
10-806 Foundations of Machine Learning and Data Science

Homework # 1 Due: September 28, 2015

Groundrules:

• Your work will be graded on correctness, clarity, and conciseness. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get
significantly more partial credit if you clearly identify the gap(s) in your solution. It is
good practice to start any long solution with an informal (but accurate) proof summary that
describes the main idea.

• You may collaborate with others on this problem set and consult external sources. However,
you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. [20 pts] Expressivity of Decision Lists. Read the notes for Lecture 2, which describe the
class of decision lists. Here we examine their expressive power.

(a) Explain why any conjunction (like x1 ∧ x̄2 ∧ x3) can be written as a decision list.

(b) Explain why any disjunction (like x1 ∨ x̄2 ∨ x3) can be written as a decision list.

(c) Give an example of a decision list that is not a conjunction or a disjunction.

2. [20 pts] Learning Decision Lists. Give a PAC algorithm for learning the class of decision
lists. This is in the notes, but we want you to describe it and then explain why it is correct
in your own words. Give a bound on the sample size and running time needed for finding a
rule of error at most ε with probability at least 1− δ.

3. [20 pts] Learning k-Decision Lists. A “k-decision list” is just like a regular decision list,
except the conditions `i are conjunctions of up to k literals, rather than just being single
literals. For example, the function “if x1 ∧ x̄2 then positive, else if x2 ∧ x3 then negative, else
positive” is a 2-decision list. So a regular decision list is a 1-decision list.

Give a PAC algorithm for learning k-decision lists whose running time and sample size is
polynomial in nk (and so is polynomial in n when k is a constant). Hint: do it by reduction.

4. [40 pts] Expressivity of Decision Lists, contd. Show that decisions lists are a special
case of linear threshold functions. That is, any function that can be expressed as a decision
list can also be expressed as a linear threshold function “f(x) = + iff w1x1 + . . . wnxn ≥ w0”.

5. [extra credit: 20 pts] Decision Tree Rank. The rank of a decision tree is defined as follows.
If the tree is a single leaf then the rank is 0. Otherwise, let rL and rR be the ranks of the left
and right subtrees of the root, respectively. If rL = rR then the rank of the tree is rL + 1.
Otherwise, the rank is the maximum of rL and rR.

Prove that a decision tree with s leaves has rank at most log2(s).

6. [extra credit: 20 pts] Expressivity of Decision Lists, contd., contd. Show that the class
of rank-k decision trees is a subclass of k-decision lists.
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Thus, by Problem 3, we conclude that we can learn rank-k decision trees using the hypothesis
class of rank-k decision lists in time polynomial in nk, and using Problem 5 we can learn
arbitrary decision trees of size s in time and number of examples nO(log s). (So this is “almost”
a PAC-learning algorithm for decision trees.)
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