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Machine Learning is Changing the World
“Machine learning is the hot new thing"
(John Hennessy, President, Stanford) ’ -

o
ﬂ "A breakthrough in machine learning would be worth
m ten Microsofts” (Bill Gates, Microsoft)

“Web rankings today are mostly a matter of machine |
learning” (Prabhakar Raghavan, VP Engineering at Google) I
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The World is Changing Machine Learning

New applications
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The World is Changing Machine Learning
New approaches. E.g.,

* Semisupervised learning  «  Multi-task/transfer learning

* Interactive learning +  Deep Learning

* Distributed learning * Never ending learning

Many competing resources & constraints. E.g.,

* Computational efficiency * Statistical efficiency
(noise tolerant algos) . Communication

*  Human labeling effort * Privacy/Incentives




The World is Changing Machine Learning

New approaches. E.g.,

* Semi-supervised learning  +  Multi-task/transfer learning

* Interactive learning +  Deep Learning

* Distributed learning * Never ending learning

Key challenges: how to best utilize the available
resources most effectively in these new settings.

Distributed Learning

Data inherently distributed: massive amounts of
data distributed across multiple locations.

Distributed Learning

Modern applications: massive amounts of data
distributed across multiple locations.

Eg. =
« video data 1

e scientific data

Key new resource communication.

Distributed Learning

Data distributed across multiple locations.

E.g., medical data




Distributed Learning

* Data distributed across multiple locations.
* Each has a piece of the overall data pie. %
* To learn over the combined D, must communicate.

» Communication is expensive.

President Obama cites Communication-Avoiding Algorithms in
FY 2012 Department of Energy Budget Request to Congress

Important question: how much communication?

Plus, privacy & incentives.

Disfr‘ibu"‘-ed PAC Learning .[zBulcan-BIum—Fine—Mcnsour, COLT 2012]
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+ X - instance space. s players.
* Player i can sample from D;, samples labeled by c*. %{
* Goal: find h that approximates c* w.r.t. D=1/s (D; + ... + Dg)

Goal: learn good h over D, as little communication as possible

Efficient algos for problems when centralized algos exist.
Main Results
* Broadly applicable communication efficient distr. boosting.

+ Tight results for interesting cases [intersection closed,
parity fns, linear separators over “nice” distrib].

* Privacy guarantees.

Interesting special case to think about

s=2. One has the positives and one has the negatives.
* How much communication, e.g., for linear separators?

Player 1 Player 2
+ +

Generic Results

Baseline d/e log(1/€) examples, 1 round of communication

» Each player sends d/(es) log(1/¢) examples to player 1.
* Player 1 finds consistent h € C, whp error < e wrt D

Distributed Boosting ® ol

Only O(d log 1/¢) examples of communication




Communication Aware Distributed Boosting

Baseline
d/e log(1/¢) examples, 1 round of communication

+ Each player sends d/(es) log(1/¢) examples to player 1.
* Player 1 finds consistent h € C, whp error < e wrt D
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Distributed Boosting
Only O(d log 1/¢) examples of communication!

Recap of Adaboost

+ Boosting: algorithmic technique for turning a weak

learning algorithm into a strong (PAC) learning one.

Recap of Adaboost

+ Boosting: turns a weak algo into a strong (PAC) learner.

Input: S={(x1, 1), -.(Xm, Ym)}: weak learner A

Weak learning algorithm A.

Fort=12, .. T
« Construct D; on {xq, ..., Xm}

+ Run A on D; producing h; _ _
+ Output Hfpa = sgn( X o hy)

Recap of Adaboost

Weak learning algorithm A.

For t=12, .. T

« Construct D, on {xq, .., Xy}
Run A on D; producing h;

D, uniform oh {xq, ..., Xy}
. . . D) =20 ola} jfy =
Dy, increases weight on x; if hy ~ Den® =7 e ifyi=hea)

m;orrec‘r on x; ; decreases it on Dysa () = ";_“) elad if y; # he(x;)
x; if hy correct. ¢

Key points:
D41 (x;) depends on h; (x;), ..., he(x;) and normalization factor
that can be communicated efficiently.

To achieve weak learning it suffices to use O(d) examples.




Distributed Adaboost

+ Each player i has a sample S; from D;.

For t+=1,2, .. T

S B

+ Each player sends player 1, enough V4 T
data to produce weak hyp h,.

[For =1, O(d/s) examples each.] hy hy

a9
- Player 1 broadcasts h; to other players. g
|~

Distributed Adaboost

+ Each player i has a sample S; from D;.

Fort=12, .., T @ &
- Each player sends player 1, enough 2D v
data to produce weak hyp h;.
[For t=1, O(d/s) examples each.] My o W41
+ Player 1 broadcasts h; to other players.  h
* Each player i reweights its own I'*!’m
distribution on S; using h; and sends )

the sum of its weights w;, to player 1.

+ Player 1 determines the #of samples to

request from each i [samples O(d) times from the
multinomial given by w;¢/W;].

Distributed Adaboost

Can learn any class € with O(log(1/¢)) rounds using O(d)
examples + O(s log d) bits per round.

[efficient if can efficiently weak-learn from O(d) examples]
Proof:

+ As in Adaboost, O(log 1/€) rounds to achieve error e.

» Per round: O(d) examples, O(s log d) extra bits
for weights, 1 hypothesis.

Dependence on 1/¢, Agnostic learning
Distributed implementation of Robust halving (galcan-Harneke'12).
- error O(OPT)+e using only O(s log|C| log(1/€)) examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting (access to
agnostic weak learner). [Tsechen-Balcan-Chau15]




Betfter results for special cases

Intersection-closed when fns can +
be described compactly . -k +]

C is intersection-closed, then C can be learned in one round
and k hypotheses of total communication.
Algorithm:

Each idraws S; of size O(d/¢ log(1/¢)), finds smallest h; in C
consistent with S; and sends h; to player 1.

* Player 1 computes smallest h s.t. h; C h for all i.

Key point:
h;, h never make mistakes on negatives, so errp, (h) < errp, (h;) <e.

Betfter results for special cases

E.g., conjunctions over {01} [f(x) = X,X5XgXy5 ]

Only O(k) examples sent, O(kd) bits.

G . . 1101111011010111
Each entity intersects its positives. ~ — T

1111110111001110
Sends to player 1. 1100110011001111
Player 1 intersects & broadcasts. 1100110011000110

[Generic methods O(d) examples, or O(d?) bits total.]

Interesting class: parity functions
« s=2,X=1{0,1}¢,C= parity fns, f(x) = x;,XOR x;, .. XORx;
Generic methods: O(d) examples, O(d?) bits.
Classic CC lower bound: Q(d?) bits LB for proper learning.

Improperly learn C with O(d) bits of communication!

Key points:

* Can properly PAC-learn C
[Given dataset S of size O(d/e), just solve the linear system]

s— "), —hec

+ Can non-properly learn C in reliable-useful Q%/ f(x)
manner [RS'88] X— @//\ »

[if x in subspace spanned by S, predict accordingly, else say "?"]

Interesting class: parity functions
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Improperly learn C with O(d) bits of communication!

Algorithm:

* Player i properly PAC-learns over D; to get parity h.. Also
improperly R-U learns to get rule g;. Sends h; to player j.

* Player i uses rule R;: "if g; predicts, use it else use h;*

Use my reliable
rule first, else

Key point: low error under D; because h; has low error under D; and
since g; never makes a mistake putting it in front does not hurt.




Distributed PAC learning: Summary

First time consider communication as a fundamental
resource.

+ Broadly applicable communication efficient distriourea
boosting.

+ Improved bounds for special classes (intersection-closed,
parity fns, and linear separators over nice distributions).
* Analysis of privacy guarantees achievable.

+ Lots of follow-up work analyzing communication aspects in ML.

[Zhang, Duchi,Jordan, Wainwright NIPS 13], [Shamir NIPS 14],
[6arg Nguyen'NIPS 14], [Kannan,Vempala,Woodruff, COLT14], ...

Privacy
Natural also to consider privacy in this setting.

+ Privacy for individual data items (using usual notion of
differential privacy considered in the literature).

* Privacy for the data holders / players (using a notion of
distributional privacy).

Q: What is the effect on communication?

Differential Privacy

Differential privacy: want each player i's messages not to
reveal information about individual data items in S;.

For any x € S;, prob of output sequence o s
changes by only a little if modify x to any x'. i

Vo, PrA(S o) Pr(A(S xoxX)z0) € 1+

- Substantial literature on how to achieve - e.g., any Stat.
Query algorithm can be made to satisfy Diff. Privacy.

+ So, if protocols can be implemented s.t. each player
interacts with own data via SQs, then no increase in
communication.

Conjunctions, decision lists, linear separators, ...

Distributed Clustering

[Balcan-Ehrlich-Liang, NIPS 2013]
[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]




Distributed Clustering igaican-Enriich-Liang, NIPS 2013

k-median: find center pts cy, ¢, ..., ¢, To minimize X, min; d(x,c;)

k-means: find center pts ¢y, c;, ..., ¢, to minimize X, min; d2(.

y
¢, G

¢ Dataset S distributed across s locations. %

Distributed Clustering

 Each has a piece of the overall data pie.

Goal: cluster the data, as little communication as possible

Distributed Clustering tgaican-Enriich-Liang, NIPS 2013

* Data distributed across s locations. h("

+ Each has a piece of the overall data pie. iﬁ :
Goal: cluster the data, as little communication as possible

Key idea: use coresets, short summaries capturing relevant
info w.r.t. all clusterings.

* By combining local coresets, get a global coreset; the size
goes up multiplicatively by s.

* We show a two round procedure with communication only
the true size of a global coreset of dataset S.

Coresets

Def: An e-coreset for a set of pts S is a set of points S and
weights w: S - R s.t. for any sets of centers c:

(1 = ©)cost(S, €) < ¥ cswpcost(p, €) < (1 + €)cost(S, ©)

Centralized Coresets of size 0(kd/e?) [Feldman-Langberg1i]

1. Find a constant factor approx. B, add its centers to coreset
2. Sample O(kd/€?) pts according to their contribution to the
cost of that approximate clustering B. Add them in too.

Key idea (proof reinterpreted):
Py .o
« Can view B as rough coreset, with b € B q i)
weighted by size of Voronoi cell. WP
+ If p has closest pt b, € B, then for any c
center ¢, |cost(p,c) — cost(by,c)| < |lp — byl

by triangle inequality. ot e
e. .0,
* So, penalty f(p) = cost(p, c) — cost(by, c) for p * LN
satisfies f(p) € [—cost(p,by), cost(p, by)]. C. o
°* . .

* Motivates sampling according to cost(p, by,).




Distributed Clustering

Key fact: §; is coreset for S;, then U;S; is coreset for U;S;.

1. Each player finds coreset of i) 5
size 0(kd/€?) on their own S.U' ;
. . 1 2
data using centralized method.
€3
2. Then they all send local V

coresets to the center.

For s players, total communication is O(skd/e?).

?

2%
Can we do better? 9 )

Distributed Coresets [Balcan-Ehrlich-Liang, NIPS 2013]

Key idea: in distributed case, show how to do this using only
local constant factor approx.

1. Each player i, finds a local constant
factor approx. B; and sends cost(B;, ;)
and the centers to the center.
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2. Center samples n = O(kd/€®) times . [eae) %
n=n, + -+ ng from multinomial given V
by these costs. Sends n; to player i. " Iﬁ
3. Each player i sends n; points from P @
sampled according to their
contribution to the local approx. ¢

For s players, total communication is only 0 (:—f + sk).

Distributed Clustering teacan-Enrlich-Liang, NI

k-means: find center pts ¢y, c;, ..., ¢, to minimize X, min; d;(%jc,)
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Color Histogram, k=10
68040 points in R3?

[the color features extracted
from an image collection]

YearPredictionMSD, k=50
515345 points in R%°

[the timbre audio features from a music
collection]

Open questions (Learning and Clustering)

Efficient algorithms in noisy settings:; handle failures, delays.

Even better dependence on 1/¢ for communication
efficiency for clustering via boosting style ideas.

Can use distributed dimensionality reduction to
reduce dependence on d.  (Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

More refined trade-offs between communication complexity,
computational complexity, and sample complexity.




