∑
xi∈S λixi, where each λi ≥ 0, and

∑
i λi = 1.

Theorem. Let S be a set of n + 2 points in Rn. Then S can be partitioned into two
(disjoint) subsets S1 and S2 whose convex hulls intersect.
Show that Radon’s Theorem implies that VC-dim(LTFn) ≤ n + 1.
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(c) Now prove Radon’s Theorem. We will need the following standard fact from linear
algebra. If x1, . . . , xn+1 are n + 1 points in Rn, then they are linearly dependent. That
is, there exist real values λ1, . . . , λn+1 not all zero such that λ1x1 + . . . + λn+1xn+1 = 0.
You may now prove Radon’s Theorem however you wish. However, as a suggested first
step, prove the following. For any set of n + 2 points x1, . . . , xn+2 in Rn, there exist
λ1, . . . , λn+2 not all zero such that

∑
i λixi = 0 and

∑
i λi = 0. (This is called affine

dependence.) Now, think about the lambdas...

Thus, combining these parts together, the VC-dimension of linear separators in Rn is n + 1.

3. [20 pts] Rademacher complexity. Consider 1-dimensional data (each example is a point
on the real line). For real-valued a, define the function fa(x) = 1 if x ≤ a and fa(x) = 0
otherwise. Let F = {fa}. Consider a set S of m distinct examples on the line. What is the
empirical Rademacher complexity R̂m(F) of F on S?

There are several ways to analyze this. If you want, you may use the following interesting
fact about gambling. Suppose at each time t = 1, 2, 3, . . . you bet $1 on a fair game (with
probability 1/2 you win $1 and with probability 1/2 you lose $1). After T total rounds, by
linearity of expectation, your expected total winnings is $0. However, if you look back and
imagine you had stopped at the best possible time in hindsight (the time t ≤ T at which your
total winnings were highest), the expected value of your winnings then is Θ(

√
T ); i.e., this is

the expected maximum, over all t ≤ T of your winnings by time t.

4. [20 pts] Sample Complexity Lower Bounds. Prove that any algorithm for learning a
concept class C with |C| ≥ 3 must use Ω(1

ε log 1
δ ) examples in the worst case to learn with

error parameter ε and confidence parameter δ.

Hint: as a first step, show there must exist two examples x1, x2 and two functions c1, c2 ∈ C
such that c1(x1) = c2(x1) but c1(x2) 6= c2(x2).1 Then prove that the distribution D that
places 1− 2ε probability on x1 and 2ε probability on x2 has the property that any algorithm
seeing o(1

ε log 1
δ ) examples would have probability at least δ of having error at least ε for at

least one of the two target functions c1, c2.

5. [20 pts extra credit] VC-dimension of MAJ(H). Show that if hypothesis class H has
VC-dimension d, then the class MAJk(H) has VC-dimension O(kd log kd). Here, we define
MAJk(H) to be the class of functions achievable by taking majority votes over k functions in
H. Note that we are only asking for an upper bound here, not a lower bound.

6. [20 pts extra credit] VC-dimension of boxes. What is the VC-dimension V of the class H
of axis-parallel boxes in Rd? That is, H = {ha,b : a,b ∈ Rd} where ha,b(x) = 1 if ai ≤ xi ≤ bi

for all i = 1, . . . , d and ha,b(x) = −1 otherwise.

(a) Prove that the VC-dimension is at least your chosen V by giving a set of V points that
is shattered by the class (and explaining why it is shattered).

(b) Prove that the VC-dimension is at most your chosen V by proving that no set of V + 1
points can be shattered.

1This will use the fact that |C| ≥ 3. If C had only two functions with one the negation of the other, then this
would not be the case and indeed one could learn perfectly from just a single example.
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