
10-806 Foundations of Machine Learning and Data Science

Take-home Final Time allotted: 24 hours

Groundrules:

• You should solve three of the six problems below.

• You are not allowed collaborate with others on this exam.

• You are allowed to consult the lecture notes, but no other external sources.

• You must submit your exam via Autolab.

1. PAC learning.

(a) A k-DNF formula over {0, 1}n is a disjunction (an OR) of “terms,” where each term
is an AND of up to k literals (a literal is either a variable or its negation). Give a
polynomial-time PAC-learning algorithm for learning the class C3DNF of 3-DNF formulas
in the realizable case. Also give an explicit sample complexity bound (you may use O()
notation).

(b) A union of 3 intervals over the real line is a Boolean function h[a1,b1],[a2,b2],[a3,b3], where
x is positive for h[a1,b1],[a2,b2],[a3,b3] if a1 ≤ x ≤ b1 or a2 ≤ x ≤ b2 or a3 ≤ x ≤ b3 and x
is negative otherwise. Assume the intervals are disjoint. Give a polynomial-time PAC
learning algorithm for learning the class C3INT of unions of 3 intervals in the realizable
case. Also give an explicit sample complexity bound (you may use O() notation).

2. VC-dimension and Rademacher Complexity.

(a) Explain the importance of VC-dimension in machine learning.

(b) Explain why the VC-dimension of any finite class C is never greater than log2 |C|.
(c) Give an example of an infinite concept class C for which Sauer’s lemma is tight. That

is, C[m] =
∑d

i=0

(
m
i

)
where d is the VC-dimension of the class.

(d) Explain when and why generalization bounds based on the Rademacher complexity can
be tighter and better than those based on VC-dimension.

3. VC-dimension of specific classes. Consider the problem of learning the class of axis-
parallel boxes with the origin as a corner. Specifically, let the instance space X = Rn, and
let Boxn denote the class of axis-parallel boxes bounded between the origin and some point
a = (a1, . . . , an) in the positive orthant. That is, a target function ca is specified by a point
a ∈ Rn

+, and an example x is positive iff 0 ≤ xi ≤ ai for all i.

(a) What is the VC-dimension of this class? Argue both upper and lower bounds.

(b) Give a number of examples that is sufficient to ensure that with probability ≥ 1− δ, all
h ∈ Boxn satisfy |errD(h)− errS(h)| ≤ ε. You may use O() notation.
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4. Online learning. In lecture we saw that for the setting of prediction with expert advice, the
expected number of mistakes M of the Randomized Weighted Majority (RWM) algorithm
satisfies:

M ≤ mini

[
−mi ln(1−ε)+ln n

ε

]
,

where mi is the number of mistakes of expert i and n is the total number of experts. Now,
suppose that we have some prior belief p over the experts about which we think is likely to
be best. Show that if we initialize the weight of each expert i to pi (rather than to 1) and
then run RWM, the expected number of mistakes M will satisfy:

M ≤ mini

[
−mi ln(1−ε)+ln(1/pi)

ε

]
.

5. Active learning.

(a) Let Ccirc be the class of origin-centered circles in R2. That is, Ccirc = {hr : r ≥ 0} where
we define hr(x) = 1 if ||x|| ≤ r and hr(x) = −1 if ||x|| > r. Show that using active
learning, Ccirc can be learned to error ε with probability ≥ 1−δ from polynomially many
unlabeled examples and just O(log 1/ε) label requests. Hint: think about thresholds.

(b) Now, let D be the uniform distribution over {x ∈ R2 : ||x|| = 1}, i.e., the unit circle in
R2. Let Cltf be the class of linear separators (not necessarily going through the origin).
Show an Ω(1/ε) lower bound on the number of label requests needed for active learning
of Cltf with respect to this distribution D. Hint: think about intervals.

6. Equivalence queries. In the equivalence query model of learning, we are given a concept
class C and the goal of the learning algorithm is to exactly recover1 the target function c∗. At
each step, the learning algorithm can propose a hypothesis h (which need not belong to C)
and then is given an example x such that h(x) 6= c∗(x) if such x exists.

(a) Let Ck be the class of Boolean functions over {0, 1}n that have at most k positive exam-
ples. Show how this class can be learned in the equivalence query model using at most
k equivalence queries.

(b) Consider the class of monotone conjunctions over {0, 1}n. Show how this class can be
learned in the equivalence query model using at most n equivalence queries.

(c) Consider the class of decision lists over {0, 1}n. Show how this class can be learned in
the equivalence query model using O(n2) equivalence queries.

1“Exactly recover” means to produce a function h such that for all x in the domain we have h(x) = c∗(x). It does
not require the functions to look syntactically the same.
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