10-806 Foundations of Machine Learning and Data Science

Take-home Final Time allotted: 24 hours

Groundrules:

- You should solve three of the six problems below.
- You are not allowed collaborate with others on this exam.
- You are allowed to consult the lecture notes, but no other external sources.
- You must submit your exam via Autolab.

1. PAC learning.

- (a) A k-DNF formula over $\{0,1\}^n$ is a disjunction (an OR) of "terms," where each term is an AND of up to k literals (a literal is either a variable or its negation). Give a polynomial-time PAC-learning algorithm for learning the class C_{3DNF} of 3-DNF formulas in the realizable case. Also give an explicit sample complexity bound (you may use O() notation).
- (b) A union of 3 intervals over the real line is a Boolean function $h_{[a_1,b_1],[a_2,b_2],[a_3,b_3]}$, where x is positive for $h_{[a_1,b_1],[a_2,b_2],[a_3,b_3]}$ if $a_1 \leq x \leq b_1$ or $a_2 \leq x \leq b_2$ or $a_3 \leq x \leq b_3$ and x is negative otherwise. Assume the intervals are disjoint. Give a polynomial-time PAC learning algorithm for learning the class C_{3INT} of unions of 3 intervals in the realizable case. Also give an explicit sample complexity bound (you may use O() notation).

2. VC-dimension and Rademacher Complexity.

- (a) Explain the importance of VC-dimension in machine learning.
- (b) Explain why the VC-dimension of any finite class \mathcal{C} is never greater than $\log_2 |\mathcal{C}|$.
- (c) Give an example of an infinite concept class \mathcal{C} for which Sauer's lemma is tight. That is, $\mathcal{C}[m] = \sum_{i=0}^{d} {m \choose i}$ where d is the VC-dimension of the class.
- (d) Explain when and why generalization bounds based on the Rademacher complexity can be tighter and better than those based on VC-dimension.
- 3. **VC-dimension of specific classes.** Consider the problem of learning the class of axis-parallel boxes with the origin as a corner. Specifically, let the instance space $X = \mathbb{R}^n$, and let \mathbf{Box}_n denote the class of axis-parallel boxes bounded between the origin and some point $a = (a_1, \ldots, a_n)$ in the positive orthant. That is, a target function c_a is specified by a point $a \in \mathbb{R}^n_+$, and an example x is positive iff $0 \le x_i \le a_i$ for all i.
 - (a) What is the VC-dimension of this class? Argue both upper and lower bounds.
 - (b) Give a number of examples that is sufficient to ensure that with probability $\geq 1 \delta$, all $h \in \mathbf{Box}_n$ satisfy $|\mathrm{err}_D(h) \mathrm{err}_S(h)| \leq \epsilon$. You may use O() notation.

4. **Online learning.** In lecture we saw that for the setting of prediction with expert advice, the expected number of mistakes M of the Randomized Weighted Majority (RWM) algorithm satisfies:

$$M \leq \min_{i} \left[\frac{-m_{i} \ln(1-\epsilon) + \ln n}{\epsilon} \right],$$

where m_i is the number of mistakes of expert i and n is the total number of experts. Now, suppose that we have some prior belief p over the experts about which we think is likely to be best. Show that if we initialize the weight of each expert i to p_i (rather than to 1) and then run RWM, the expected number of mistakes M will satisfy:

$$M \leq \min_{i} \left[\frac{-m_{i} \ln(1-\epsilon) + \ln(1/p_{i})}{\epsilon} \right].$$

5. Active learning.

- (a) Let C_{circ} be the class of origin-centered circles in \mathbb{R}^2 . That is, $C_{circ} = \{h_r : r \geq 0\}$ where we define $h_r(x) = 1$ if $||x|| \leq r$ and $h_r(x) = -1$ if ||x|| > r. Show that using active learning, C_{circ} can be learned to error ϵ with probability $\geq 1 \delta$ from polynomially many unlabeled examples and just $O(\log 1/\epsilon)$ label requests. Hint: think about thresholds.
- (b) Now, let D be the uniform distribution over $\{x \in \mathbb{R}^2 : ||x|| = 1\}$, i.e., the unit circle in \mathbb{R}^2 . Let \mathcal{C}_{ltf} be the class of linear separators (not necessarily going through the origin). Show an $\Omega(1/\epsilon)$ lower bound on the number of label requests needed for active learning of \mathcal{C}_{ltf} with respect to this distribution D. Hint: think about intervals.
- 6. Equivalence queries. In the equivalence query model of learning, we are given a concept class \mathcal{C} and the goal of the learning algorithm is to exactly recover¹ the target function c^* . At each step, the learning algorithm can propose a hypothesis h (which need not belong to \mathcal{C}) and then is given an example x such that $h(x) \neq c^*(x)$ if such x exists.
 - (a) Let C_k be the class of Boolean functions over $\{0,1\}^n$ that have at most k positive examples. Show how this class can be learned in the equivalence query model using at most k equivalence queries.
 - (b) Consider the class of monotone conjunctions over $\{0,1\}^n$. Show how this class can be learned in the equivalence query model using at most n equivalence queries.
 - (c) Consider the class of decision lists over $\{0,1\}^n$. Show how this class can be learned in the equivalence query model using $O(n^2)$ equivalence queries.

¹ "Exactly recover" means to produce a function h such that for all x in the domain we have $h(x) = c^*(x)$. It does not require the functions to look syntactically the same.