
1

Distributed Machine Learning

Maria-Florina Balcan

12/09/2015

Machine Learning is Changing the World

“A breakthrough in machine learning would be worth
ten Microsofts” (Bill Gates, Microsoft)

“Machine learning is the hot new thing”
(John Hennessy, President, Stanford)

“Web rankings today are mostly a matter of machine
learning” (Prabhakar Raghavan, VP Engineering at Google)

The World is Changing Machine Learning

New applications Explosion of data

The World is Changing Machine Learning

Many competing resources & constraints. E.g.,

• Computational efficiency
(noise tolerant algos) • Communication

• Human labeling effort

• Statistical efficiency

• Privacy/Incentives

New approaches. E.g.,

• Semi-supervised learning

• Distributed learning

• Interactive learning

• Multi-task/transfer learning

• Never ending learning

• Deep Learning

2

The World is Changing Machine Learning
New approaches. E.g.,

• Semi-supervised learning

• Distributed learning

• Interactive learning

• Multi-task/transfer learning

• Never ending learning

• Deep Learning

A2

χ

Key challenges: how to best utilize the available
resources most effectively in these new settings.

Data inherently distributed: massive amounts of
data distributed across multiple locations.

Distributed Learning

• scientific data

Key new resource communication.

• video data
E.g.,

Modern applications: massive amounts of data
distributed across multiple locations.

Distributed Learning Distributed Learning

E.g., medical data

Data distributed across multiple locations.

3

• Data distributed across multiple locations.
• Each has a piece of the overall data pie.

Important question: how much communication?
Plus, privacy & incentives.

• To learn over the combined D, must communicate.

Distributed Learning

• Communication is expensive.
President Obama cites Communication-Avoiding Algorithms in
FY 2012 Department of Energy Budget Request to Congress

Distributed PAC Learning

Goal: learn good h over D, as little communication as possible

• X – instance space. s players.
• Player i can sample from Di, samples labeled by c*.
• Goal: find h that approximates c* w.r.t. D=1/s (Dଵ + … + Dୱ)

[Balcan-Blum-Fine-Mansour, COLT 2012]
Runner UP Best Paper

• Tight results for interesting cases [intersection closed,
parity fns, linear separators over “nice” distrib].

• Broadly applicable communication efficient distr. boosting.
Main Results

• Privacy guarantees.

Efficient algos for problems when centralized algos exist.

Interesting special case to think about
s=2. One has the positives and one has the negatives.
• How much communication, e.g., for linear separators?

Player 1 Player 2

+
++

+
+

++

+

- -
-

-

- -
-

-- -
-

-

- -
-

-

+
++

+
+

++

+

Generic Results

• Each player sends d/(²s) log(1/²) examples to player 1.
• Player 1 finds consistent h ∈ C, whp error ≤ ² wrt D

d/² log(1/²) examples, 1 round of communicationBaseline

Distributed Boosting
Only O(d log 1/²) examples of communication

4

Communication Aware Distributed Boosting

D1 D2 … Ds

• Each player sends d/(²s) log(1/²) examples to player 1.
• Player 1 finds consistent h ∈ C, whp error ≤ ² wrt D

Baseline
d/² log(1/²) examples, 1 round of communication

Only O(d log 1/²) examples of communication!
Distributed Boosting

Recap of Adaboost
• Boosting: algorithmic technique for turning a weak

learning algorithm into a strong (PAC) learning one.

Recap of Adaboost

• For t=1,2, … ,T
• Construct D୲ on {xଵ, …, x୫}

• Run A on D୲ producing h୲

• Weak learning algorithm A.

+
++

+
+

++

+

- -
-

-

- -
-

-

h୲

• Boosting: turns a weak algo into a strong (PAC) learner.

• Output H୤୧୬ୟ୪ ൌ sgn(∑ α୲ 	h୲)

Input: S={(xଵ, ,ଵ), …,(x୫ݕ ;{(୫ݕ weak learner A

Recap of Adaboost

• For t=1,2, … ,T
• Construct ۲ܜ on {ܠ૚, …, ࢞ܕ}
• Run A on D୲ producing h୲

• Dଵ uniform on {xଵ, …, x୫}

• D୲ାଵ increases weight on x୧	if h୲
incorrect on x୧ ; decreases it on
x୧	if	h୲	 correct.

• Weak learning algorithm A.

Key points:

+
++

+
+

++

+

- -
-

-

- -
-

-

h୲ିଵ

• D୲ାଵሺx୧ሻ depends on hଵሺx୧ሻ, … , h୲ሺx୧ሻ and normalization factor
that can be communicated efficiently.

• To achieve weak learning it suffices to use O(d) examples.

௧ାଵܦ ݅ ൌ
஽೟ ௜

௓೟
	e ିఈ೟ 		 if	ݕ௜ ൌ ݄௧ ௜ݔ

௧ାଵܦ ݅ ൌ
஽೟ ௜

௓೟
	e ఈ೟ 		 if	ݕ௜ ് ݄௧ ௜ݔ

5

Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample S୧ from D୧.

• Player 1 broadcasts h୲ to other players.

• Each player sends player 1, enough
data to produce weak hyp h୲.
[For t=1, O(d/s) examples each.]

S1 S2

htht

ht

Ss

ht

Distributed Adaboost

• For t=1,2, … ,T

• Each player i has a sample S୧ from D୧.

• Player 1 broadcasts h୲ to other players.

• Each player sends player 1, enough
data to produce weak hyp h୲.
[For t=1, O(d/s) examples each.]

S1 S2

htht

ht

Ss

ht• Each player i reweights its own
distribution on S୧ using h୲ and sends
the sum of its weights w୧,୲ to player 1.

w1,t w2,t

ws,t

• Player 1 determines the #of samples to
request from each i [samples O(d) times from the
multinomial given by w୧,୲/W୲].

n2,t+1

ns,t+1

n1,t+1

Distributed Adaboost

Can learn any class C with O(log(1/²)) rounds using O(d)
examples + O(s log d) bits per round.

• Per round: O(d) examples, O(s log d) extra bits
for weights, 1 hypothesis.

• As in Adaboost, O(log 1/²) rounds to achieve error ߳.

[efficient if can efficiently weak-learn from O(d) examples]

Proof:

Dependence on 1/², Agnostic learning
Distributed implementation of Robust halving [Balcan-Hanneke’12].

D1 D2 … Ds

• error O(OPT)+߳ using only O(s log|C| log(1/²)) examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting (access to
agnostic weak learner). [TseChen-Balcan-Chau’15]

6

Better results for special cases

+
++

+
- -

-
-

- -
-

-

C is intersection-closed, then C can be learned in one round
and k hypotheses of total communication.

• Each i draws Si of size O(d/² log(1/²)), finds smallest hi in C
consistent with Si and sends hi to player 1.

Intersection-closed when fns can
be described compactly .

Algorithm:

h୧, h never make mistakes on negatives, so errୈ౟ h ൑ errୈ౟ h୧ ൑ ϵ.
Key point:

• Player 1 computes smallest h s.t. hi ⊆ h for all i.

E.g., conjunctions over {0,1}d [f(x) = x2x5x9x15]

Better results for special cases

[Generic methods O(d) examples, or O(d2) bits total.]

• Each entity intersects its positives.
• Sends to player 1.
• Player 1 intersects & broadcasts.

• Only O(k) examples sent, O(kd) bits.
1101111011010111
1111110111001110
1100110011001111
1100110011000110

Interesting class: parity functions

• Classic CC lower bound: Ω(d2) bits LB for proper learning.

• s ൌ 2, X ൌ 0,1 ୢ, C = parity fns, f x ൌ x୧భXOR		x୧మ … 	XOR	x୧ౢ

Improperly learn C with O(d) bits of communication!

• Can properly PAC-learn C.
[Given dataset S of size O(d/²), just solve the linear system]

• Can non-properly learn C in reliable-useful
manner [RS’88]

Key points:
S h ∈ C

S

x
f(x)

??
[if x in subspace spanned by S, predict accordingly, else say “?”]

• Generic methods: O(d) examples, O(dଶ) bits.

Interesting class: parity functions

• Player i properly PAC-learns over Di to get parity hi. Also
improperly R-U learns to get rule gi. Sends hi to player j.

• Player i uses rule R୧: “if gi predicts, use it; else use hj“

Algorithm:

Improperly learn C with O(d) bits of communication!

hi

hj

gi gj

Use my reliable
rule first, else
other guy’s rule

Use my reliable
rule first, else
other guy’s rule

Key point: low error under D୨ because h୨ has low error under D୨ and
since g୧ never makes a mistake putting it in front does not hurt.

7

Distributed PAC learning: Summary
• First time consider communication as a fundamental

resource.

• Broadly applicable communication efficient distributed
boosting.

• Improved bounds for special classes (intersection-closed,
parity fns, and linear separators over nice distributions).

• Analysis of privacy guarantees achievable.

• Lots of follow-up work analyzing communication aspects in ML.
[Zhang, Duchi,Jordan, Wainwright NIPS 13], [Shamir NIPS 14],
[Garg Nguyen’NIPS 14], [Kannan,Vempala,Woodruff, COLT’14], …

Privacy
Natural also to consider privacy in this setting.
• Privacy for individual data items (using usual notion of

differential privacy considered in the literature).
• Privacy for the data holders / players (using a notion of

distributional privacy).

Q: What is the effect on communication?

Conjunctions, decision lists, linear separators, …

Differential Privacy
Differential privacy: want each player i’s messages not to
reveal information about individual data items in Si.

• For any x ∈ Si, prob of output sequence σ
changes by only a little if modify x to any x’.

∀σ, Pr(A(Si)=σ)/Pr(A(Si-x+x’)=σ) ∈ 1 ± ²

Si

• Substantial literature on how to achieve - e.g., any Stat.
Query algorithm can be made to satisfy Diff. Privacy.

• So, if protocols can be implemented s.t. each player
interacts with own data via SQs, then no increase in
communication.

Distributed Clustering
[Balcan-Ehrlich-Liang, NIPS 2013]

zx
y

c1 c2

s c3

[Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

8

k-median: find center pts c1, c2, …, ck to minimize x mini d(x,ci)

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

zx
y

c1 c2

s c3

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

Goal: cluster the data, as little communication as possible

• Dataset S distributed across s locations.

• Each has a piece of the overall data pie.

Distributed Clustering

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

Goal: cluster the data, as little communication as possible

• Data distributed across s locations.
• Each has a piece of the overall data pie.

Key idea: use coresets, short summaries capturing relevant
info w.r.t. all clusterings.

• By combining local coresets, get a global coreset; the size
goes up multiplicatively by s.

• We show a two round procedure with communication only
the true size of a global coreset of dataset S.

Coresets

1 െ ϵ cost S, ܋ ൑ ∑ w୮cost p, ୮∈ௌሚ܋ ൑ 1 ൅ ϵ cost S, ܋

Def: An ϵ-coreset for a set of pts S is a set of points S෨ and
weights w: S෨ → R s.t. for any sets of centers c:

1. Find a constant factor approx. B, add its centers to coreset
2. Sample	Oሺkd/ϵଶሻ pts according to their contribution to the

cost of that approximate clustering B. Add them in too.

Centralized Coresets of size ܱሺ݇݀/߳ଶሻ [Feldman-Langberg’11]

Key idea (proof reinterpreted):
• Can view B as rough coreset, with ܾ ∈ ܤ

weighted by size of Voronoi cell.

• If ݌ has closest pt ܾ௣ ∈ then for any ,ܤ
center ܿ, ܿݐݏ݋ ,݌ ܿ െ ݐݏ݋ܿ ܾ௣, ܿ ൑ ݌‖ െ ܾ௣‖
by triangle inequality.

p
࢖࢈

c

• So, penalty f p ൌ cost p, ܋ െ costሺb୮, ሻ܋ for p
satisfies f p ∈ െcost p, b୮ , cost p, b୮ .

• Motivates sampling according to cost p, b୮ .

9

Distributed Clustering

1. Each player finds coreset of
size ܱሺ݇݀/߳ଶሻ on their own
data using centralized method.

Key fact: ሚܵ௜ is coreset for ܵ௜, then ⋃௜ ሚܵ௜ is coreset for ⋃ ܵ௜௜ .

2. Then they all send local
coresets to the center.

S1 S2

ሚܵଶ

Sk

For ݏ players, total communication is ܱሺ݀݇ݏ/߳ଶሻ.

ሚܵ௦

ሚܵଵ

Can we do better?

Distributed Coresets [Balcan-Ehrlich-Liang, NIPS 2013]

1. Each player i, finds a local constant
factor approx. B୧ and sends cost(B୧	, P୧)
and the centers to the center.

Key idea: in distributed case, show how to do this using only
local constant factor approx.

2. Center samples n ൌ Oሺkd/ϵଶሻ times
n ൌ nଵ ൅ ⋯൅ nୱ from multinomial given
by these costs. Sends n୧	to player i.

3. Each player i sends n୧ points from P୧
sampled according to their
contribution to the local approx.

S1 S2

B2B1

Ss

Bs
ns

n2
n1

ܵ௦෩

ܵଶ෪ଵܵ෩

For ݏ players, total communication is only ܱ ௞ௗ

ఢమ
൅ ݇ݏ .

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

k-means: find center pts c1, c2, …, ck to minimize x mini d2(x,ci)

Color Histogram, k=10
68040 points in ܴଷଶ
[the color features extracted
from an image collection]

YearPredictionMSD, k=50
515345 points in ܴଽ଴
[the timbre audio features from a music
collection]

Open questions (Learning and Clustering)

• Efficient algorithms in noisy settings; handle failures, delays.

• Even better dependence on 1/߳ for communication
efficiency for clustering via boosting style ideas.

• More refined trade-offs between communication complexity,
computational complexity, and sample complexity.

• Can use distributed dimensionality reduction to
reduce dependence on d. [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]

